Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4343-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reevaluating flood protection: disaster risk reduction for urbanized alluvial fans
Tamir Grodek
CORRESPONDING AUTHOR
The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
National Museum of Natural Sciences (MNCN), Spanish Research Council (CSIC), 28006 Madrid, Spain
Gerardo Benito
National Museum of Natural Sciences (MNCN), Spanish Research Council (CSIC), 28006 Madrid, Spain
Related authors
No articles found.
Kelly Patricia Sandoval-Rincón, Julio Garrote-Revilla, Daniel Vázquez-Tarrío, Silvia Cervel, Jose Hernández-Manchado, Juan López-Vinielles, Rosa María Mateos, Juan Antonio Ballesteros-Cánovas, Gerardo Benito, and Andrés Díez-Herrero
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-549, https://doi.org/10.5194/essd-2024-549, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-research communities such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible via ArcGIS Online. This database aims to support the revision of Potential Significant Flood Risk Areas, providing insights for regions not included in current national flood maps.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2530, https://doi.org/10.5194/egusphere-2025-2530, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Cited articles
Alcoverro, J., Corominas J., and Gómez, M.: The Barranco de Arás flood of 7 August 1996 (Biescas, Central Pyrenees, Spain), Eng. Geol., 51, 237–255, https://doi.org/10.1016/S0013-7952(98)00076-3, 1999.
Amaranthus, M. P., Rice, R. M., Barr, N. R., and Ziemer, R. R.: Logging and Forest Roads Related to Increased Debris Slides in Southwestern Oregon, J. Forest., 83, 229–233, https://doi.org/10.1093/jof/83.4.229, 1985.
Baggio, T. and D'Agostino, V.: Simulating the effect of check dam collapse in a debris-flow channel, Sci. Total Environ., 816, 1–12, https://doi.org/10.1016/j.scitotenv.2021.151660, 2022.
Ballesteros-Cánovas, J. A., Stoffel, M., Corona, C., Schraml, K., Gobiet, A., Tani, S., Sinabell, F., Fuchs, S., and Kaitna, R.: Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance, Sci. Total Environ., 557–558, 142–153, https://doi.org/10.1016/j.scitotenv.2016.03.036, 2016.
Bany-Mustafa, M.: Flash flood hazard and risk maps for Wadi Yutum, The Second International Symposium on Flash Floods in Wadi Systems, ISFF 25–27 October 2016, Technische Universität Berlin, Campus El Gouna, Egypt, http://hdl.handle.net/2433/228066 (last access: 17 September 2025), 2016.
Benito, G., Grodek, T., and Enzel, Y.: The geomorphic and hydrologic impacts of the catastrophic failure of flood-control-dams during the 1996-Biescas flood (Central Pyrenees, Spain), Z. Geomorphol., 42, 417–437, 1998.
Blackwelder, E.: Fire as an Agent in Rock Weathering, J. Geol., 35, 134–140, 1927.
Bull, W. B.: The alluvial-fan environment, Prog. Phys. Geog., 1, 222–270, https://doi.org/10.1177/030913337700100202, 1977.
Chawner, W. D.: Alluvial Fan Flooding: The Montrose, California, Flood of 1934, Geogr. Rev., 25, 255–263, 1935.
Chen, X., Cui, P., You, Y., Chen, J., and Li, D.: Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area, Eng. Geol., 194, 73–85, https://doi.org/10.1016/j.enggeo.2014.10.002, 2015.
Clarke, L.: Experimental alluvial fans: Advances in understanding of fan dynamics and processes, Geomorphology, 244, 135–145, https://doi.org/10.1016/j.geomorph.2015.04.013, 2015.
Clarke, L., Quine, T. A., and Nicholas, A.: An experimental investigation of autogenic behaviour during alluvial fan evolution, Geomorphology, 115, 278–285, 2010.
Cools, J., Mishara, A., and Verbist, K.: Best practices on flood and drought risk management, UNESCO, https://unesdoc.unesco.org/ark:/48223/pf0000384487 (last access: 17 September 2025), 2023.
Davies, T. R. and McSaveney, M. J.: Principles of sustainable development on fans, J. Hydrol. (NZ), 47, 43–65, 2008.
Davies, T. R. and McSaveney, M. J.: Bedload sediment flux and flood risk management in New Zealand, J. Hydrol. (NZ), 50, 181–190, 2011.
Davies, T. R. H., McSaveney, M. J., and Clarkson, P. J.: Anthropic aggradation of the Waiho River, Westland, New Zealand: microscale modelling, Earth Surf. Proc. Land., 28, 209–218, 2003.
DeGraff, J. V., Wagner, D. L., Gallegos, A. J., DeRose, M., Shannon, C., and Ellsworth, T.: The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA, Landslides, 8, 343–353, https://doi.org/10.1007/s10346-010-0245-5, 2011.
Dell'Agnese, A., Mazzorana, B., Comiti, F., Von Maravic, P., and D'agostino, V.: Assessing the physical vulnerability of check dams through an empirical damage index, J. Agr. Eng., 44, 9–16, 2013.
Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Llasat, C., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Scolobig, A., Viglione, A., and Ward, P. J.: Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection, Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, 2018.
Ding, M., Lin, P., Gao, S., Wang, J., Zeng, Z., Zheng, K., Zhou, X., Yamazaki, D., Gao, Y., and Liu, Y.: Reversal of the levee effect towards sustainable floodplain management, Nat. Sustain., 6, 1578–1586, https://doi.org/10.1038/s41893-023-01202-9, 2023.
Dutton, C. E.: Report on the geology of the high plateaus of Utah, USGS, Rocky Mountain region, Washington, 307 pp., 1880.
Eom, M., Murphy, B., and Stahr, L.: Sediment Transport and Scour Analysis for Wadis in Aqaba, Jordan, World Environmental and Water Resources Congress 2011, ASCE Conference, Palm Springs, California, USA, https://doi.org/10.1061/41173(414)216, 2011.
Fabregas, S., Hurtado, R., and Mintegui J.: The protection of Canfranc Internation Railway Station against natural risks. Analysis and evaluation of its effectiveness 100 years later, EGU General Assembly, Vienna, Austria, 22–27 April 2012, EGU2012-2306-1, 2012.
Farhan, Y. and Anbar, A.: Fragile Landscape: Impact and Consequences of May 2014 Flash-flood Disaster in the Aqaba Area, Southern Jordan, Research Journal of Environmental and Earth Sciences, 6, 451–465, https://doi.org/10.19026/rjees.6.5257, 2014.
Farhan, Y. and Anaba, O.: Flash Flood Risk Estimation of Wadi Yutum (Southern Jordan) Watershed Using GIS Based Morphometric Analysis and Remote Sensing Techniques, Open Journal of Modern Hydrology, 6, 79–100, https://doi.org/10.4236/ojmh.2016.62008, 2016.
FEMA – Federal Emergency Management Agency: Alluvial Fans: Hazards and Management, Report No. FEMA-165, 17 p., Federal Insurance Administration, Office of Loss Reduction, 1989.
FEMA: Guidance for Flood Risk Analysis and Mapping – Alluvial Fans, Guidance Document 75, 31 pp., FEMA (Federal Emergency Management Agency), technical guidance series, https://www.fema.gov/sites/default/files/2020-02/Alluvial_Fans_Guidance_Nov_2016.pdf (last access: 17 September 2025), 2016.
Flez, C. and Lahousse, P.: Recent Evolution of Natural Hazard Management Policy in France, the Example of Serre-Chevalier (French Alps), Environ. Manage., 34, 353–362, https://doi.org/10.1007/s00267-004-2777-8, 2004.
French, R. H.: Hydraulic Processes on Alluvial Fans, Elsevier, 244 pp., ISBN: 978-0-444-42781-6, 1987.
French, R. H.: Preferred directions of flow on alluvial fans, J. Hydraul. Eng., 118, 1002–1322, 1992.
Fuller J. E. and Meyer, D. P.: Case Studies of Flood Impacts to Development on Active Alluvial Fans in Central Arizona, Arizona Geological Survey Contributed Report CR-18-J, 107 p., http://hdl.handle.net/10150/630261 (last access: 17 September 2025), 2018.
García-Ruiz, J. M., White, S. M., Martí-Bono, C., Valero, B., Errea, M. P., and Gómez-Villar, A.: La Catástrofe del Barranco de Arás (Biescas, Pirineo Aragonés) y su Contexto Espacio-temporal, Instituto Pirenaico de Ecología, Zaragoza, https://digital.csic.es/handle/10261/85894 (last access: 17 September 2025), 1996.
Geissner F. W. and Price M.: Flood of January 1969 near Azusa and Glendora, California, USGS Hydrologic Atlas, HA 424, https://doi.org/10.3133/ha424, 1971.
Ghahraman, K. and Nagy, B.: Flood risk on arid alluvial fans: a case study in the Joghatay Mountains, Northeast Iran, J. Mt. Sci., 20, 1183–1200, https://doi.org/10.1007/s11629-022-7635-8, 2023.
Gilbert, G. K.: Report on the geology of the Henry Mountains, USGS, Rocky Mountain Region, 160 pp., 1877.
Green, D.: Modelling Geomorphic Systems: Scaled Physical models, in: Geomorhological Techniques, British Society for Geomorphology, ISSN: 2047-0371, https://pure.hw.ac.uk/ws/portalfiles/portal/93017992/23E738A7_9155_4578_B788_B72B0E20D4D8.pdf (last access: 17 September 2025), 2014.
Griffiths, G., McKerchar, A., and Pearson, C.: Review of flood frequency in the Canterbury region, Report No. R11/50, Environmental Canterbury Regional Council, 2011.
Grodek, T.: Urban Landscape and Flash-Flood Hazard on Alluvial Fans in a Hyper-Arid Zone—The Gulf of Eilat/Aqaba, in: Landscapes and Landforms of Israel. World Geomorphological Landscapes, edited by: Frumkin, A. and Shtober-Zisu, N., Springer, Cham, https://doi.org/10.1007/978-3-031-44764-8_23, 2024.
Grodek, T., Lekach, J., and Schick, A.: Urbanizing alluvial fans as flood-conveying and flood-reducing system: Lessons from the October 1997 Eilat Flood, in: The Hydrology-Geomorphology Interface: Rainfall, Floods, Sedimentation, Land Use, edited by: Hassan, M. A., Slaymaker, O., and Berkowicz, S. M., IAHS, 261, 229–250, ISBN: 978-1-901502-16-9, 2000.
Harvey, A. M.: Alluvial Fans. Reference Module in Earth Systems and Environmental Sciences, Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.11066-8, ISBN: 9780124095489, 2018.
Harvey, A. M., Mather, A. E, and Stokes, M.: Alluvial Fans: Geomorphology, Sedimentology, Dynamics, Geol. Soc. Spec. Publ., 251, https://doi.org/10.1144/GSL.SP.2005.251, 2005.
Hollingsworth, R. and Kovacs, G. S.: Soil slumps and debris flows: prediction and protection, Bulletin of the Association of Engineering Geologists, 18, 17–28, https://doi.org/10.2113/gseegeosci.xviii.1.17, 1981.
Holm, K., Jakob, M., and Scordo, E.: An inventory and risk-based prioritization of steep Creek fans in Alberta, Canada, in: Proceedings, FLOODrisk 2016 – 3rd European Conference on Flood Risk Management, https://doi.org/10.1051/e3sconf/2016 0701009, 2016.
Holub, M., Suda, J., and Fuchs, S.: Mountain hazards: reducing vulnerability by adapted building design, Environ. Earth Sci., 66, 1853–1870, https://doi.org/10.1007/s12665-011-1410-4, 2012.
Hooke, R. L.: Steady-state relationship on arid-region alluvial fans in closed basins, Am. J. Sci., 266, 609–629, https://doi.org/10.2475/ajs.266.8.609, 1968.
Hooke, R. L. and Rohrer, W. L.: Geometry of alluvial fans: effect of discharge and sediment size, Earth Surf. Processes, 4, 147–166, https://doi.org/10.1002/esp.3290040205, 1979.
Horiguchi, T. and Richefeu, V.: Post-analysis simulation of the collapse of an open sabo dam of steel pipes subjected to boulder laden debris flow, Int. J. Sediment Res., 35, 621–635, https://doi.org/10.1016/j.ijsrc.2020.05.002, 2020.
Hüble., J Suda, J., Uchida T., and Nagl, G.: Check Dam Failures, in: Advances in Debris-flow Science and Practice, Geoenvironmental Disaster Reduction Series, edited by: Jakob, M., McDougall, S., and Santi, P., Springer Nature, 565–588, ISSN 2197-8670, ISBN 978-3-031-48690-6, ISBN 978-3-031-48691-3 (eBook), 2024.
Itsukushima, R., Ohtsuki, K., and Sato, T.: Significance of land use as a flood control measure: Unveiling the historical and contemporary strategies in the unique case of Kofu basin alluvial fan, Japan. Int. J. Disast. Risk Re., 109, 104578, https://doi.org/10.1016/j.ijdrr.2024.104578, 2024.
Inbar, M., Tamir, M., and Wittenberg, L.: Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area, Geomorphology 24, 17–33, https://doi.org/10.1016/S0169-555X(97)00098-6, 1998.
Jakob M., McDougall, S., and Santi, P. (Eds.): Advances in Debris-flow Science and Practice, Geoenvironmental Disaster Reduction Series, Springer Nature, 636 pp., ISSN 2197-8670, ISBN 978-3-031-48690-6, ISBN 978-3-031-48691-3 (eBook), 2024.
Kaitna, R., Palucis, M. C., Marra, M., and Huggel, C.: Causes and Triggers, in: Advances in Debris-flow Science and Practice, Geoenvironmental Disaster Reduction Series, edited by: Jakob, M., McDougall, S., and Santi, P., Springer Nature, 191–218, ISSN 2197-8670, ISBN 978-3-031-48690-6, ISBN 978-3-031-48691-3 (eBook), 2024.
Kellerhals, R. and Church, M.: Hazard management on fan, examples from British Columbia, in: Alluvial fans: A field approach, edited by: Rachocki, A. H. and Church, M., New York, John Wiley & Sons, 335–354, ISBN: 9780471916949, 1990.
Larsen, M. C. and Wieczorek, G. F.: Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999, Z. Geomorphol., 145, 147–175, 2006.
Larsen, M. C., Wieczorek, G. F., Eaton, L. S., Morgan, B. A., and Torres-Sierra, H.: Venezuelan Debris Flow and Flash Flood Disaster of 1999 Studied, Eos T. Am. Geophys. Un., 82, 572–573, 2001.
Lekach, L. and Enzel, Y.: Flood-duration-integrated stream power and frequency magnitude of > 50-year-long sediment discharge out of a hyperarid watershed, Earth Surf. Proc. Land., https://doi.org/10.1002/esp.5104, 2021.
Lindskov, K. L.: Flood of May to June 1983 along the northern Wasatch Front, Salt Lake City to north Ogden, Utah, Water Resour. Bull., 24, https://doi.org/10.3133/ofr84456, 1984.
Liu, T. and Broecker, W. S.: How fast does rock varnish grow?, Geology, 28, 183–186, https://doi.org/10.1130/0091-7613(2000)28<183:HFDRVG>2.0.CO;2, 2000.
Lopez, J. L. and Courtel, F.: An integrated approach for debris-flow risk mitigation in the north coastal range of Venezuela. IWRA World Water Congress 2008, Development of Water Resources and Infrastructure, https://www.iwra.org/congress/2008/resource/authors/abs912_article.pdf (last access: 17 September 2025), 2008.
Marchi, L., Cavalli, M., and D'Agostino, V.: Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps, Nat. Hazards Earth Syst. Sci., 10, 547–558, https://doi.org/10.5194/nhess-10-547-2010, 2010.
Marden, M. and Rowan, D.: The effect of land use on slope failure and sediment generation in the Coromandel region of New Zealand following a major storm in 1995, NZ J. Forstry Sci., 45, 10, https://doi.org/10.1186/s40490-015-0036-9, 2015.
Mechler, R., Czajkowski, J., Kunreuther, H., Michel-Kerjan, E., Botzen, W., Keating, A., McQuistan, C., Cooper, N., and O'Donnell, I.: Making Communities More Flood Resilient: The Role of Cost Benefit Analysis and Other Decision-Support Tools in Disaster Risk Reduction, Zurich Flood Resilience Alliance, https://pure.iiasa.ac.at/id/eprint/11193/ (last access: 17 September 2025), 2014.
Melton, M. A.: The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona, J. Geol, 73, 1–38, https://doi.org/10.1086/627044, 1965.
Mizuyama, T.: Structural Countermeasures for Debris Flow Disasters, Int. J. Eros. Control Eng., 1, 38–43, https://doi.org/10.13101/ijece.1.38, 2008.
NRC (National Research Council): Alluvial Fan Flooding, The National Academies Press, Washington, DC, 182 pp., https://doi.org/10.17226/5364, 1996.
Pawlik, Ł., Phillips, J. D., and Šamonil, P.: Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes—A critical literature review, Earth Sci. Rev., 159, 142–159, https://doi.org/10.1016/j.earscirev.2016.06.002, 2016.
Peakall, J., Ashworth, P., and Best, J.: Physical Modelling in Fluvial Geomorphology: Principles, Applications and Unresolved issues, in: The Scientific Nature Geomorphology: Proceedings 27th Binghamton Symposium Geomorphology, edited by: Rhoads, B. L. and Thorn, C. E., https://www.researchgate.net/publication/279960894_Physical_Modelling_in_Fluvial_Geomorphology_Principles_Applications_and_Unresolved_Issues/stats (last access: 17 September 2025), 1996.
Pearson, C. and Henderson, R.: Floods and low flows, in: Freshwaters of New Zealand, edited by: Harding, J., Mosley, P., Pearson, C., and Sorrell, B., NZHS, Wellington, 10.1–10.16, ISBN 0-476-00708-9, 2004.
Pennington, M.: “Not-Modelling” for Stormwater around the Kaikoura alluvial fans, WaterNZ Conference, https://paperzz.com/doc/7816330/ (last access: 17 September 2025), 2009.
Piton, G. and Recking, A.: Design of Sediment Traps with Open Check Dams. I: Hydraulic and Deposition Processes, J. Hydraul. Eng., 142, 04015045, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001048, 2016.
Prakash, N., Santi, P., Strouth, A., Sepulveda, S. A., and Dowling, C.: Fatalities from Debris Flows: Worldwide Distribution and Trends, in: Advances in Debris-flow Science and Practice, Geoenvironmental Disaster Reduction Series, edited by: Jakob, M., McDougall, S., and, Santi, P., Springer Nature, ISSN 2197-8670, ISBN 978-3-031-48690-6, ISBN 978-3-031-48691-3 (eBook), 636 p., 2024.
Rachocki, A. H. and Church, M. (Eds.): Alluvial Fans: a field approach, Wiley, 391 pp., ISBN: 978-0471916949, 1990.
Rengers, F. K., Bower, S., Knapp, A., Kean, J. W., vonLembke, D. W., Thomas, M. A., Kostelnik, J., Barnhart, K. R., Bethel, M., Gartner, J. E., Hille, M., Staley, D. M., Anderson, J. K., Roberts, E. K., DeLong, S. B., Lane, B., Ridgway, P., and Murphy, B. P.: Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA, Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, 2024.
Resco de Dios, V., Hedo, J., Cunill Camprubí, À., Thapa, P., Martínez del Castillo, E., Martínez de Aragón, J., Bonet, J. A., Balaguer-Romano, R., Díaz-Sierra, R., Yebra, M., and Boer, M, M.: Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean Mountain forests into fire-prone ecosystems, Sci. Total Environ, 797, 1–11, https://doi.org/10.1016/j.scitotenv.2021.149104, 2021.
Rodríguez, J. L. G., Muñoz, Á. E., Garcia-Robredo, F., Robredo Sánchez, J. C., Fábregas Reigosa, S., Tardío Cerrillo, G., Esteban Herrero, M., Arriaga Martitegui, F., Íñiguez-González, G., Hurtado Roa, R., and Ballesteros Cánovas, J. A.: Lessons from a Century-Tradition on Ecosystem-Based Disaster Risk Reduction (Eco-DRR) in Mountains: The Case of the Torrential System Los Arañones (Canfranc, Pyrenees), in: Civil Engineering for Disaster Risk Reduction, Springer Tracts in Civil Engineering, edited by: Kolathayar, S., Pal, I., Chian, S. C., and Mondal, A., Springer, Singapore, https://doi.org/10.1007/978-981-16-5312-4_28, 2022.
Salcedo, D.: Los flujos torrenciales catastróficos de Diciembre de 1999, en el estado Vargas y en Caracas: Caracteristicas y lecciones apprendidas, XVI Seminario Venezolano de Geotecnia, 128–175, https://www.researchgate.net/publication/303444191_Los_flujos_torrenciales_catastroficos_de_Diciembre_de_1999_en_el_estado_Vargas_y_en_Caracas_Caracteristicas_y_lecciones_apprendidas#fullTextFileContent (last access: 17 September 2025), 2000.
Sánchez-Silva, M., Klutke, G. A., and Rosowsky, D. V.: Life-cycle performance of structures subject to multiple deterioration mechanisms, Struct. Saf., 33, 206–217, 2011.
Santangelo, N., Santo, A., Di Crescenzo, G., Foscari, G., Liuzza, V., Sciarrotta, S., and Scorpio, V.: Flood susceptibility assessment in a highly urbanized alluvial fan: the case study of Sala Consilina (southern Italy), Nat. Hazards Earth Syst. Sci., 11, 2765–2780, https://doi.org/10.5194/nhess-11-2765-2011, 2011.
Sharon, D.: The spottiness of rainfall in a desert area, J. Hydrol., 17, 161–17, https://doi.org/10.1016/0022-1694(72)90002-9, 1972.
Schick, A. P.: A desert flood: physical characteristics; effects on man, geomorphic significance, human adaptation – a case study of the Southern Arava watershed, Jerusalem, Studies in Geography, 2, 91–155, 1971.
Schick, A. P. and Lekach, J.: An evaluation of two ten-years sediment budgets, Nahal Yael, Israel, Phys. Geogr., 14, 225–238, https://doi.org/10.1080/02723646.1993.10642477, 1993.
Schick, A. P., Grodek, T., and Wolman, M. G.: Hydrologic processes and geomorphic constraints on urbanization of alluvial fan slopes, Geomorphology, 31, 325–335, https://doi.org/10.1016/S0169-555X(99)00085-9, 1999.
Schumm S. A., Mosley M. P., and Weaver W. E. (Eds.): Experimental fluvial geomorphology, Wiley, NY, 413 pp., ISBN 978-0471830771, 1987.
Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., de Luis, M., Ángel Saz, M., Longares, L. A., and Olcina, J.: Unprecedented warmth: A look at Spain's exceptional summer of 2022, Atmos. Res., 293, https://doi.org/10.1016/j.atmosres.2023.106931, 2023.
Shaw, R., Shiwaku, I. K., and Izumi, T. (Eds.): Science and Technology in Disaster Risk Reduction in Asia, Potentials and Challenges, Elsevier, https://doi.org/10.1016/C2016-0-01555-3, 2017.
Sodnik, J., Martinčič, M., Mikoš, M., and Kryžanowski, A.: Are torrent check-dams potential debris-flow Sources?, in: Engineering Geology for Society and Territory – Vol. 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer Nature, https://doi.org/10.1007/978-3-319-09057-3_79, 2015.
Stock, J. D.: Waters Divided: A History of alluvial fan research and a view of its future, in: Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press Elsevier, https://doi.org/10.1016/B978-0-12-374739-6.00249-9, 9, 413–458, 2013.
Stoffel, M., Allen, S. K., Ballesteros-Cánovas, J. A., Jakob, M., and, Oakley, N.: Climate change effects on debris flows, in: Advances in Debris-flow Science and Practice, Geoenvironmental Disaster Reduction Series, edited by: Jakob, M., McDougall, S., and Santi, P., Springer Nature, 273–308, ISSN 2197-8670, ISBN 978-3-031-48690-6, ISBN 978-3-031-48691-3 (eBook), 2024.
Surell, A.: Etude sur les torrents des Hautes-Alpes, first edition, Paris, 1841, Translation in: The history of the study of landforms or the development of geomorphology v. 1, 284–285, edited by: Chorley, R. J., Dunn, A. J., and Beckinsale, R. P., The Royal Geographical Society, Methuen, London, https://doi.org/10.4324/9780203871379, 1964.
Süveges, M. and Davison, A. C.: A case study of a “Dragon-King”: The 1999 Venezuelan catastrophe, Eur. Phys. J.-Spec. Top., 205, 131–146, https://doi.org/10.1140/epjst/e2012-01566-6, 2012.
Tang, C., van Asch, T. W. J., Chang, M., Chen, G. Q., Zhao, X. H., and Huang, X. C.: Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms, Geomorphology, 139–140, 559–576, https://doi.org/10.1016/j.geomorph.2011.12.021, 2012.
Tropeano, D. and Turconi, L.: Debris flows triggered by the 29 August 2003 cloudburst in Val Canale, eastern Italian Alps, International Symposium INTERPRAEVENT 2004 – RIVA/TRIENT, https://www.researchgate.net/publication/288968341_Debris_flows_triggered_by_the_29_August_2003_cloudburst_in_Val_Canale_eastern_Italian_Alps (last access: 17 September 2025), 2004.
UNDRR: Disaster Risk Reduction (DRR) initiative, https://www.researchgate.net/publication/288968341_Debris_flows_triggered_by_the_29_August_2003_cloudburst_in_Val_Canale_eastern_Italian_Alps (last access: 17 September 2025), 2024.
USACE (U.S. Army Corps of Engineers): Review of the U.S. Army Corps of Engineers involvement with Alluvial Fan Flooding Problem, Tech. Paper No. 124, https://www.hec.usace.army.mil/publications/TechnicalPapers/TP-124.pdf (last access: 17 September 2025), 1988.
Ventra, D. and Clarke, L. E. (eds): Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrialand Planetary Perspectives, Geol. Soc. Spec. Publ., 440, 1–21, https://doi.org/10.1144/SP440.16#, 2018.
Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., and Koutsoyiannis, D.: One hundred years of return period: Strengths and limitations, Water Resour. Res., 51, 8570–8585, https://doi.org/10.1002/2015WR017820, 2015.
Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A., Veldkamp, T., von Uexkull, N., Wanders, N., AghaKouchak, A., Arnbjerg-Nielsen, K., Capewell, L., Carmen Llasat, M., Day, R., Dewals, B., Di Baldassarre, G., Huning, L. S., Kreibich, H., Mazzoleni, M., Savelli, E., Teutschbein, C., van den Berg, H., van der Heijden, A., Vincken, J., Waterloo, M. J., and Wens, M,: The need to integrate flood and drought disaster risk reduction strategies, Water Security, 11, 100070, https://doi.org/10.1016/j.wasec.2020.100070, 2020.
Wieczorek, G. F., Lips, E. W., and Ellen, S. D.: Debris flows and hyperconcentrated floods along the Wasatch Front, Utah, 1983 and 1984, Association of Engineering Geologists Bulletin, 26, 191–208, https://doi.org/10.2113/gseegeosci.xxvi.2.191, 1989.
Wieczorek, G. F., Larsen, M. C., Eaton, L. S., Morgan, B. A., and Blair, J. L.: Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation, U. S. Geological Survey Open File Report 01-0144, https://pubs.usgs.gov/of/2001/ofr-01-0144/ (last access: 18 September 2025), 2001.
Xu, Q., Zhang, S., Li, W. L., and van Asch, Th. W. J.: The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China, Nat. Hazards Earth Syst. Sci., 12, 201–216, https://doi.org/10.5194/nhess-12-201-2012, 2012.
Short summary
Protecting urbanized alluvial fan canals and levees from flooding requires effective sediment retention measures, such as check dams, terraces, and trees on steep basins. However, their effectiveness declines over time due to sedimentation and aging, increasing the risk of catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating about 35 % of the alluvial fan to channel migration and sediment deposition corridors.
Protecting urbanized alluvial fan canals and levees from flooding requires effective sediment...
Altmetrics
Final-revised paper
Preprint