Articles | Volume 13, issue 1
https://doi.org/10.5194/nhess-13-197-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-13-197-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Burst increases of precipitating electrons recorded by the DEMETER satellite before strong earthquakes
Institute of Earthquake Science, China Earthquake Administration, Beijing, 100036, China
INFN Sezione di Perugia, Via A. Pascoli, Perugia, 06123, Italy
C. Fidani
Central Italy Electromagnetic Network, Via Fosso del Passo 6, 63900 Fermo, Italy
J. Huang
Institute of Earthquake Science, China Earthquake Administration, Beijing, 100036, China
X. Shen
Institute of Earthquake Science, China Earthquake Administration, Beijing, 100036, China
Z. Zeren
Institute of Earthquake Science, China Earthquake Administration, Beijing, 100036, China
J. Qian
Institute of Earthquake Science, China Earthquake Administration, Beijing, 100036, China
Related authors
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023, https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Short summary
We investigate the variation of the electric power density linked to VLF signals emitted by NWC transmitter. The power density measurements were detected by the Electric Field Detector (EFD) instrument onboard CSES satellite above NWC station and its conjugate region (CR). The beam is subject to disturbances and modulations in CR. Above the NWC station, the beam can be considered as a hollow cone with inconsistency dependence of the half-opening angle on the electric power density.
Chieh-Hung Chen, Yang-Yi Sun, Strong Wen, Peng Han, Li-Ching Lin, Huaizhong Yu, Xuemin Zhang, Yongxin Gao, Chi-Chia Tang, Cheng-Horng Lin, and Jann-Yenq Liu
Nat. Hazards Earth Syst. Sci., 20, 3333–3341, https://doi.org/10.5194/nhess-20-3333-2020, https://doi.org/10.5194/nhess-20-3333-2020, 2020
Short summary
Short summary
Scientists demystify stress changes before mainshocks and utilize the foreshocks as an indicator. We investigate changes in seismicity far from mainshocks by using tens of thousands of M ≥ 2 quakes for 10 years in Taiwan and Japan. The results show that wide areas exhibit increased seismicity occurring more than several times in areas of the fault rupture. The stressed crust triggers resonance at frequencies varying from ~ 5 × 10–4 to ~ 10–3 Hz that is supported by the resonant frequency model.
Jing Liu, Wenbin Wang, and Xuemin Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-5, https://doi.org/10.5194/angeo-2020-5, 2020
Manuscript not accepted for further review
Short summary
Short summary
Identifying ionospheric disturbances associated with an earthquake is a useful and challenging work. A new decomposition and nonlinear fitting method has been developed to analyze ionospheric total electron content (TEC) data, and to extract disturbances that are likely related to Mw7.2 Mexico earthquake occurred on April 4, 2010. We found a unique TEC depletion that occurred around the epicenter on March 25, which cannot be explained by lower atmosphere wave or geomagnetic activity forcing.
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023, https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Short summary
We investigate the variation of the electric power density linked to VLF signals emitted by NWC transmitter. The power density measurements were detected by the Electric Field Detector (EFD) instrument onboard CSES satellite above NWC station and its conjugate region (CR). The beam is subject to disturbances and modulations in CR. Above the NWC station, the beam can be considered as a hollow cone with inconsistency dependence of the half-opening angle on the electric power density.
Chieh-Hung Chen, Yang-Yi Sun, Strong Wen, Peng Han, Li-Ching Lin, Huaizhong Yu, Xuemin Zhang, Yongxin Gao, Chi-Chia Tang, Cheng-Horng Lin, and Jann-Yenq Liu
Nat. Hazards Earth Syst. Sci., 20, 3333–3341, https://doi.org/10.5194/nhess-20-3333-2020, https://doi.org/10.5194/nhess-20-3333-2020, 2020
Short summary
Short summary
Scientists demystify stress changes before mainshocks and utilize the foreshocks as an indicator. We investigate changes in seismicity far from mainshocks by using tens of thousands of M ≥ 2 quakes for 10 years in Taiwan and Japan. The results show that wide areas exhibit increased seismicity occurring more than several times in areas of the fault rupture. The stressed crust triggers resonance at frequencies varying from ~ 5 × 10–4 to ~ 10–3 Hz that is supported by the resonant frequency model.
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020, https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
Xiaochen Gou, Lei Li, Yiteng Zhang, Bin Zhou, Yongyong Feng, Bingjun Cheng, Tero Raita, Ji Liu, Zeren Zhima, and Xuhui Shen
Ann. Geophys., 38, 775–787, https://doi.org/10.5194/angeo-38-775-2020, https://doi.org/10.5194/angeo-38-775-2020, 2020
Short summary
Short summary
The CSES observed ionospheric Pc1 waves near the wave injection regions in conjugate hemispheres during the recovery phase of the geomagnetic storm on 27 August 2018. The Pc1s were found to be Alfvén waves with mixed polarisation propagating along background magnetic lines in the ionosphere. We suggest that the possible sources of Pc1 are EMIC waves generated near the plasmapause by the outward expansion of the plasmasphere into the ring current during the recovery phase of geomagnetic storms.
Jing Liu, Wenbin Wang, and Xuemin Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-5, https://doi.org/10.5194/angeo-2020-5, 2020
Manuscript not accepted for further review
Short summary
Short summary
Identifying ionospheric disturbances associated with an earthquake is a useful and challenging work. A new decomposition and nonlinear fitting method has been developed to analyze ionospheric total electron content (TEC) data, and to extract disturbances that are likely related to Mw7.2 Mexico earthquake occurred on April 4, 2010. We found a unique TEC depletion that occurred around the epicenter on March 25, which cannot be explained by lower atmosphere wave or geomagnetic activity forcing.
X. H. Shen, X. Zhang, J. Liu, S. F. Zhao, and G. P. Yuan
Ann. Geophys., 33, 471–479, https://doi.org/10.5194/angeo-33-471-2015, https://doi.org/10.5194/angeo-33-471-2015, 2015
Short summary
Short summary
This paper addresses the background of electron density (Ne) and temperature (Te and their relationship during local nighttime based on DEMETER satellite data. It also discusses the enhanced negative correlation of Ne and Te around strong earthquakes and the possible electric-field-coupling mechanism as well as digital calculation.
K. Qin, L. X. Wu, X. Y. Ouyang, X. H. Shen, and S. Zheng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-2439-2013, https://doi.org/10.5194/nhessd-1-2439-2013, 2013
Revised manuscript has not been submitted