Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How does perceived heat stress differ between urban forms and human vulnerability profiles? Case study Berlin
Nimra Iqbal
CORRESPONDING AUTHOR
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Marvin Ravan
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Zina Mitraka
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Joern Birkmann
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Sue Grimmond
Department of Meteorology, University of Reading, RG6 6ET, Reading, UK
Denise Hertwig
Department of Meteorology, University of Reading, RG6 6ET, Reading, UK
Nektarios Chrysoulakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Giorgos Somarakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Angela Wendnagel-Beck
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Emmanouil Panagiotakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Related authors
No articles found.
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025, https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Short summary
A Doppler lidar was placed in a highly built-up area in London to measure wakes from tall buildings during a period of 1 year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020, https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary
Short summary
Thermal emissions or anthropogenic heat fluxes (QF) from human activities impact the local- and larger-scale urban climate. DASH considers both urban form and function in simulating QF by use of an agent-based structure that includes behavioural characteristics of city populations. This allows social practices to drive the calculation of QF as occupants move, varying by day type, demographic, location, activity, and socio-economic factors and in response to environmental conditions.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020, https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Short summary
Ambient air pollution is a major cause of premature death in China. We examine the street-scale variation of pollutant levels in Beijing using air pollution dispersion and chemistry model ADMS-Urban. Campaign measurements are compared with simulated pollutant levels, providing a valuable means of evaluating the impact of key processes on urban air quality. Air quality modelling at such fine scales is essential for human exposure studies and for informing choices on future emission controls.
D. Feldmeyer, H. Sauter, and J. Birkmann
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W14, 37–44, https://doi.org/10.5194/isprs-archives-XLII-4-W14-37-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W14-37-2019, 2019
H. Sauter, D. Feldmeyer, and J. Birkmann
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W14, 213–220, https://doi.org/10.5194/isprs-archives-XLII-4-W14-213-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W14-213-2019, 2019
G. Doxani, S. Siachalou, Z. Mitraka, and P. Patias
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W8, 121–126, https://doi.org/10.5194/isprs-archives-XLII-3-W8-121-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W8-121-2019, 2019
Ting Sun and Sue Grimmond
Geosci. Model Dev., 12, 2781–2795, https://doi.org/10.5194/gmd-12-2781-2019, https://doi.org/10.5194/gmd-12-2781-2019, 2019
Short summary
Short summary
A Python-enhanced urban land surface model, SuPy (SUEWS in Python), is presented with its development (the SUEWS interface modification, F2PY configuration and Python frontend implementation), cross-platform deployment (PyPI, Python Package Index) and demonstration (online tutorials in Jupyter notebooks for users of different levels). SuPy represents a significant enhancement that supports existing and new model applications, reproducibility and enhanced functionality.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Tom V. Kokkonen, Sue Grimmond, Sonja Murto, Huizhi Liu, Anu-Maija Sundström, and Leena Järvi
Atmos. Chem. Phys., 19, 7001–7017, https://doi.org/10.5194/acp-19-7001-2019, https://doi.org/10.5194/acp-19-7001-2019, 2019
Short summary
Short summary
This is the first study to evaluate and correct the WATCH WFDEI reanalysis product in a highly polluted urban environment. It gives an important understanding of the uncertainties in reanalysis products in local-scale urban modelling in polluted environments and identifies and corrects the most important variables in hydrological modelling. This is also the first study to examine the effects of haze on the local-scale urban hydrological cycle.
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
Roy M. Harrison, David C. S. Beddows, Mohammed S. Alam, Ajit Singh, James Brean, Ruixin Xu, Simone Kotthaus, and Sue Grimmond
Atmos. Chem. Phys., 19, 39–55, https://doi.org/10.5194/acp-19-39-2019, https://doi.org/10.5194/acp-19-39-2019, 2019
Short summary
Short summary
Particle number size distributions were measured simultaneously at five sites in London during a campaign. Observations are interpreted in terms of both evaporative shrinkage of traffic-generated particles and condensational growth, probably of traffic-generated particles under cool nocturnal conditions, as well as the influence of particles emitted from Heathrow Airport at a distance of about 22 km. The work highlights the highly dynamic behaviour of nanoparticles within the urban atmosphere.
Ting Sun, Zhi-Hua Wang, Walter C. Oechel, and Sue Grimmond
Geosci. Model Dev., 10, 2875–2890, https://doi.org/10.5194/gmd-10-2875-2017, https://doi.org/10.5194/gmd-10-2875-2017, 2017
Short summary
Short summary
The diurnal hysteresis behaviour found between the net storage heat flux and net all-wave radiation has been captured in the Objective Hysteresis Model (OHM). To facilitate use, and enhance physical interpretations of the OHM coefficients, we develop the Analytical Objective Hysteresis Model (AnOHM) using an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the surface energy balance relationship.
Carole Helfter, Anja H. Tremper, Christoforos H. Halios, Simone Kotthaus, Alex Bjorkegren, C. Sue B. Grimmond, Janet F. Barlow, and Eiko Nemitz
Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, https://doi.org/10.5194/acp-16-10543-2016, 2016
Short summary
Short summary
There are relatively few long-term, direct measurements of pollutant emissions in urban settings. We present over 3 years of measurements of fluxes of CO, CO2 and CH4, study their respective temporal and spatial dynamics and offer an independent verification of the London Atmospheric Emissions Inventory. CO and CO2 were strongly controlled by traffic and well characterised by the inventory whilst measured CH4 was two-fold larger and linked to natural gas usage and perhaps biogenic sources.
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
J. Lindén, C.S.B. Grimmond, and J. Esper
Adv. Sci. Res., 12, 157–162, https://doi.org/10.5194/asr-12-157-2015, https://doi.org/10.5194/asr-12-157-2015, 2015
Short summary
Short summary
Long term meteorological records from stations associated with villages are generally classified as rural and assumed to have no urban influence. Using temperature sensor networks installed around two such stations, spatial variations of the same order magnitude as the long-term temperature trend from these stations were found. The potential bias in the long term series therefore warrants careful consideration in temperature trend evaluation also in village stations.
H. C. Ward, J. G. Evans, C. S. B. Grimmond, and J. Bradford
Atmos. Meas. Tech., 8, 1385–1405, https://doi.org/10.5194/amt-8-1385-2015, https://doi.org/10.5194/amt-8-1385-2015, 2015
Short summary
Short summary
Two-wavelength scintillometry, a ground-based remote sensing technique for deriving large-area heat fluxes, has been used over an urban area for the first time. The long data set enables investigation of the performance of the technique and characteristics of turbulent transport processes at sub-daily to inter-annual timescales. In this first paper, the structure parameters of temperature and humidity, and the correlation between temperature and humidity, are presented and analysed.
H. C. Ward, J. G. Evans, and C. S. B. Grimmond
Atmos. Meas. Tech., 8, 1407–1424, https://doi.org/10.5194/amt-8-1407-2015, https://doi.org/10.5194/amt-8-1407-2015, 2015
Short summary
Short summary
Two-wavelength scintillometry, a ground-based remote sensing technique for deriving large-area heat fluxes, has been used over an urban area for the first time. The long data set enables investigation of the performance of the technique and characteristics of turbulent transport processes at sub-daily to inter-annual timescales. In this second paper, sensible and latent heat fluxes representative of an area of 5--10 km2 are presented and analysed.
L. Järvi, C. S. B. Grimmond, M. Taka, A. Nordbo, H. Setälä, and I. B. Strachan
Geosci. Model Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-2014, https://doi.org/10.5194/gmd-7-1691-2014, 2014
A. Font, C. S. B. Grimmond, J.-A. Morguí, S. Kotthaus, M. Priestman, and B. Barratt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-13465-2013, https://doi.org/10.5194/acpd-13-13465-2013, 2013
Revised manuscript not accepted
H. C. Ward, J. G. Evans, and C. S. B. Grimmond
Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, https://doi.org/10.5194/acp-13-4645-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Invited perspectives: Advancing knowledge co-creation in drought impact studies
Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Tracing online flood conversations across borders: a watershed-level analysis of geo-social media topics during the 2021 European flood
An evaluation of the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda
Qualitative risk assessment of sensitive infrastructures at the local level: flooding and heavy rainfall
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Brief communication: Bridging the data gap – a call to enhance the representation of global coastal flood protection
Disaster management following the great Kahramanmaraş earthquakes in 2023, Türkiye
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Assessing future impacts of tropical cyclones on global banana production
Review article: Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas
The Effect of Community Resilience and Disaster Risk Management Cycle Stages on Morbi-Mortality Following Floods: An Empirical Assessment
Unravelling the capacity–action gap in flood risk adaptation
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
Modeling Regional Production Capacity Loss Rates Considering Response Bias: Insights from a Questionnaire Survey on Zhengzhou Flood
Warnings based on risk matrices: a coherent framework with consistent evaluation
How are public compensation efforts implemented in multi-hazard events? Insights from the 2020 Gloria storm in Catalonia
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Content analysis of multi-annual time series of flood-related Twitter (X) data
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Flood exposure of environmental assets
A new method for calculating highway blocking due to high-impact weather conditions
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Flood exposure in Rotterdam’s unembanked areas from 1970 to 2150: sensitivities to urban development, sea level rise and adaptation
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Monitoring agricultural and economic drought: the Australian Agricultural Drought Indicators (AADI)
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Reevaluating Flood Protection: Disaster Risk Reduction for Urbanized Alluvial Fans
Brief communication: Comprehensive Resilience to Typhoon Disasters: An Urban Assessment of 27 Cities in Seven Major River Basin, China
What if extreme droughts occur more frequently? – Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Sectoral Vulnerability to Drought: Exploring the Role of Blue and Green Water Dependency in Mid and High-Latitudes
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Invited perspectives: Fostering interoperability of data, models, communication and governance for disaster resilience through transdisciplinary knowledge co-production
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Flood relief logistics planning for coastal cities: a case study in Shanghai, China
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
Nat. Hazards Earth Syst. Sci., 25, 2571–2589, https://doi.org/10.5194/nhess-25-2571-2025, https://doi.org/10.5194/nhess-25-2571-2025, 2025
Short summary
Short summary
Despite transdisciplinary approaches being increasingly explored to study droughts and their impacts, their depth and breadth are yet to be fully exploited. By integrating insights from different research fields, we present five key dimensions to deepen and broaden the knowledge co-creation process for drought impact studies. Emphasizing social dynamics and power imbalances, we support hydrologists in developing more integrated, power-sensitive, inclusive, situated, and reflexive studies.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025, https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Short summary
Many households in Vietnam depend on revenue from micro-businesses (shop houses). However, losses caused by regular flooding are not modelled. Business turnover, building age, and water depth were found to be the main drivers of flood losses of micro-businesses. We built and validated probabilistic models (non-parametric Bayesian networks) that estimate flood losses of micro-businesses. The results help with flood risk management and adaption decision making for micro-businesses.
Sébastien Dujardin, Dorian Arifi, Sebastian Schmidt, Catherine Linard, and Bernd Resch
Nat. Hazards Earth Syst. Sci., 25, 2351–2369, https://doi.org/10.5194/nhess-25-2351-2025, https://doi.org/10.5194/nhess-25-2351-2025, 2025
Short summary
Short summary
Our research explores how social media can help understand public responses to floods, focusing on the 2021 western European flood. We found that discussions varied by location and flood impact: in-disaster concerns were more common in severely affected upstream areas, while post-disaster topics dominated downstream. Findings show the potential of social media for improving disaster coordination along cross-border rivers in time-sensitive situations.
Ilyas Masih
Nat. Hazards Earth Syst. Sci., 25, 2155–2178, https://doi.org/10.5194/nhess-25-2155-2025, https://doi.org/10.5194/nhess-25-2155-2025, 2025
Short summary
Short summary
This study evaluates 12 sets of drought policy and planning guidelines for their alignment with the four priority areas of the SENDAI framework. The guidelines do not align very well with the contemporary disaster risk reduction agenda. The study highlights strengths, weaknesses, opportunities, and threats and provides useful insights to develop the next generation of drought guidelines that are better aligned with contemporary science–policy–practice agendas.
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Mansi Nagpal, Jasmin Heilemann, Luis Samaniego, Bernd Klauer, Erik Gawel, and Christian Klassert
Nat. Hazards Earth Syst. Sci., 25, 2115–2135, https://doi.org/10.5194/nhess-25-2115-2025, https://doi.org/10.5194/nhess-25-2115-2025, 2025
Short summary
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Bektaş Sarı
Nat. Hazards Earth Syst. Sci., 25, 2031–2043, https://doi.org/10.5194/nhess-25-2031-2025, https://doi.org/10.5194/nhess-25-2031-2025, 2025
Short summary
Short summary
After the Kahramanmaraş earthquakes, the Turkish Government mobilized all available resources, ensured regular information updates, and deployed a significant number of rescue personnel to the affected areas. However, the scale of this devastating disaster, resulting in the loss of over 50 000 lives, underscores the critical importance of building earthquake-resistant structures as the most effective means to mitigate such calamities.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Nicoletta Nappo and Mandy Korff
Nat. Hazards Earth Syst. Sci., 25, 1811–1839, https://doi.org/10.5194/nhess-25-1811-2025, https://doi.org/10.5194/nhess-25-1811-2025, 2025
Short summary
Short summary
Cities in coastal and delta areas need effective engineering techniques to counteract subsidence and its damage. This paper presents a framework for choosing these techniques using a decision tree and four performance parameters. This procedure was tested on various cases representative of different scenarios. This demonstrated the potential of this method for initial screenings of techniques which site-specific assessments should always follow.
Raquel Guimaraes, Reinhard Mechler, Stefan Velev, and Dipesh Chapagain
EGUsphere, https://doi.org/10.5194/egusphere-2025-1947, https://doi.org/10.5194/egusphere-2025-1947, 2025
Short summary
Short summary
This study explores how communities can better protect people's lives and health during floods. By looking at 66 communities in seven countries, we found that strong social ties and preparedness before disasters helped reduce injuries and deaths. However, some environmental efforts didn't show clear health benefits, especially in degraded areas. Our research highlights how early planning and strong local networks can make a real difference during crises.
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025, https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Short summary
Households play a crucial role in climate adaptation efforts. Yet, households require capacities to implement measures. We explore which capacities enable German households to adapt to flooding. Our results indicate that flood-related capacities such as risk perception, responsibility appraisal, and motivation are pivotal, whereas financial assets are secondary. Enhancing these specific capacities, e.g. through collaborations between households and municipalities, could promote local adaptation.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3923, https://doi.org/10.5194/egusphere-2024-3923, 2025
Short summary
Short summary
This study proposes a response-bias-tolerant methodology for constructing production capacity loss rate (PCLR) curves, which addresses response bias in extreme flood scenarios and considers the distribution characteristics of PCLR under different damage states. The core value of this study is to provide a competing and promising input in economic modeling, such as input-output and computable general equilibrium models.
Robert J. Taggart and David J. Wilke
EGUsphere, https://doi.org/10.5194/egusphere-2025-323, https://doi.org/10.5194/egusphere-2025-323, 2025
Short summary
Short summary
Our research presents a new method for determining warning levels for any hazard. Using risk matrices, our framework addresses issues found in other approaches. We provide examples to demonstrate how the approach works. A powerful method for evaluating warning accuracy is given, allowing for a cycle of continuous improvement in warning services. This research is relevant to a broad audience, from those who develop forecast systems to practitioners who issue or communicate warnings.
Núria Pantaleoni Reluy, Marcel Hürlimann, and Nieves Lantada
EGUsphere, https://doi.org/10.5194/egusphere-2025-1009, https://doi.org/10.5194/egusphere-2025-1009, 2025
Short summary
Short summary
Spain combines public funds with a state-backed insurance program for natural disaster recovery. Our study examines Storm Gloria, which struck Catalonia in 2020, causing severe damage. By systematically collecting and classifying direct losses, we offer insights into the role of government interventions in disaster response, define multi-hazard municipalities based on a loss database, and provide initial insights into loss assessments relative to annual occurrence probability.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025, https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. The spatial distribution of drought and famine during the Chenghua drought and the Wanli drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025, https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Cees Oerlemans, Martine van den Boomen, Ties Rijcken, and Matthijs Kok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2910, https://doi.org/10.5194/egusphere-2024-2910, 2025
Short summary
Short summary
This study analyzes flood exposure in Rotterdam's unembanked areas from 1970 to 2150, exploring the interplay between rising sea levels, urban development, and flood protection measures. Without measures, flood exposure will increase, especially after 2100. The Maeslant storm surge barrier had the most impact on flood exposure, followed by urban development and sea level rise. Varied exposure levels across neighborhoods suggest the need for localized adaptation strategies.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Neal Hughes, Donald Gaydon, Mihir Gupta, Andrew Schepen, Peter Tan, Geoffrey Brent, Andrew Turner, Sean Bellew, Wei Ying Soh, Christopher Sharman, Peter Taylor, John Carter, Dorine Bruget, Zvi Hochman, Ross Searle, Yong Song, Heidi Horan, Patrick Mitchell, Yacob Beletse, Dean Holzworth, Laura Guillory, Connor Brodie, Jonathon McComb, and Ramneek Singh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3731, https://doi.org/10.5194/egusphere-2024-3731, 2024
Short summary
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock, and farm profits rather than traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare and respond to financial and social challenges during droughts.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Zezhao Liu, Jiahui Yang, and Cong Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2343, https://doi.org/10.5194/egusphere-2024-2343, 2024
Short summary
Short summary
We construct an indicator-based framework, and assess urban resilience to typhoon in China’s contexts for the seven major river basins. Results verified the heterogeneity, and the resilience level in certain circumstance was not matched with city strength of economy. The analysis is helpful for government to enhance capability of resilience in specific dimensions, and provides a reference in probing urban resilience assessment confronting typhoon.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Pujun Liang, Jie Yin, Dandan Wang, Yi Lu, Yuhan Yang, Dan Gao, and Jianfeng Mai
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-88, https://doi.org/10.5194/nhess-2024-88, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Addressing coastal city flood risks, this article examines relief logistics planning, employing a GIS-network analysis and optimization model to minimize costs and dissatisfaction. The investigation, grounded in Shanghai's emergency infrastructure and flood relief logistics framework, presents feasible distribution strategies. Meanwhile, the case study indicates that the supply levels of Emergency Flood Shelters and Emergency Reserve Warehouses vary in different coastal flood scenarios.
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Cited articles
Abrahamson, V., Wolf, J., Lorenzoni, I., Fenn, B., Kovats, S., Wilkinson, P., Adger, W. N., and Raine, R.: Perceptions of heatwave risks to health: interview-based study of older people in London and Norwich, UK, J. Public Health, 31, 119–126, https://doi.org/10.1093/pubmed/fdn102, 2009.
Aburrá Valley city's Mayor's Office: Medellín Climate Action Plan 2020–2050, Municipality of Medellín, https://www.medellin.gov.co/es/wp-content/uploads/2024/03/PAC_Medellin_Libro_Digital.pdf (last access: 29 September 2024), 2021 (in Spanish).
Adelekan, I., Cartwright, A., Chow, W., Colenbrander, S., Dawson, R., Garschagen, M., Haasnoot, M., Hashizume, M., Klaus, I., Krishnaswamy, J., Ley, D., McPhearson, T., Pelling, M., Pörtner, H., Revi, A., Miranda Sara, L., P, N., Simph, S., Singh, C., Solecki, W., Thomas, A., and Trisos, C.: Climate Change in Cities and Urban Areas: Impacts, Adaptation and Vulnerability, Indian Institute for Human Settlements, https://doi.org/10.24943/SUPSV209.2022, 2022.
Amt für Statistik Berlin-Brandenburg: Einwohnerdichte, Amt für Statistik Berlin-Brandenburg, https://www.statistik-berlin-brandenburg.de/kommunalstatistik/einwohnerbestand-berlin (last access: 12 September 2022), 2022.
Aslam, A., Rana, I. A., and Bhatti, S. S.: Local climate zones and its potential for building urban resilience: a case study of Lahore, Pakistan, International Journal of Disaster Resilience in the Built Environment, 13, 248–265, https://doi.org/10.1108/IJDRBE-08-2021-0116, 2022.
Augustin, J., Hischke, S., Hoffmann, P., Castro, D., Obi, N., Czerniejewski, A., Dallner, R., and Bouwer, L. M.: Auswirkungen thermischer Belastungen auf die Gesundheit – eine bundesweite Analyse auf Grundlage von GKV-Routinedaten zwischen 2012–2021, Bundesgesundheitsbla., 68, 119–129, https://doi.org/10.1007/s00103-024-03968-5, 2025.
Babiker, M., Bazaz, A., Bertoldi, P., Creutzig, F., De Coninck, H., De Kleijne, K., Dhakal, S., Haldar, S., Jiang, K., Kılkış, Ş., Klaus, I., Krishnaswamy, J., Lwasa, S., Niamir, L., Pathak, M., Portugal Pereira, J., Revi, A., Roy, J., Seto, K., Singh, C., Some, S., Steg, L., and Ürge-Vorsatz, D.: The Summary for Urban Policymakers for IPCC AR6 Report: What the Latest Science on Climate Change Mitigation Means For Cities and Urban Areas, distilled from the IPCC Working Group III report, https://doi.org/10.24943/SUPSV310.2022, 2022.
Bäcklin, O., Lindberg, F., Thorsson, S., Rayner, D., and Wallenberg, N.: Outdoor heat stress at preschools during an extreme summer in Gothenburg, Sweden – Preschool teachers' experiences contextualized by radiation modelling, Sustain. Cities Soc., 75, 103324, https://doi.org/10.1016/j.scs.2021.103324, 2021.
Barlow, J., Best, M., Bohnenstengel, S. I., Clark, P., Grimmond, S., Lean, H., Christen, A., Emeis, S., Haeffelin, M., Harman, I. N., Lemonsu, A., Martilli, A., Pardyjak, E., Rotach, M. W., Ballard, S., Boutle, I., Brown, A., Cai, X., Carpentieri, M., Coceal O., Crawford, B., Di Sabatino, S., Dou, J., Drew, D. R., Edwards, J. M., Fallmann, J., Fortuniak, K., Gornall, J., Tobias, H, C. H., Hertwig, D., Hirano, K., Holtslag, A. A. M., Luo, Z., Mills, G., Nakayoshi, M., Pain, K., Schlünzen, K. H., Smith, S., Soulhac, L., Steeneveld, G., Sun, T., Theeuwes, N. E., Thomson, D., Voogt, J. A., Ward, H. C., Xie, Z., and Zhong, J.: Developing a Research Strategy to Better Understand, Observe, and Simulate Urban Atmospheric Processes at Kilometer to Subkilometer Scales, B. Am. Meteorol. Soc., 98, ES261–ES264, https://doi.org/10.1175/BAMS-D-17-0106.1, 2017.
Battisti, L., Pille, L., Wachtel, T., Larcher, F., and Säumel, I.: Residential Greenery: State of the Art and Health-Related Ecosystem Services and Disservices in the City of Berlin, Sustainability, 11, 1815, https://doi.org/10.3390/su11061815, 2019.
Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., and Stewart, l.: Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities, ISPRS Int. J. Geo-Inf., 4, 199–219, https://doi.org/10.3390/ijgi4010199, 2015.
Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., and Voogt, J.: SUHI analysis using Local Climate Zones – A comparison of 50 cities, Urban Climate, 28, 100451, https://doi.org/10.1016/j.uclim.2019.01.005, 2019.
Bertram, R.: How “green corridors” are driving sustainable policies in Medellín, Heinrich Böll Foundation, https://energytransition.org/2023/12/how-green-corridors-are-driving-sustainable-policies-in-medellin/ (last access: 20 September 2024), 2023.
Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., and Welle, T.: Framing vulnerability, risk and societal responses: the MOVE framework, Nat. Hazards, 67, 193–211, https://doi.org/10.1007/s11069-013-0558-5, 2013.
Birkmann, J., Welle, T., Solecki, W., Lwasa, S., and Garschagen, M.: Boost resilience of small and mid-sized cities, Nature, 537, 605–608, https://doi.org/10.1038/537605a, 2016.
Bochum Department of Social Affairs: Hitzekonzept: Obdach- und Wohnungslose bei “Hitzewellen” schützen, Amt für Soziales, Bochum Department of Social Affairs, Germany, https://www.staedteregion-aachen.de/fileadmin/user_upload/A_53/Dateien/Hitzekonzept_Obdach-u_Wohungslose_Bochum.pdf (last access: 5 December 2023), 2022.
“Cities must protect people from extreme heat”, Nature, 595, 331–332, https://doi.org/10.1038/d41586-021-01903-1, 2021.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B.: A global map of local climate zones to support earth system modelling and urban-scale environmental science, Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, 2022.
Deutschländer, T., Früh, B., Koßmann, M., Roos, M., and Wienert, U.: Berlin im Klimawandel – eine Untersuchung zum Bioklima, edited by: Behrens, U. and Grätz, A., Deutscher Wetterdienst and Senatsverwaltung für Stadtentwicklung, https://digital.zlb.de/viewer//fulltext/15490747/1/ (last access: 2 September 2023), 2010.
Dialesandro, J., Brazil, N., Wheeler, S., and Abunnasr, Y.: Dimensions of Thermal Inequity: Neighborhood Social Demographics and Urban Heat in the Southwestern U.S, Int. J. Env. Res. Pub. He., 18, 941, https://doi.org/10.3390/ijerph18030941, 2021.
Downes, N. K., Storch, H., Viet, P. Q., Diem, N. K., and Le Dinh, C.: Assessing Peri-Urbanisation and Urban Transitions between 2010 and 2020 in Ho Chi Minh City using an Urban Structure Type Approach, Urban Science, 8, 11, https://doi.org/10.3390/urbansci8010011, 2024.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Eldesoky, A. H., Gil, J., and Pont, M. B.: Combining environmental and social dimensions in the typomorphological study of urban resilience to heat stress, Sustain. Cities Soc., 83, 103971, https://doi.org/10.1016/j.scs.2022.103971, 2022.
Evasys GmbH: Evasys, Evasys GmbH, Lüneburg, Germany, https://evasys.de/evasys/ (last access: 15 July 2025), 2021.
Feldmeyer, D., Birkmann, J., and Welle, T.: Development of Human Vulnerability 2012–2017, J. Extr. Even., 4, 1850005, https://doi.org/10.1142/S2345737618500057, 2017.
Feldmeyer, D., Wilden, D., Kind, C., Kaiser, T., Goldschmidt, R., Diller, C., and Birkmann, J.: Indicators for Monitoring Urban Climate Change Resilience and Adaptation, Sustainability, 11, 2931, https://doi.org/10.3390/su11102931, 2019.
Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer, D.: Intra and inter “local climate zone” variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany, Meteorol. Z., 26, 525–547, https://doi.org/10.1127/metz/2017/0861, 2017.
Fenner, D., Christen, A., Grimmond, S., Meier, F., Morrison, W., Zeeman, M., Barlow, J., Birkmann, J., Blunn, L., Chrysoulakis, N., Clements, M., Glazer, R., Hertwig, D., Kotthaus, S., König, K., Looschelders, D., Mitraka, Z., Poursanidis, D., Tsirantonakis, D., Bechtel, B., Benjamin, K., Beyrich, F., Briegel, F., Feigel, G., Gertsen, C., Iqbal, N., Kittner, J., Lean, H., Liu, Y., Luo, Z., McGrory, M., Metzger, S., Paskin, M., Ravan, M., Ruhtz, T., Saunders, B., Scherer, D., Smith, S. T., Stretton, M., Trachte, K., and van Hove, M.: urbisphere-Berlin Campaign: Investigating Multiscale Urban Impacts on the Atmospheric Boundary Layer, B. Am. Meteorol. Soc., 105, E1929–E1961, https://doi.org/10.1175/BAMS-D-23-0030.1, 2024.
Franck, U., Krüger, M., Schwarz, N., Grossmann, K., Röder, S., and Schlink, U.: Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig, Meteorol. Z., 22, 167–177, https://doi.org/10.1127/0941-2948/2013/0384, 2013.
Gallardo, L., Hamdi, R., Islam, A. S., Klaus, I., Klimont, Z., Krishnaswamy, J., Pinto, I., Otto, F., Raghavan, K., Revi, A., Sörensson, A. A., and Szopa, S.: What the Latest Physical Science of Climate Change Means for Cities, Indian Institute for Human Settlements, https://doi.org/10.24943/SUPSV108.2022, 2022.
Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., López Fernández, B., and Martimort, P.: Copernicus Sentinel-2 mission: products, algorithms and Cal/Val, Earth Observing Systems XIX, 9218, 92181E, https://doi.org/10.1117/12.2062260, 2014.
Geoportal Berlin: Building Age in Residential Development, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/building-age/ (last access: 13 June 2023), 2016.
Geoportal Berlin: DOM – Digitales Oberflächenmodell Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoinformation/landesvermessung/geotopographie-atkis/bdom-digitales-bildbasiertes-oberflaechenmodell/ (last access: 13 December 2023), 2020.
Geoportal Berlin: Impervious Soil Coverage 2021 (Soil Sealing), Geoportal Berlin, https://www.berlin.de/umweltatlas/en/soil/impervious-soil-coverage/2021/summary/ (last access: 13 June 2023), 2021a.
Geoportal Berlin: Urban Structural Density – Floor Space Index (FSI) 2019, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/urban-structural-density/2019/summary/ (last access: 13 June 2023), 2021b.
Geoportal Berlin: Green Volume 2020, FIS-Broker, https://fbinter.stadt-berlin.de/fb/index.jsp?Szenario=fb_en&loginkey=zoomStart&mapId=ek_05_09gruenvol2020@esenstadt&bbox=367786,5806155,418176,5831378 (last access: 13 June 2023), 2021c.
Geoportal Berlin: Amtliches Liegenschaftskatasterinformationssystem ALKIS Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoportal/liegenschaftskataster/ (last access: 13 December 2023), 2022a.
Geoportal Berlin: ATKIS DGM – Digitales Geländemodell Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoinformation/landesvermessung/geotopographie-atkis/dgm-digitale-gelaendemodelle/ (last access: 13 December 2023), 2022b.
Geoportal Berlin: Building Heights 2023, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/building-heights/continually-updated/map-description (last access: 13 June 2023), 2023.
Grimmond, C. S. B. and Oke, T. R.: Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model, J. Appl. Meteor., 38, 922–940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2, 1999.
Grimmond, S.: Urbanization and global environmental change: local effects of urban warming, Geogr. J., 173, 83–88, https://doi.org/10.1111/j.1475-4959.2007.232_3.x, 2007.
Hannemann, L., Janson, D., Grewe, H. A., Blättner, B., and Mücke, H.: Heat in German cities: a study on existing and planned measures to protect human health, J. Public Health, 32, 1733–1742, https://doi.org/10.1007/s10389-023-01932-2, 2023.
Hass, A. L., Runkle, J. D., and Sugg, M. M.: The driving influences of human perception to extreme heat: A scoping review, Environ. Res., 197, 111173, https://doi.org/10.1016/j.envres.2021.111173, 2021.
Heldens, W., Taubenböck, H., Esch, T., Heiden, U., and Wurm, M.: Analysis of Surface Thermal Patterns in Relation to Urban Structure Types: A Case Study for the City of Munich, in: Thermal Infrared Remote Sensing: Sensors, Methods, Applications, edited by: Kuenzer, C. and Dech, S., Springer Netherlands, Dordrecht, 475–493, https://doi.org/10.1007/978-94-007-6639-6_23, 2013.
Hertwig, D., McGrory, M., Paskin, M., Liu, Y., Lo Piano, S., Llanwarne, H., Smith, S. T., and Grimmond, S.: Connecting physical and socio-economic spaces for multi-scale urban modelling: a dataset for London, Geosci. Data J., 12, e289, https://doi.org/10.1002/gdj3.289, 2025.
Höppe, P.: The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment, Int. J. Biometeorol., 43, 71–75, https://doi.org/10.1007/s004840050118, 1999.
IPCC: Global Warming of 1.5 °C, Cambridge University Press, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, https://doi.org/10.1017/9781009157940, 2018.
IPCC: Annex II: Glossary, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Möller, V., van Diemen, R., Matthews, J. B. R., Méndez, C., Semenov, S., Fuglestvedt, J. S., and Reisinger, A., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023.
Iqbal, N., Ravan, M., Jamshed, A., Birkmann, J., Somarakis, G., Mitraka, Z., and Chrysoulakis, N.: Linkages between Typologies of Existing Urban Development Patterns and Human Vulnerability to Heat Stress in Lahore, Sustainability, 14, 10561, https://doi.org/10.3390/su141710561, 2022.
Iqbal, N., Ravan, M., Mitraka, Z., Birkmann, J., Grimmond, S., Hertwig, D., Chrysoulakis, N., Somarakis, G., Wendnagel-Beck, A., and Panagiotakis, E.: Datasets for: How does perceived heat stress differ between urban forms and human vulnerability profiles? – case study Berlin, Zenodo [data set], https://doi.org/10.5281/zenodo.12192376, 2024.
Jamshed, A., Rana, I. A., Birkmann, J., and Nadeem, O.: Changes in Vulnerability and Response Capacities of Rural Communities After Extreme Events: Case of Major Floods of 2010 and 2014 in Pakistan, J. Extr. Even., 04, 1750013, https://doi.org/10.1142/S2345737617500130, 2017.
Kaveckis, G.: Modeling future population's vulnerability to heat waves in Greater Hamburg, dissertation, Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, https://ediss.sub.uni-hamburg.de/handle/ediss/7365 (last access: 14 July 2025), 2017.
Klopfer, F.: The thermal performance of urban form – An analysis on urban structure types in Berlin, Appl. Geogr., 152, 102890, https://doi.org/10.1016/j.apgeog.2023.102890, 2023.
Kunz-Plapp, T., Hackenbruch, J., and Schipper, J. W.: Factors of subjective heat stress of urban citizens in contexts of everyday life, Nat. Hazards Earth Syst. Sci., 16, 977–994, https://doi.org/10.5194/nhess-16-977-2016, 2016.
Landesamt für Bürger- und Ordnungsangelegenheiten: Melderegister der Stadt Berlin, Landesamt für Bürger- und Ordnungsangelegenheiten, https://www.berlin.de/labo/ (last access: 15 July 2025), 2022.
Laranjeira, K., Göttsche, F., Birkmann, J., and Garschagen, M.: Heat vulnerability and adaptive capacities: findings of a household survey in Ludwigsburg, BW, Germany, Climatic Change, 166, 14, https://doi.org/10.1007/s10584-021-03103-2, 2021.
Lemonsu, A., Viguié, V., Daniel, M., and Masson, V.: Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France), Urban Climate, 14, 586–605, https://doi.org/10.1016/j.uclim.2015.10.007, 2015.
Li, T., Ban, J., Horton, R. M., Bader, D. A., Huang, G., Sun, Q., and Kinney, P. L.: Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China, Sci. Rep., 5, 11441, https://doi.org/10.1038/srep11441, 2015.
Lindberg, F. and Grimmond, C. S. B.: Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London, Urban Ecosyst., 14, 617–634, https://doi.org/10.1007/s11252-011-0184-5, 2011.
Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L., and Zhang, Z.: Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services, Environ. Model. Softw., 99, 70–87, https://doi.org/10.1016/j.envsoft.2017.09.020, 2018.
Liu, B., Guo, X., and Jiang, J.: How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study, Sustainability, 15, 10787, https://doi.org/10.3390/su151410787, 2023.
LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Städtebaulicher Rahmenplan Klimaanpassung für die Stadt Karlsruhe, LUBW Landesanstalt für Umwelt, https://www.karlsruhe.de/mobilitaet-stadtbild/stadtplanung/staedtebauliche-projekte/klimaanpassungsplan (last access: 2 February 2023), 2014.
Lüthi, S., Fairless, C., Fischer, E. M., Scovronick, N., Armstrong, B., Coelho, M. D. S. Z. S., Guo, Y. L., Guo, Y., Honda, Y., Huber, V., Kyselý, J., Lavigne, E., Royé, D., Ryti, N., Silva, S., Urban, A., Gasparrini, A., Bresch, D. N., and Vicedo-Cabrera, A. M.: Rapid increase in the risk of heat-related mortality, Nat. Commun., 14, 4894, https://doi.org/10.1038/s41467-023-40599-x, 2023.
Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., and Maes, J.: Urban heat island mitigation by green infrastructure in European Functional Urban Areas, Sustain. Cities Soc., 77, 103564, https://doi.org/10.1016/j.scs.2021.103564, 2022.
Meade, R. D., Akerman, A. P., Notley, S. R., McGinn, R., Poirier, P., Gosselin, P., and Kenny, G. P.: Physiological factors characterizing heat-vulnerable older adults: A narrative review, Environ. Int., 144, 105909, https://doi.org/10.1016/j.envint.2020.105909, 2020.
Mitraka, Z., Del Frate, F., Chrysoulakis, N., and Gastellu-Etchegorry, J.: Exploiting Earth Observation data products for mapping Local Climate Zones, in: 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015, 1–4, https://doi.org/10.1109/JURSE.2015.7120456, 2015.
Mitraka, Z., Stagakis, S., Lantzanakis, G., Tzelidi, D., Chrysoulakis, N., Gastellu-Etchegorry, J.-P., Lindberg, F., Feigenwinter, C., and Grimmind, S.: URBANFLUXES Deliverable D8.4 Adaptation to Sentinels methodology and evaluation report, https://cordis.europa.eu/project/id/637519/results (last access: 22 July 2025), 2017.
Narocki, C.: Heatwaves as an Occupational Hazard: The Impact of Heat and Heatwaves on Workers' Health, Safety and Wellbeing and on Social Inequalities, ETUI aisbl, Brussels, SSRN Journal, https://doi.org/10.2139/ssrn.4013353, 2021.
Oke, T. R.: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations, J. Climatol., 1, 237–254, https://doi.org/10.1002/joc.3370010304, 1981.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban climates, Cambridge University Press, Cambridge, United Kingdom, New York, NY, 525 pp., https://doi.org/10.1017/9781139016476, 2017.
Oliveira, A., Lopes, A., and Niza, S.: Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data, Urban Climate, 33, 100631, https://doi.org/10.1016/j.uclim.2020.100631, 2020.
Park, J., Hallegatte, S., Bangalore, M., and Sandhoefner, E.: Households and Heat Stress: Estimating the Distributional Consequences of Climate Change, World Bank Policy Research Working Paper No. 7479, SSRN, https://ssrn.com/abstract=2688377 (last access: 15 July 2025), 2015.
Ren, C., Cai, M., Li, X., Zhang, L., Wang, R., Xu, Y., and Ng, E.: Assessment of Local Climate Zone Classification Maps of Cities in China and Feasible Refinements, Sci. Rep., 9, 18848, https://doi.org/10.1038/s41598-019-55444-9, 2019.
Rocha, A. D., Vulova, S., Förster, M., Gioli, B., Matthews, B., Helfter, C., Meier, F., Steeneveld, G.-J., Barlow, J. F., Järvi, L., Chrysoulakis, N., Nicolini, G., and Kleinschmit, B.: Unprivileged groups are less served by green cooling services in major European urban areas, Nat. Cities, 1, 424–435, https://doi.org/10.1038/s44284-024-00077-x, 2024.
Rosenzweig, C., Ruane, A. C., Antle, J., Elliott, J., Ashfaq, M., Chatta, A. A., Ewert, F., Folberth, C., Hathie, I., Havlik, P., Hoogenboom, G., Lotze-Campen, H., MacCarthy, D. S., Mason-D'Croz, D., Contreras, E. M., Müller, C., Perez-Dominguez, I., Phillips, M., Porter, C., Raymundo, R. M., Sands, R. D., Schleussner, C.-F., Valdivia, R. O., Valin, H., and Wiebe, K.: Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments, Phil. Trans. R. Soc. A., 376, 20160455, https://doi.org/10.1098/rsta.2016.0455, 2018.
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004.
Schuster, C., Burkart, K., and Lakes, T.: Heat mortality in Berlin – Spatial variability at the neighborhood scale, Urban Climate, 10, 134–147, https://doi.org/10.1016/j.uclim.2014.10.008, 2014.
Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., and Davin, E. L.: The role of urban trees in reducing land surface temperatures in European cities, Nat. Commun., 12, 6763, https://doi.org/10.1038/s41467-021-26768-w, 2021.
Schwingshackl, C., Daloz, A. S., Iles, C., Aunan, K., and Sillmann, J.: High-resolution projections of ambient heat for major European cities using different heat metrics, Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, 2024.
Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen: Urban Development Plan (StEP) Climate 2.0, Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen, https://www.berlin.de/sen/stadtentwicklung/planung/stadtentwicklungsplaene/step-klima-2-0/ (last access: 2 March 2023), 2023.
Senatsverwaltung für Stadtentwicklung und Umwelt: Klimamodell Berlin, Senatsverwaltung für Stadtentwicklung und Umwelt, https://www.berlin.de/umweltatlas/klima/klimaanalyse/2014/zusammenfassung/ (last access: 2 March 2023), 2014.
Senatsverwaltung für Stadtentwicklung und Umwelt: Planungshinweiskarte Stadtklima, Senatsverwaltung für Stadtentwicklung und Umwelt, https://www.berlin.de/umweltatlas/_assets/literatur/planungshinweise_stadtklimaberlin_2015.pdf?ts=1704197525 (last access: 2 March 2023), 2015.
Senatsverwaltung für Stadtentwicklung und Wohnen: Dokumentation Bodennutzung und Stadtstruktur 2020, Senatsverwaltung für Stadtentwicklung und Wohnen, https://www.berlin.de/umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2020.pdf?ts=1726132803 (last access: 1 September 2024), 2020.
Senatsverwaltung für Stadtentwicklung und Wohnen: Urbane Struktur/Urbane Struktur – Flächentypen differenziert, Senatsverwaltung für Stadtentwicklung und Wohnen, https://www.berlin.de/umweltatlas/en/land-use/urban-structure/ (last access: 2 March 2023), 2021.
Senatsverwaltung für Stadtentwicklung und Wohnen Berlin: Monitoring Soziale Stadtentwicklung, Senatsverwaltung für Stadtentwicklung und Wohnen Berlin, https://www.stadtentwicklung.berlin.de/planen/basisdaten_stadtentwicklung/monitoring/index.shtml (last access: 12 September 2023), 2019.
Song, Y., Ge, Y., Wang, J., Ren, Z., Liao, Y., and Peng, J.: Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050, Malaria J., 15, 345, https://doi.org/10.1186/s12936-016-1395-2, 2016.
Sousa-Silva, R. and Zanocco, C.; Assessing public attitudes towards urban green spaces as a heat adaptation strategy: Insights from Germany, Landscape Urban Plan., 245, 105013, https://doi.org/10.1016/j.landurbplan.2024.105013, 2024.
Statistisches Bundesamt: Altersstruktur der Bevölkerung in Berlin, 2022 und 2070, Statistisches Bundesamt, https://www.demografie-portal.de/DE/Fakten/Daten/bevoelkerung-altersstruktur-berlin.csv?__blob=publicationFile&v=4 (last access: 3 September 2023), 2022.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Stewart, I. D., Krayenhoff, E. S., Voogt, J. A., Lachapelle, J. A., Allen, M. A., and Broadbent, A. M.: Time Evolution of the Surface Urban Heat Island, Earths Future, 9, e2021EF002178, https://doi.org/10.1029/2021EF002178, 2021.
Sun, S., Wang, Z., Hu, C., and Gao, G.: Understanding Climate Hazard Patterns and Urban Adaptation Measures in China, Sustainability, 13, 13886, https://doi.org/10.3390/su132413886, 2021.
Tollefson, J.: IPCC climate report: Earth is warmer than it's been in 125 000 years, Nature, 596, 171–172, https://doi.org/10.1038/d41586-021-02179-1, 2021.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., and Evans, T.: Global urban population exposure to extreme heat, P. Natl. Acad. Sci. USA, 118, e2024792118, https://doi.org/10.1073/pnas.2024792118, 2021.
Turek-Hankins, L. L., Coughlan de Perez, E., Scarpa, G., Ruiz-Diaz, R., Schwerdtle, P. N., Joe, E. T., Galappaththi, E. K., French, E. M., Austin, S. E., Singh, C., Siña, M., S., A. R., van Aalst, M. K., Templeman, S., Nunbogu, A. M., Berrang-Ford, L., Agrawal, T., and Mach, K. J.: Climate change adaptation to extreme heat: a global systematic review of implemented action, Oxford Open Climate Change, 1, kgab005, https://doi.org/10.1093/oxfclm/kgab005, 2021.
Turner, V. K., Middel, A., and Vanos, J. K.: Shade is an essential solution for hotter cities, Nature, 619, 694–697, https://doi.org/10.1038/d41586-023-02311-3, 2023.
United Nations: World Population Prospects, Department of Economic and Social Affairs, Population Division, https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_wpp-data_sources.pdf (last access: 21 November 2023), 2022.
Verdonck, M., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider, A., Dewulf, R., and van Coillie, F.: The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data, Landscape Urban Plan., 178, 183–197, https://doi.org/10.1016/j.landurbplan.2018.06.004, 2018.
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., La Valencia, C. D. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Chang., 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021.
von Szombathely, M., Bechtel, B., Lemke, B., Oßenbrügge, J., Pohl, T., and Pott, M.: Empirical Evidences for Urban Influences on Public Health in Hamburg, Appl. Sci., 9, 2303, https://doi.org/10.3390/app9112303, 2019.
Voogt, J. and Oke, T.: Thermal remote sensing of urban climates, Remote Sens. Environ., 86, 370–384, https://doi.org/10.1016/S0034-4257(03)00079-8, 2003.
Wende, W.: Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales Klimaanpassungsprogramm für die Modellregion Dresden (Vol. 6).: Grundlagen für eine klimawandelangepasste Stadt- und Freiraumplanung, RHOMBOS-VERLAG (Rhombos Publishing House), ISBN 978-3-944101-15-6, 2014.
Wendnagel-Beck, A., Ravan, M., Iqbal, N., Birkmann, J., Somarakis, G., Hertwig, D., Chrysoulakis, N., and Grimmond, S.: Characterizing Physical and Social Compositions of Cities to Inform Climate Adaptation: Case Studies in Germany, Urban Planning, 6, 321–337, https://doi.org/10.17645/up.v6i4.4515, 2021.
Willroth, P., Massmann, F., Wehrhahn, R., and Revilla Diez, J.: Socio-economic vulnerability of coastal communities in southern Thailand: the development of adaptation strategies, Nat. Hazards Earth Syst. Sci., 12, 2647–2658, https://doi.org/10.5194/nhess-12-2647-2012, 2012.
Wouters, H.: Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region, Geophys. Res. Lett., 44, 8997–9007, 2017.
Yang, J., Yang, Y., Sun, D., Jin, C., and Xiao, X.: Influence of urban morphological characteristics on thermal environment, Sustain. Cities Soc., 72, 103045, https://doi.org/10.1016/j.scs.2021.103045, 2021.
Yue, W., Liu, X., Zhou, Y., and Liu, Y.: Impacts of urban configuration on urban heat island: An empirical study in China mega-cities, Sci. Total Environ., 671, 1036–1046, https://doi.org/10.1016/j.scitotenv.2019.03.421, 2019.
Zhou, W., Huang, G., and Cadenasso, M. L.: Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes, Landscape Urban Plan., 102, 54–63, https://doi.org/10.1016/j.landurbplan.2011.03.009, 2011.
Zhu, X., Hu, J., Qiu, C., Shi, Y., Bagheri, H., Kang, J., Li, H., Mou, L., Zhang, G., Häberle, M., Han, S., Hua, Y., Huang, R., Hughes, L., Sun, Y., Schmitt, M., and Wang, Y.: So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification, University Library of the Technical University of Munich, https://doi.org/10.14459/2018MP1483140, 2018.
Zuhra, S. S., Tabinda, A. B., and Yasar, A.: Appraisal of the heat vulnerability index in Punjab: a case study of spatial pattern for exposure, sensitivity, and adaptive capacity in megacity Lahore, Pakistan, Int. J. Biometeorol., 63, 1669–1682, https://doi.org/10.1007/s00484-019-01784-0, 2019.
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age,...
Altmetrics
Final-revised paper
Preprint