Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How does perceived heat stress differ between urban forms and human vulnerability profiles? Case study Berlin
Nimra Iqbal
CORRESPONDING AUTHOR
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Marvin Ravan
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Zina Mitraka
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Joern Birkmann
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Sue Grimmond
Department of Meteorology, University of Reading, RG6 6ET, Reading, UK
Denise Hertwig
Department of Meteorology, University of Reading, RG6 6ET, Reading, UK
Nektarios Chrysoulakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Giorgos Somarakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Angela Wendnagel-Beck
Institute of Spatial and Regional Planning (IREUS), University of Stuttgart, 70569 Stuttgart, Germany
Emmanouil Panagiotakis
Remote Sensing Lab, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
Related authors
No articles found.
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025, https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Short summary
A Doppler lidar was placed in a highly built-up area in London to measure wakes from tall buildings during a period of 1 year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024, https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Megan A. Stretton, William Morrison, Robin J. Hogan, and Sue Grimmond
Geosci. Model Dev., 16, 5931–5947, https://doi.org/10.5194/gmd-16-5931-2023, https://doi.org/10.5194/gmd-16-5931-2023, 2023
Short summary
Short summary
Cities' materials and forms impact radiative fluxes. We evaluate the SPARTACUS-Urban multi-layer approach to modelling longwave radiation, describing realistic 3D geometry statistically using the explicit DART (Discrete Anisotropic Radiative Transfer) model. The temperature configurations used are derived from thermal camera observations. SPARTACUS-Urban accurately predicts longwave fluxes, with a low computational time (cf. DART), but has larger errors with sunlit/shaded surface temperatures.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020, https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary
Short summary
Thermal emissions or anthropogenic heat fluxes (QF) from human activities impact the local- and larger-scale urban climate. DASH considers both urban form and function in simulating QF by use of an agent-based structure that includes behavioural characteristics of city populations. This allows social practices to drive the calculation of QF as occupants move, varying by day type, demographic, location, activity, and socio-economic factors and in response to environmental conditions.
Cited articles
Abrahamson, V., Wolf, J., Lorenzoni, I., Fenn, B., Kovats, S., Wilkinson, P., Adger, W. N., and Raine, R.: Perceptions of heatwave risks to health: interview-based study of older people in London and Norwich, UK, J. Public Health, 31, 119–126, https://doi.org/10.1093/pubmed/fdn102, 2009.
Aburrá Valley city's Mayor's Office: Medellín Climate Action Plan 2020–2050, Municipality of Medellín, https://www.medellin.gov.co/es/wp-content/uploads/2024/03/PAC_Medellin_Libro_Digital.pdf (last access: 29 September 2024), 2021 (in Spanish).
Adelekan, I., Cartwright, A., Chow, W., Colenbrander, S., Dawson, R., Garschagen, M., Haasnoot, M., Hashizume, M., Klaus, I., Krishnaswamy, J., Ley, D., McPhearson, T., Pelling, M., Pörtner, H., Revi, A., Miranda Sara, L., P, N., Simph, S., Singh, C., Solecki, W., Thomas, A., and Trisos, C.: Climate Change in Cities and Urban Areas: Impacts, Adaptation and Vulnerability, Indian Institute for Human Settlements, https://doi.org/10.24943/SUPSV209.2022, 2022.
Amt für Statistik Berlin-Brandenburg: Einwohnerdichte, Amt für Statistik Berlin-Brandenburg, https://www.statistik-berlin-brandenburg.de/kommunalstatistik/einwohnerbestand-berlin (last access: 12 September 2022), 2022.
Aslam, A., Rana, I. A., and Bhatti, S. S.: Local climate zones and its potential for building urban resilience: a case study of Lahore, Pakistan, International Journal of Disaster Resilience in the Built Environment, 13, 248–265, https://doi.org/10.1108/IJDRBE-08-2021-0116, 2022.
Augustin, J., Hischke, S., Hoffmann, P., Castro, D., Obi, N., Czerniejewski, A., Dallner, R., and Bouwer, L. M.: Auswirkungen thermischer Belastungen auf die Gesundheit – eine bundesweite Analyse auf Grundlage von GKV-Routinedaten zwischen 2012–2021, Bundesgesundheitsbla., 68, 119–129, https://doi.org/10.1007/s00103-024-03968-5, 2025.
Babiker, M., Bazaz, A., Bertoldi, P., Creutzig, F., De Coninck, H., De Kleijne, K., Dhakal, S., Haldar, S., Jiang, K., Kılkış, Ş., Klaus, I., Krishnaswamy, J., Lwasa, S., Niamir, L., Pathak, M., Portugal Pereira, J., Revi, A., Roy, J., Seto, K., Singh, C., Some, S., Steg, L., and Ürge-Vorsatz, D.: The Summary for Urban Policymakers for IPCC AR6 Report: What the Latest Science on Climate Change Mitigation Means For Cities and Urban Areas, distilled from the IPCC Working Group III report, https://doi.org/10.24943/SUPSV310.2022, 2022.
Bäcklin, O., Lindberg, F., Thorsson, S., Rayner, D., and Wallenberg, N.: Outdoor heat stress at preschools during an extreme summer in Gothenburg, Sweden – Preschool teachers' experiences contextualized by radiation modelling, Sustain. Cities Soc., 75, 103324, https://doi.org/10.1016/j.scs.2021.103324, 2021.
Barlow, J., Best, M., Bohnenstengel, S. I., Clark, P., Grimmond, S., Lean, H., Christen, A., Emeis, S., Haeffelin, M., Harman, I. N., Lemonsu, A., Martilli, A., Pardyjak, E., Rotach, M. W., Ballard, S., Boutle, I., Brown, A., Cai, X., Carpentieri, M., Coceal O., Crawford, B., Di Sabatino, S., Dou, J., Drew, D. R., Edwards, J. M., Fallmann, J., Fortuniak, K., Gornall, J., Tobias, H, C. H., Hertwig, D., Hirano, K., Holtslag, A. A. M., Luo, Z., Mills, G., Nakayoshi, M., Pain, K., Schlünzen, K. H., Smith, S., Soulhac, L., Steeneveld, G., Sun, T., Theeuwes, N. E., Thomson, D., Voogt, J. A., Ward, H. C., Xie, Z., and Zhong, J.: Developing a Research Strategy to Better Understand, Observe, and Simulate Urban Atmospheric Processes at Kilometer to Subkilometer Scales, B. Am. Meteorol. Soc., 98, ES261–ES264, https://doi.org/10.1175/BAMS-D-17-0106.1, 2017.
Battisti, L., Pille, L., Wachtel, T., Larcher, F., and Säumel, I.: Residential Greenery: State of the Art and Health-Related Ecosystem Services and Disservices in the City of Berlin, Sustainability, 11, 1815, https://doi.org/10.3390/su11061815, 2019.
Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., and Stewart, l.: Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities, ISPRS Int. J. Geo-Inf., 4, 199–219, https://doi.org/10.3390/ijgi4010199, 2015.
Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., and Voogt, J.: SUHI analysis using Local Climate Zones – A comparison of 50 cities, Urban Climate, 28, 100451, https://doi.org/10.1016/j.uclim.2019.01.005, 2019.
Bertram, R.: How “green corridors” are driving sustainable policies in Medellín, Heinrich Böll Foundation, https://energytransition.org/2023/12/how-green-corridors-are-driving-sustainable-policies-in-medellin/ (last access: 20 September 2024), 2023.
Birkmann, J., Cardona, O. D., Carreño, M. L., Barbat, A. H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D., Zeil, P., and Welle, T.: Framing vulnerability, risk and societal responses: the MOVE framework, Nat. Hazards, 67, 193–211, https://doi.org/10.1007/s11069-013-0558-5, 2013.
Birkmann, J., Welle, T., Solecki, W., Lwasa, S., and Garschagen, M.: Boost resilience of small and mid-sized cities, Nature, 537, 605–608, https://doi.org/10.1038/537605a, 2016.
Bochum Department of Social Affairs: Hitzekonzept: Obdach- und Wohnungslose bei “Hitzewellen” schützen, Amt für Soziales, Bochum Department of Social Affairs, Germany, https://www.staedteregion-aachen.de/fileadmin/user_upload/A_53/Dateien/Hitzekonzept_Obdach-u_Wohungslose_Bochum.pdf (last access: 5 December 2023), 2022.
“Cities must protect people from extreme heat”, Nature, 595, 331–332, https://doi.org/10.1038/d41586-021-01903-1, 2021.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B.: A global map of local climate zones to support earth system modelling and urban-scale environmental science, Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, 2022.
Deutschländer, T., Früh, B., Koßmann, M., Roos, M., and Wienert, U.: Berlin im Klimawandel – eine Untersuchung zum Bioklima, edited by: Behrens, U. and Grätz, A., Deutscher Wetterdienst and Senatsverwaltung für Stadtentwicklung, https://digital.zlb.de/viewer//fulltext/15490747/1/ (last access: 2 September 2023), 2010.
Dialesandro, J., Brazil, N., Wheeler, S., and Abunnasr, Y.: Dimensions of Thermal Inequity: Neighborhood Social Demographics and Urban Heat in the Southwestern U.S, Int. J. Env. Res. Pub. He., 18, 941, https://doi.org/10.3390/ijerph18030941, 2021.
Downes, N. K., Storch, H., Viet, P. Q., Diem, N. K., and Le Dinh, C.: Assessing Peri-Urbanisation and Urban Transitions between 2010 and 2020 in Ho Chi Minh City using an Urban Structure Type Approach, Urban Science, 8, 11, https://doi.org/10.3390/urbansci8010011, 2024.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Eldesoky, A. H., Gil, J., and Pont, M. B.: Combining environmental and social dimensions in the typomorphological study of urban resilience to heat stress, Sustain. Cities Soc., 83, 103971, https://doi.org/10.1016/j.scs.2022.103971, 2022.
Evasys GmbH: Evasys, Evasys GmbH, Lüneburg, Germany, https://evasys.de/evasys/ (last access: 15 July 2025), 2021.
Feldmeyer, D., Birkmann, J., and Welle, T.: Development of Human Vulnerability 2012–2017, J. Extr. Even., 4, 1850005, https://doi.org/10.1142/S2345737618500057, 2017.
Feldmeyer, D., Wilden, D., Kind, C., Kaiser, T., Goldschmidt, R., Diller, C., and Birkmann, J.: Indicators for Monitoring Urban Climate Change Resilience and Adaptation, Sustainability, 11, 2931, https://doi.org/10.3390/su11102931, 2019.
Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer, D.: Intra and inter “local climate zone” variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany, Meteorol. Z., 26, 525–547, https://doi.org/10.1127/metz/2017/0861, 2017.
Fenner, D., Christen, A., Grimmond, S., Meier, F., Morrison, W., Zeeman, M., Barlow, J., Birkmann, J., Blunn, L., Chrysoulakis, N., Clements, M., Glazer, R., Hertwig, D., Kotthaus, S., König, K., Looschelders, D., Mitraka, Z., Poursanidis, D., Tsirantonakis, D., Bechtel, B., Benjamin, K., Beyrich, F., Briegel, F., Feigel, G., Gertsen, C., Iqbal, N., Kittner, J., Lean, H., Liu, Y., Luo, Z., McGrory, M., Metzger, S., Paskin, M., Ravan, M., Ruhtz, T., Saunders, B., Scherer, D., Smith, S. T., Stretton, M., Trachte, K., and van Hove, M.: urbisphere-Berlin Campaign: Investigating Multiscale Urban Impacts on the Atmospheric Boundary Layer, B. Am. Meteorol. Soc., 105, E1929–E1961, https://doi.org/10.1175/BAMS-D-23-0030.1, 2024.
Franck, U., Krüger, M., Schwarz, N., Grossmann, K., Röder, S., and Schlink, U.: Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig, Meteorol. Z., 22, 167–177, https://doi.org/10.1127/0941-2948/2013/0384, 2013.
Gallardo, L., Hamdi, R., Islam, A. S., Klaus, I., Klimont, Z., Krishnaswamy, J., Pinto, I., Otto, F., Raghavan, K., Revi, A., Sörensson, A. A., and Szopa, S.: What the Latest Physical Science of Climate Change Means for Cities, Indian Institute for Human Settlements, https://doi.org/10.24943/SUPSV108.2022, 2022.
Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., López Fernández, B., and Martimort, P.: Copernicus Sentinel-2 mission: products, algorithms and Cal/Val, Earth Observing Systems XIX, 9218, 92181E, https://doi.org/10.1117/12.2062260, 2014.
Geoportal Berlin: Building Age in Residential Development, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/building-age/ (last access: 13 June 2023), 2016.
Geoportal Berlin: DOM – Digitales Oberflächenmodell Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoinformation/landesvermessung/geotopographie-atkis/bdom-digitales-bildbasiertes-oberflaechenmodell/ (last access: 13 December 2023), 2020.
Geoportal Berlin: Impervious Soil Coverage 2021 (Soil Sealing), Geoportal Berlin, https://www.berlin.de/umweltatlas/en/soil/impervious-soil-coverage/2021/summary/ (last access: 13 June 2023), 2021a.
Geoportal Berlin: Urban Structural Density – Floor Space Index (FSI) 2019, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/urban-structural-density/2019/summary/ (last access: 13 June 2023), 2021b.
Geoportal Berlin: Green Volume 2020, FIS-Broker, https://fbinter.stadt-berlin.de/fb/index.jsp?Szenario=fb_en&loginkey=zoomStart&mapId=ek_05_09gruenvol2020@esenstadt&bbox=367786,5806155,418176,5831378 (last access: 13 June 2023), 2021c.
Geoportal Berlin: Amtliches Liegenschaftskatasterinformationssystem ALKIS Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoportal/liegenschaftskataster/ (last access: 13 December 2023), 2022a.
Geoportal Berlin: ATKIS DGM – Digitales Geländemodell Berlin, Geoportal Berlin, https://www.berlin.de/sen/sbw/stadtdaten/geoinformation/landesvermessung/geotopographie-atkis/dgm-digitale-gelaendemodelle/ (last access: 13 December 2023), 2022b.
Geoportal Berlin: Building Heights 2023, Geoportal Berlin, https://www.berlin.de/umweltatlas/en/land-use/building-heights/continually-updated/map-description (last access: 13 June 2023), 2023.
Grimmond, C. S. B. and Oke, T. R.: Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model, J. Appl. Meteor., 38, 922–940, https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2, 1999.
Grimmond, S.: Urbanization and global environmental change: local effects of urban warming, Geogr. J., 173, 83–88, https://doi.org/10.1111/j.1475-4959.2007.232_3.x, 2007.
Hannemann, L., Janson, D., Grewe, H. A., Blättner, B., and Mücke, H.: Heat in German cities: a study on existing and planned measures to protect human health, J. Public Health, 32, 1733–1742, https://doi.org/10.1007/s10389-023-01932-2, 2023.
Hass, A. L., Runkle, J. D., and Sugg, M. M.: The driving influences of human perception to extreme heat: A scoping review, Environ. Res., 197, 111173, https://doi.org/10.1016/j.envres.2021.111173, 2021.
Heldens, W., Taubenböck, H., Esch, T., Heiden, U., and Wurm, M.: Analysis of Surface Thermal Patterns in Relation to Urban Structure Types: A Case Study for the City of Munich, in: Thermal Infrared Remote Sensing: Sensors, Methods, Applications, edited by: Kuenzer, C. and Dech, S., Springer Netherlands, Dordrecht, 475–493, https://doi.org/10.1007/978-94-007-6639-6_23, 2013.
Hertwig, D., McGrory, M., Paskin, M., Liu, Y., Lo Piano, S., Llanwarne, H., Smith, S. T., and Grimmond, S.: Connecting physical and socio-economic spaces for multi-scale urban modelling: a dataset for London, Geosci. Data J., 12, e289, https://doi.org/10.1002/gdj3.289, 2025.
Höppe, P.: The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment, Int. J. Biometeorol., 43, 71–75, https://doi.org/10.1007/s004840050118, 1999.
IPCC: Global Warming of 1.5 °C, Cambridge University Press, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, https://doi.org/10.1017/9781009157940, 2018.
IPCC: Annex II: Glossary, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Möller, V., van Diemen, R., Matthews, J. B. R., Méndez, C., Semenov, S., Fuglestvedt, J. S., and Reisinger, A., Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023.
Iqbal, N., Ravan, M., Jamshed, A., Birkmann, J., Somarakis, G., Mitraka, Z., and Chrysoulakis, N.: Linkages between Typologies of Existing Urban Development Patterns and Human Vulnerability to Heat Stress in Lahore, Sustainability, 14, 10561, https://doi.org/10.3390/su141710561, 2022.
Iqbal, N., Ravan, M., Mitraka, Z., Birkmann, J., Grimmond, S., Hertwig, D., Chrysoulakis, N., Somarakis, G., Wendnagel-Beck, A., and Panagiotakis, E.: Datasets for: How does perceived heat stress differ between urban forms and human vulnerability profiles? – case study Berlin, Zenodo [data set], https://doi.org/10.5281/zenodo.12192376, 2024.
Jamshed, A., Rana, I. A., Birkmann, J., and Nadeem, O.: Changes in Vulnerability and Response Capacities of Rural Communities After Extreme Events: Case of Major Floods of 2010 and 2014 in Pakistan, J. Extr. Even., 04, 1750013, https://doi.org/10.1142/S2345737617500130, 2017.
Kaveckis, G.: Modeling future population's vulnerability to heat waves in Greater Hamburg, dissertation, Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, https://ediss.sub.uni-hamburg.de/handle/ediss/7365 (last access: 14 July 2025), 2017.
Klopfer, F.: The thermal performance of urban form – An analysis on urban structure types in Berlin, Appl. Geogr., 152, 102890, https://doi.org/10.1016/j.apgeog.2023.102890, 2023.
Kunz-Plapp, T., Hackenbruch, J., and Schipper, J. W.: Factors of subjective heat stress of urban citizens in contexts of everyday life, Nat. Hazards Earth Syst. Sci., 16, 977–994, https://doi.org/10.5194/nhess-16-977-2016, 2016.
Landesamt für Bürger- und Ordnungsangelegenheiten: Melderegister der Stadt Berlin, Landesamt für Bürger- und Ordnungsangelegenheiten, https://www.berlin.de/labo/ (last access: 15 July 2025), 2022.
Laranjeira, K., Göttsche, F., Birkmann, J., and Garschagen, M.: Heat vulnerability and adaptive capacities: findings of a household survey in Ludwigsburg, BW, Germany, Climatic Change, 166, 14, https://doi.org/10.1007/s10584-021-03103-2, 2021.
Lemonsu, A., Viguié, V., Daniel, M., and Masson, V.: Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France), Urban Climate, 14, 586–605, https://doi.org/10.1016/j.uclim.2015.10.007, 2015.
Li, T., Ban, J., Horton, R. M., Bader, D. A., Huang, G., Sun, Q., and Kinney, P. L.: Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China, Sci. Rep., 5, 11441, https://doi.org/10.1038/srep11441, 2015.
Lindberg, F. and Grimmond, C. S. B.: Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London, Urban Ecosyst., 14, 617–634, https://doi.org/10.1007/s11252-011-0184-5, 2011.
Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L., and Zhang, Z.: Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services, Environ. Model. Softw., 99, 70–87, https://doi.org/10.1016/j.envsoft.2017.09.020, 2018.
Liu, B., Guo, X., and Jiang, J.: How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study, Sustainability, 15, 10787, https://doi.org/10.3390/su151410787, 2023.
LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Städtebaulicher Rahmenplan Klimaanpassung für die Stadt Karlsruhe, LUBW Landesanstalt für Umwelt, https://www.karlsruhe.de/mobilitaet-stadtbild/stadtplanung/staedtebauliche-projekte/klimaanpassungsplan (last access: 2 February 2023), 2014.
Lüthi, S., Fairless, C., Fischer, E. M., Scovronick, N., Armstrong, B., Coelho, M. D. S. Z. S., Guo, Y. L., Guo, Y., Honda, Y., Huber, V., Kyselý, J., Lavigne, E., Royé, D., Ryti, N., Silva, S., Urban, A., Gasparrini, A., Bresch, D. N., and Vicedo-Cabrera, A. M.: Rapid increase in the risk of heat-related mortality, Nat. Commun., 14, 4894, https://doi.org/10.1038/s41467-023-40599-x, 2023.
Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., and Maes, J.: Urban heat island mitigation by green infrastructure in European Functional Urban Areas, Sustain. Cities Soc., 77, 103564, https://doi.org/10.1016/j.scs.2021.103564, 2022.
Meade, R. D., Akerman, A. P., Notley, S. R., McGinn, R., Poirier, P., Gosselin, P., and Kenny, G. P.: Physiological factors characterizing heat-vulnerable older adults: A narrative review, Environ. Int., 144, 105909, https://doi.org/10.1016/j.envint.2020.105909, 2020.
Mitraka, Z., Del Frate, F., Chrysoulakis, N., and Gastellu-Etchegorry, J.: Exploiting Earth Observation data products for mapping Local Climate Zones, in: 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015, 1–4, https://doi.org/10.1109/JURSE.2015.7120456, 2015.
Mitraka, Z., Stagakis, S., Lantzanakis, G., Tzelidi, D., Chrysoulakis, N., Gastellu-Etchegorry, J.-P., Lindberg, F., Feigenwinter, C., and Grimmind, S.: URBANFLUXES Deliverable D8.4 Adaptation to Sentinels methodology and evaluation report, https://cordis.europa.eu/project/id/637519/results (last access: 22 July 2025), 2017.
Narocki, C.: Heatwaves as an Occupational Hazard: The Impact of Heat and Heatwaves on Workers' Health, Safety and Wellbeing and on Social Inequalities, ETUI aisbl, Brussels, SSRN Journal, https://doi.org/10.2139/ssrn.4013353, 2021.
Oke, T. R.: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations, J. Climatol., 1, 237–254, https://doi.org/10.1002/joc.3370010304, 1981.
Oke, T. R., Mills, G., Christen, A., and Voogt, J. A.: Urban climates, Cambridge University Press, Cambridge, United Kingdom, New York, NY, 525 pp., https://doi.org/10.1017/9781139016476, 2017.
Oliveira, A., Lopes, A., and Niza, S.: Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data, Urban Climate, 33, 100631, https://doi.org/10.1016/j.uclim.2020.100631, 2020.
Park, J., Hallegatte, S., Bangalore, M., and Sandhoefner, E.: Households and Heat Stress: Estimating the Distributional Consequences of Climate Change, World Bank Policy Research Working Paper No. 7479, SSRN, https://ssrn.com/abstract=2688377 (last access: 15 July 2025), 2015.
Ren, C., Cai, M., Li, X., Zhang, L., Wang, R., Xu, Y., and Ng, E.: Assessment of Local Climate Zone Classification Maps of Cities in China and Feasible Refinements, Sci. Rep., 9, 18848, https://doi.org/10.1038/s41598-019-55444-9, 2019.
Rocha, A. D., Vulova, S., Förster, M., Gioli, B., Matthews, B., Helfter, C., Meier, F., Steeneveld, G.-J., Barlow, J. F., Järvi, L., Chrysoulakis, N., Nicolini, G., and Kleinschmit, B.: Unprivileged groups are less served by green cooling services in major European urban areas, Nat. Cities, 1, 424–435, https://doi.org/10.1038/s44284-024-00077-x, 2024.
Rosenzweig, C., Ruane, A. C., Antle, J., Elliott, J., Ashfaq, M., Chatta, A. A., Ewert, F., Folberth, C., Hathie, I., Havlik, P., Hoogenboom, G., Lotze-Campen, H., MacCarthy, D. S., Mason-D'Croz, D., Contreras, E. M., Müller, C., Perez-Dominguez, I., Phillips, M., Porter, C., Raymundo, R. M., Sands, R. D., Schleussner, C.-F., Valdivia, R. O., Valin, H., and Wiebe, K.: Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments, Phil. Trans. R. Soc. A., 376, 20160455, https://doi.org/10.1098/rsta.2016.0455, 2018.
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004.
Schuster, C., Burkart, K., and Lakes, T.: Heat mortality in Berlin – Spatial variability at the neighborhood scale, Urban Climate, 10, 134–147, https://doi.org/10.1016/j.uclim.2014.10.008, 2014.
Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., and Davin, E. L.: The role of urban trees in reducing land surface temperatures in European cities, Nat. Commun., 12, 6763, https://doi.org/10.1038/s41467-021-26768-w, 2021.
Schwingshackl, C., Daloz, A. S., Iles, C., Aunan, K., and Sillmann, J.: High-resolution projections of ambient heat for major European cities using different heat metrics, Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, 2024.
Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen: Urban Development Plan (StEP) Climate 2.0, Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen, https://www.berlin.de/sen/stadtentwicklung/planung/stadtentwicklungsplaene/step-klima-2-0/ (last access: 2 March 2023), 2023.
Senatsverwaltung für Stadtentwicklung und Umwelt: Klimamodell Berlin, Senatsverwaltung für Stadtentwicklung und Umwelt, https://www.berlin.de/umweltatlas/klima/klimaanalyse/2014/zusammenfassung/ (last access: 2 March 2023), 2014.
Senatsverwaltung für Stadtentwicklung und Umwelt: Planungshinweiskarte Stadtklima, Senatsverwaltung für Stadtentwicklung und Umwelt, https://www.berlin.de/umweltatlas/_assets/literatur/planungshinweise_stadtklimaberlin_2015.pdf?ts=1704197525 (last access: 2 March 2023), 2015.
Senatsverwaltung für Stadtentwicklung und Wohnen: Dokumentation Bodennutzung und Stadtstruktur 2020, Senatsverwaltung für Stadtentwicklung und Wohnen, https://www.berlin.de/umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2020.pdf?ts=1726132803 (last access: 1 September 2024), 2020.
Senatsverwaltung für Stadtentwicklung und Wohnen: Urbane Struktur/Urbane Struktur – Flächentypen differenziert, Senatsverwaltung für Stadtentwicklung und Wohnen, https://www.berlin.de/umweltatlas/en/land-use/urban-structure/ (last access: 2 March 2023), 2021.
Senatsverwaltung für Stadtentwicklung und Wohnen Berlin: Monitoring Soziale Stadtentwicklung, Senatsverwaltung für Stadtentwicklung und Wohnen Berlin, https://www.stadtentwicklung.berlin.de/planen/basisdaten_stadtentwicklung/monitoring/index.shtml (last access: 12 September 2023), 2019.
Song, Y., Ge, Y., Wang, J., Ren, Z., Liao, Y., and Peng, J.: Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050, Malaria J., 15, 345, https://doi.org/10.1186/s12936-016-1395-2, 2016.
Sousa-Silva, R. and Zanocco, C.; Assessing public attitudes towards urban green spaces as a heat adaptation strategy: Insights from Germany, Landscape Urban Plan., 245, 105013, https://doi.org/10.1016/j.landurbplan.2024.105013, 2024.
Statistisches Bundesamt: Altersstruktur der Bevölkerung in Berlin, 2022 und 2070, Statistisches Bundesamt, https://www.demografie-portal.de/DE/Fakten/Daten/bevoelkerung-altersstruktur-berlin.csv?__blob=publicationFile&v=4 (last access: 3 September 2023), 2022.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Stewart, I. D., Krayenhoff, E. S., Voogt, J. A., Lachapelle, J. A., Allen, M. A., and Broadbent, A. M.: Time Evolution of the Surface Urban Heat Island, Earths Future, 9, e2021EF002178, https://doi.org/10.1029/2021EF002178, 2021.
Sun, S., Wang, Z., Hu, C., and Gao, G.: Understanding Climate Hazard Patterns and Urban Adaptation Measures in China, Sustainability, 13, 13886, https://doi.org/10.3390/su132413886, 2021.
Tollefson, J.: IPCC climate report: Earth is warmer than it's been in 125 000 years, Nature, 596, 171–172, https://doi.org/10.1038/d41586-021-02179-1, 2021.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., and Evans, T.: Global urban population exposure to extreme heat, P. Natl. Acad. Sci. USA, 118, e2024792118, https://doi.org/10.1073/pnas.2024792118, 2021.
Turek-Hankins, L. L., Coughlan de Perez, E., Scarpa, G., Ruiz-Diaz, R., Schwerdtle, P. N., Joe, E. T., Galappaththi, E. K., French, E. M., Austin, S. E., Singh, C., Siña, M., S., A. R., van Aalst, M. K., Templeman, S., Nunbogu, A. M., Berrang-Ford, L., Agrawal, T., and Mach, K. J.: Climate change adaptation to extreme heat: a global systematic review of implemented action, Oxford Open Climate Change, 1, kgab005, https://doi.org/10.1093/oxfclm/kgab005, 2021.
Turner, V. K., Middel, A., and Vanos, J. K.: Shade is an essential solution for hotter cities, Nature, 619, 694–697, https://doi.org/10.1038/d41586-023-02311-3, 2023.
United Nations: World Population Prospects, Department of Economic and Social Affairs, Population Division, https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_wpp-data_sources.pdf (last access: 21 November 2023), 2022.
Verdonck, M., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J., Schneider, A., Dewulf, R., and van Coillie, F.: The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data, Landscape Urban Plan., 178, 183–197, https://doi.org/10.1016/j.landurbplan.2018.06.004, 2018.
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H., Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A., Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka, A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H., La Valencia, C. D. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S., Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J., Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C., Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong, B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V., Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The burden of heat-related mortality attributable to recent human-induced climate change, Nat. Clim. Chang., 11, 492–500, https://doi.org/10.1038/s41558-021-01058-x, 2021.
von Szombathely, M., Bechtel, B., Lemke, B., Oßenbrügge, J., Pohl, T., and Pott, M.: Empirical Evidences for Urban Influences on Public Health in Hamburg, Appl. Sci., 9, 2303, https://doi.org/10.3390/app9112303, 2019.
Voogt, J. and Oke, T.: Thermal remote sensing of urban climates, Remote Sens. Environ., 86, 370–384, https://doi.org/10.1016/S0034-4257(03)00079-8, 2003.
Wende, W.: Publikationsreihe des BMBF-geförderten Projektes REGKLAM – regionales Klimaanpassungsprogramm für die Modellregion Dresden (Vol. 6).: Grundlagen für eine klimawandelangepasste Stadt- und Freiraumplanung, RHOMBOS-VERLAG (Rhombos Publishing House), ISBN 978-3-944101-15-6, 2014.
Wendnagel-Beck, A., Ravan, M., Iqbal, N., Birkmann, J., Somarakis, G., Hertwig, D., Chrysoulakis, N., and Grimmond, S.: Characterizing Physical and Social Compositions of Cities to Inform Climate Adaptation: Case Studies in Germany, Urban Planning, 6, 321–337, https://doi.org/10.17645/up.v6i4.4515, 2021.
Willroth, P., Massmann, F., Wehrhahn, R., and Revilla Diez, J.: Socio-economic vulnerability of coastal communities in southern Thailand: the development of adaptation strategies, Nat. Hazards Earth Syst. Sci., 12, 2647–2658, https://doi.org/10.5194/nhess-12-2647-2012, 2012.
Wouters, H.: Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region, Geophys. Res. Lett., 44, 8997–9007, 2017.
Yang, J., Yang, Y., Sun, D., Jin, C., and Xiao, X.: Influence of urban morphological characteristics on thermal environment, Sustain. Cities Soc., 72, 103045, https://doi.org/10.1016/j.scs.2021.103045, 2021.
Yue, W., Liu, X., Zhou, Y., and Liu, Y.: Impacts of urban configuration on urban heat island: An empirical study in China mega-cities, Sci. Total Environ., 671, 1036–1046, https://doi.org/10.1016/j.scitotenv.2019.03.421, 2019.
Zhou, W., Huang, G., and Cadenasso, M. L.: Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes, Landscape Urban Plan., 102, 54–63, https://doi.org/10.1016/j.landurbplan.2011.03.009, 2011.
Zhu, X., Hu, J., Qiu, C., Shi, Y., Bagheri, H., Kang, J., Li, H., Mou, L., Zhang, G., Häberle, M., Han, S., Hua, Y., Huang, R., Hughes, L., Sun, Y., Schmitt, M., and Wang, Y.: So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification, University Library of the Technical University of Munich, https://doi.org/10.14459/2018MP1483140, 2018.
Zuhra, S. S., Tabinda, A. B., and Yasar, A.: Appraisal of the heat vulnerability index in Punjab: a case study of spatial pattern for exposure, sensitivity, and adaptive capacity in megacity Lahore, Pakistan, Int. J. Biometeorol., 63, 1669–1682, https://doi.org/10.1007/s00484-019-01784-0, 2019.
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age,...
Altmetrics
Final-revised paper
Preprint