Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-1963-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1963-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing future impacts of tropical cyclones on global banana production
Sophie Kaashoek
Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV, Amsterdam, the Netherlands
Žiga Malek
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
Novel Data Ecosystems for Sustainability (NODES), International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
Nadia Bloemendaal
Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV, Amsterdam, the Netherlands
Research and Development Weather and Climate Models (RDKW), Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3731 GA, De Bilt, the Netherlands
Institute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV, Amsterdam, the Netherlands
Related authors
No articles found.
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Wiebke S. Jäger, Marleen C. de Ruiter, Timothy Tiggeloven, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 25, 2751–2769, https://doi.org/10.5194/nhess-25-2751-2025, https://doi.org/10.5194/nhess-25-2751-2025, 2025
Short summary
Short summary
Multiple hazards, occurring simultaneously or consecutively, can have more extreme impacts than single hazards. We examined the disaster records in the global emergency events database EM-DAT to better understand this phenomenon. We developed a method to identify such multi-hazards and analysed their reported impacts using statistics. Multi-hazards have accounted for a disproportionate number of the impacts, but there appear to be different archetypal patterns in which the impacts compound.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Hunter C. Quintal, Antonia Sebastian, Marc L. Serre, Wiebke S. Jäger, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2870, https://doi.org/10.5194/egusphere-2025-2870, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
High quality weather event datasets are crucial to community preparedness and resilience. Researchers create such datasets using clustering methods, which we advance by addressing current limitation in the relationship between space and time. We propose a method to determine the appropriate factor by which to resample the spatial resolution of the data prior to clustering. Ultimately, our approach increases the ability to detect historic heatwaves over current methods.
Ekta Aggarwal, Marleen C. de Ruiter, Kartikeya S. Sangwan, Rajiv Sinha, Sophie Buijs, Ranjay Shrestha, Sanjeev Gupta, and Alexander C. Whittaker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3901, https://doi.org/10.5194/egusphere-2024-3901, 2025
Preprint archived
Short summary
Short summary
The occurrence of frequent floods in recent years due to changing weather, heavy rainfall, and the natural landscape, has caused major damage to lives and property. This study looks at flood risks in the Ganga Basin, focusing on the factors that cause floods, the areas affected, and the vulnerability of people. The study uses NASA's night-time lights to track human activities. This helps to show how risks are connected to expanding human activities, and changing resilience to floods.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Nivedita Sairam and Marleen de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-920, https://doi.org/10.5194/egusphere-2025-920, 2025
Short summary
Short summary
This paper highlights gaps in disaster risk assessments, particularly regarding disease outbreaks after natural hazards. It calls for: 1) learning from compound risk models to understand disaster and disease probabilities, 2) including health metrics in risk frameworks, and 3) improving data and modeling for health impacts. The authors propose a research agenda to enhance disaster risk management.
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025, https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Marjolein Ribberink, Hylke de Vries, Nadia Bloemendaal, Michiel Baatsen, and Erik van Meijgaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-218, https://doi.org/10.5194/egusphere-2025-218, 2025
Short summary
Short summary
Hurricane Ophelia of October 2017 is a rare example of a strong post-tropical cyclone impacting Europe, an event that is expected to occur more frequently as our climate warms. This study examines the changes in structure, behaviour, and extratropical transition of Hurricane Ophelia under alternate climate forcing using a regional model. We find that in warmer climates the storm becomes stronger, larger, and maintains the characteristics of a tropical cyclone for longer than in cooler climates.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Gwendoline Ducros, Timothy Tiggeloven, Lin Ma, Anne Sophie Daloz, Nina Schuhen, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3158, https://doi.org/10.5194/egusphere-2024-3158, 2024
Short summary
Short summary
Our study finds that heatwave, drought and wildfire events occurring simultaneously in Scandinavia are pronounced in the summer months; and the heat-drought 2018 event led to a drop in gross domestic product, affecting agriculture and forestry imports, further impacting Europe’s trade balance. This research shows the importance of ripple effects of multi-hazard, and that forest management and adaptation measures are vital to reducing the risks of heat-related multi-hazards in vulnerable areas.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
Cited articles
Aguilar, E. A., Turner, D. W., Gibbs, D. J., Armstrong, W., and Sivasithamparam, K.: Oxygen distribution and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected to aerated and oxygen-depleted environments, Plant Soil, 253, 91–102, https://doi.org/10.1023/A:1024598319404, 2003.
Beer, T., Abbs, D., and Alves, O.: Concatenated hazards: tsunamis, climate change, tropical cyclones and floods, In Tsunami Events and Lessons Learned 255–270, Springer, https://doi.org/10.1007/978-94-007-7269-4_14, 2014.
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019.
Bloemendaal, N., De Moel, H., Muis, S., Haigh, I. D., and Aerts, J. C.: Estimation of global tropical cyclone wind speed probabilities using the STORM dataset, Sci. Data, 7, 1–11, 2020a.
Bloemendaal, N., De Moel, H., Muis, S., Haigh, I. D., and Aerts, J. C. J. H.: STORM tropical cyclone wind speed return periods, ResearchData [data set], https://doi.org/10.4121/12705164.v3, 2020b.
Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C.: Generation of a global synthetic tropical cyclone hazard dataset using STORM, Sci. Data, 7, 1–12, 2020c.
Bloemendaal, N., de Moel, H., Martinez, A. B., Muis, S., Haigh, I. D., van der Wiel, K., Haarsma, R. J., Ward, P. J., Roberts, M. J., Dullaart, J. C., and Aerts, J. C.: A globally consistent local-scale assessment of future tropical cyclone risk, Sci. Adv., 8, eabm8438, https://doi.org/10.1126/sciadv.abm8438, 2022.
Bloemendaal, N., de Moel, H., Martinez, A. B., Muis, S., Haigh, I. D. et. al.: STORM Climate Change synthetic tropical cyclone tracks, Version 2, 4TU, ResearchData [data set], https://doi.org/10.4121/14237678.v2, 2023.
Calberto, G., Staver, C., and Siles, P.: An assessment of global banana production and suitability under climate change scenarios, Climate change and food systems: global assessments and implications for food security and trade, Rome, Food Agriculture Organization of the United Nations (FAO), ISBN 978-92-5-108699-5, 2015.
Chavez, E., Conway, G., Ghil, M., and Sadler, M.: An end-to-end assessment of extreme weather impacts on food security, Nat. Clim. Change, 5, 997–1001, 2015.
Coltro, L. and Karaski, T. U.: Environmental indicators of banana production in Brazil: Cavendish and Prata varieties, J. Clean. Prod., 207, 363–378, 2019.
de Ruiter, M. C., Ward, P. J., Daniell, J. E., and Aerts, J. C. J. H.: Review Article: A comparison of flood and earthquake vulnerability assessment indicators, Nat. Hazards Earth Syst. Sci., 17, 1231–1251, https://doi.org/10.5194/nhess-17-1231-2017, 2017.
Eberenz, S., Lüthi, S., and Bresch, D. N.: Regional tropical cyclone impact functions for globally consistent risk assessments, Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, 2021.
El-Kady, A. E.: The impact of dust storms on crop production in arid regions: A review, J. Arid Land, 22, 29–37, 2020.
FAO: Banana facts and figures, https://www.fao.org/economic/est/est-commodities/oilcrops/bananas/bananafacts/en/#.Y7K8BXbMJD8, last access: 30 January 2023.
FAO: FAOSTAT, Crops and livestock products statistics, https://www.fao.org/faostat/en/#data/QCL (last access: January 2025), 2024a.
FAO: Banana market review 2023, Rome, https://openknowledge.fao.org/handle/20.500.14283/cd1721en (last access: January 2025), 2024b.
FAO-STAT: Crop statistics, http://www.fao.org/faostat/en/#data/QC (last access: 12 June 2025), 2019.
Huigen, M. G. and Jens, I. C.: Socio-economic impact of super typhoon Harurot in San Mariano, Isabela, the Philippines, World Dev., 34, 2116–2136, 2006.
Holland, G. J.: An Analytic Model of the Wind and Pressure Profiles in Hurricanes, Mon. Weather Rev., 108, 1212–1218, https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2, 1980.
International Food Policy Research Institute (IFPRI): Global Spatially-Disaggregated Crop Production Statistics Data for 2020 Version 1.0.0, Version 3, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/SWPENT, 2024.
IPCC: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896, 2021.
IPCC: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, 35–115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Kaplan, J. and DeMaria, M. A.: Simple Empirical Model for Predicting the Decay of Tropical Cyclone Winds after Landfall, J. Appl. Meteorol., 34, 2499–2512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2, 1995.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J., and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming, B. Am. Meteor. Soc., 101, E303–E322, 2020.
Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., Hall, J. W., and Hallegatte, S.: A global multi-hazard risk analysis of road and railway infrastructure assets, Nat. Commun., 10, 2677, https://doi.org/10.1038/s41467-019-10442-3, 2019.
Kunze, S.: Unraveling the effects of tropical cyclones on economic sectors worldwide: direct and indirect impacts, Environ. Resour. Econ., 78, 545–569, 2021.
Lesk, C., Rowhani, P., and Ramankutty, N.: Influence of extreme weather disasters on global crop production, Nature, 529, 84–87, 2016.
Lin, Y. C., Wang, W. H., Lai, C. Y., and Lin, Y. Q.: Typhoon type index: A New index for understanding the rain or wind characteristics of typhoons and its application to agricultural losses and crop vulnerability, J. Appl. Meteorol. Clim., 59, 973–989, 2020.
Machovina, B. and Feeley, K. J.: Climate change driven shifts in the extent and location of areas suitable for export banana production, Ecol. Econ., 95, 83–95, 2013.
Malek, Ž., Loeffen, M., Feurer, M., and Verburg, P. H.: Regional disparities in impacts of climate extremes require targeted adaptation of Fairtrade supply chains, One Earth, 5, 917–931, 2022.
Mamuye, N.: Statistical Analysis of Factor Affecting Banana Production in GamoGofa District, Southern Ethiopia, Engineering and Applied Sciences, 1, 5–12, 2016.
Meiler, S., Vogt, T., Bloemendaal, N., Ciullo, A., Lee, C. Y., Camargo, S. J., Emanuel, K., and Bresch, D. N: Intercomparison of regional loss estimates from global synthetic tropical cyclone models, Nat. Commun., 13, 6156, https://doi.org/10.1038/s41467-022-33918-1, 2022.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article ”Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Mo, W., Fang, W., Wu, P., and Tong, X.: Development of vulnerability curves to typhoon hazards based on insurance policy and claim dataset, EGU General Assembly 2016, Vienna, 17–22 April 2016, https://meetingorganizer.copernicus.org/EGU2016/EGU2016-3360-1.pdf, 2016.
Mohan, P.: The economic impact of hurricanes on bananas: a case study of Dominica using synthetic control methods, Food Policy, 68, 21–30, 2017.
NOAA National Hurricane Center: Historical Hurricane Tracks, NOAA, https://coast.noaa.gov/hurricanes/#map=4/32/-80 (last access: 30 January 2023), 2024.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Petsakos, A., Prager, S. D., Gonzalez, C. E., Gama, A. C., Sulser, T. B., Gbegbelegbe, S., and Hareau, G.: Understanding the consequences of changes in the production frontiers for roots, tubers and bananas, Glob. Food Secur.-Agr., 20, 180–188, 2019.
Robinson, J. C. and Saúco, V. G.: Bananas and plantains, Vol. 19, Cabi, Reading, UK, ISBN 9781845936587, 2010.
Shinozuka, M., Feng, M. Q., Lee, J., and Naganuma, T.: Statistical analysis of fragility curves, J. Eng. Mech., 126(, 1224–1231, 2000.
Simpson, R. H. and Saffir, H.: The hurricane disaster – Potential scale, Weatherwise, 27, 169–186, 1974.
Sun, Y., Wu, T., and Cao, Z.: Wind vulnerability analysis of standing seam roof system with consideration of multistage performance levels, Thin Wall. Struct., 165, 107942, https://doi.org/10.1016/j.tws.2021.107942, 2021.
UN: Transforming Our World: The 2030 Agenda for Sustainable Development, Resolution Adopted by the General Assembly on 25 September 2015, 42809, 1–13, 2015.
UNDRR: Terminology for Disaster Risk Reduction, UNDRR, Geneva, Switzerland, https://www.undrr.org/terminology (last access: 13 April 2024), 2017.
Varma, V. and Bebber, D. P.: Climate change impacts on banana yields around the world, Nat. Clim. Change, 9, 752–757, 2019.
Varma, V., Thompson, W., Duarte, S. B., Krütli, P., Six, J., and Bebber, D. P.: Mapping the impacts of hurricanes Maria and Irma on banana production area in the Dominican Republic, bioRxiv [preprint], https://doi.org/10.1101/2020.09.20.304899, 2020.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Yum, S. G., Kim, J. M., and Wei, H. H.: Development of vulnerability curves of buildings to windstorms using insurance data: An empirical study in South Korea, J. Build Eng., 34, 101932, https://doi.org/10.1016/j.jobe.2020.101932, 2021.
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Tropical storms are expected to get stronger all over the world, and this will have a big impact...
Altmetrics
Final-revised paper
Preprint