Articles | Volume 24, issue 10
https://doi.org/10.5194/nhess-24-3461-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3461-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A brief history of tsunamis in the Vanuatu Arc
Earth and Structure Processes Department, GNS Science, Lower Hutt, Aotearoa / New Zealand
Bernard Pelletier
Institut de Recherche pour le Développement, UMR Géoazur, Nouméa, New Caledonia, France
Related authors
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Romain Le Gendre, David Varillon, Sylvie Fiat, Régis Hocdé, Antoine De Ramon N'Yeurt, Jérôme Aucan, Sophie Cravatte, Maxime Duphil, Alexandre Ganachaud, Baptiste Gaudron, Elodie Kestenare, Vetea Liao, Bernard Pelletier, Alexandre Peltier, Anne-Lou Schaefer, Thomas Trophime, Simon Van Wynsberge, Yves Dandonneau, Michel Allenbach, and Christophe Menkes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-394, https://doi.org/10.5194/essd-2024-394, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to ocean warming, coral reef ecosystems are strongly impacted with dystrophic events and corals experiencing increasing frequencies of bleaching events. In-situ observation remains the best alternative for accurate characterization of trends and extremes in these shallow environments. This paper presents the coastal temperature dataset of the ReefTEMPS monitoring network which spreads over multiple Pacific Island Countries and Territories (PICTS) in the Western and Central South Pacific.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Cited articles
Aldrich, R.: From the New Hebrides to Vanuatu, in: France and the South Pacific since 1940, Palgrave Macmillan, London, https://doi.org/10.1007/978-1-349-10828-2_6, 1993.
Ballu, V., Bouin, M-N., Siméoni, P., Crawford C., Calmant S., Kanas T., Boré J.-M., and Pelletier B.: Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu), P. Natl. Acad. Sci. USA, 108, 13019–13022, 2011.
Bedford, S., Hoffman, A., Kaltal, M., Regenvanu, R., and Shing, R.: Dentate-stamped Lapita reappears on Efate, Central Vanuatu: a four decade-long drought is broken, Archaeology in New Zealand, 47, 39–49, 2004.
Bedford, S., Spriggs, M., and Regenvanu, R.: The Teouma Lapita site and the early human settlement of the Pacific Islands, Antiquity, 80, 812–828, https://doi.org/10.1017/S0003598X00094448, 2006.
Bedford, S., Spriggs, M., Regenvanu, R., Macgregor, C., Kuautonga, T., and Sietz, M.: The excavation, conservation and reconstruction of Lapita burial pots from the Teouma site, Efate, Central Vanuatu, in: Oceanic Explorations: Lapita and Western Pacific Settlement, edited by: Bedford, S., Sand, C., and Connaughton, S., Canberra, Australian National University E Press, Terra Australis, 25, 223–240, 2007.
Benoit, M. and Dubois, J.: The earthquake swarm in the New Hebrides archipelago, August 1965, Recent Crustal Movements, Roy. Soc. NZ Bull., 9, 141–148, 1971.
Bourge, G.: Les Nouvelles-Hebrides de 1606 à 1906, edited by: Challamel, A., Librairie Maritime et Coloniale, Paris, 1906.
Burroughs, S. M. and Tebbens, S. F.: Upper-truncated power law distributions, Fractals, 9, 209–222, 2001.
Calmant, S., Pelletier, B., Bevis, M., Taylor, F., Lebellegard, P., and Phillips, D.: New insights on the tectonics of the New Hebrides subduction zone based on GPS results, J. Geophys. Res., 108, 2319–2340, https://doi.org/10.1029/2001JB000644, 2003.
Caminade, J. P., Charlie, D., Kanoglu, U., Koshimura, S., Matsutomi, H., Moore, A., Ruscher, C., Synolakis, C. E., and Takahashi, T.: Vanuatu earthquake and tsunami cause much damage, few casualties, EOS Trans. AGU, 81, 646–647, https://doi.org/10.1029/EO081i052p00641-02, 2000.
Carney, J. N. and Campillo, R.: An investigation into damage caused by seismic activity on Mere Lava, banks Group, During May 1980, Port-VHa Aug, Vanuatu Geological Survey Department, p. 11, 1980.
Carney, J. N. and Macfarlane, A.: Geological evidence bearing on the Miocene to Recent structural evolution of the New Hebrides arc, Tectonophysics, 87, 147–175, https://doi.org/10.1016/0040-1951(82)90225-6, 1982.
Chen, J. K., Taylor, F. W., Edwards, L., Cheng, H., and Burr, G. S.: Recent emerged reef terraces of the Yenkahe resurgent block: implications for volcanic, landslide and tsunami hazards, J. Geol., 103, 577–590, 1995.
Costa, P. J., Gelfenbaum, G., Dawson, S., La Selle, S., Milne, F., Cascalho, J., Ponte Lira, C., Andrade, C., Freitas, M. C., and Jaffe, B.: The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits, Geol. Soc. Spec. Publ., 456, 167–190, https://doi.org/10.1144/SP456.7, 2018.
Davillé, E.: Tremblements de terre aux Nouvelles-Hebrides, Societe de Geographie Paris, Compte rendu de la Seance du 18 Mai 1894, 245–251, 1894.
de Brossard: Lettre sur l'observation d'un phénomène sous-marin aux Hébrides, 1 page + un schéma, 1958.
Ebel, J. E.: Source processes of the 1965 New Hebrides Islands earthquakes inferred from teleseismic wave forms, Geophys. J. Roy. Astr. S., 63, 381–403, 1980.
Eissen, J. P., Blot, C., and Louat, R.: Chronologie de l'activité volcanique historique de l'arc insulaire des Nouvelles-Hébrides de 1595 à 1991, ORSTOM, Nouméa, Nouvelle-Calédonie, Sciences de la Terre, Géologie Géophysique, Rapport Scientifique et Technique, no. 2, 68 pp., 1991.
Friedlaender, J. S., Gentz, F., Green, K., and Merriwether, D. A.: A cautionary tale on ancient migration detection: mitochondrial DNA variation in Santa Cruz Islands, Solomon Islands, Hum. Biol., 74, 453–471, 2002.
Fritz, H. M., Papantoniou, A., Biukoto, L., and Albert, G.: The Solomon Islands Tsunami of 6 February 2013 field survey in Santa Cruz Islands, American Geophysical Union, Fall Meeting 2013, 9–13 December 2013, San Francisco, California, NH41A-1696, https://ui.adsabs.harvard.edu/abs/2013AGUFMNH41A1696F/abstract (last access: 8 October 2024), 2013.
Geist, E. L. and Parsons, T.: Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37, 277–314, https://doi.org/10.1007/s11069-005-4646-z, 2006.
Goff, J., Douglas, C., Haruel, C., and Bonte-Grapentin, M.: Preliminary findings of the geology evidences and oral history of tsunamis in Vanuatu, SOPAC Report, 416, 49 pp., 2008.
Green, R. C.: A reappraisal of the dating for some Lapita sites in the Reef/Santa Cruz Group of the Southeast Solomons, J. Polynesian Soc., 100, 197–207, 1991.
Gusiakov, V. K.: Tsunami history: recorded. The sea, 15, 23–53, http://tsun.sscc.ru/hiwg/PABL/Gusiakov_2008.pdf (last access: 8 October 2024), 2009.
Gusman, A. R., Roger, J., Power, W., Fry, B., and Kaneko, Y.: The 2021 Loyalty Island earthquake (Mw 7.7): tsunami waveform inversion and implications for tsunami forecasting for New Zealand, Earth Space Sci., 9, e2022EA002346, https://doi.org/10.1029/2022EA002346, 2022a.
Gusman, A. R., Roger, J., Noble, C., Wang, X., Power, W., and Burbidge, D.: The 2022 Hunga Tonga-Hunga Ha'apai Volcano Air-Wave Generated Tsunami, Pure Appl. Geophys., 179, 3511–3525, https://doi.org/10.1007/s00024-022-03154-1, 2022b.
Hilliard, D.: Colonialism and Christianity: The Melanesian mission in the Solomon Islands, J. Pac. Hist., 9, 93–116, https://doi.org/10.1080/00223347408572247, 1974.
Howe, B. M., Angove, M., Aucan, J., Barnes, C. R., Barros, J. S., Bayliff, N., Becker, N. C., Carrilho, F., Fouch, M. J., Fry, B., and Jamelot, A.: SMART subsea cables for observing the earth and ocean, mitigating environmental hazards, and supporting the blue economy, Front. Earth Sci., 9, 775544, https://doi.org/10.3389/feart.2021.775544, 2022.
Howe, B. M., Arbic, B. K., Aucan, J., Barnes, C. R., Bayliff, N., Becker, N., Butler, R., Doyle, L., Elipot, S., Johnson, G. C., and Landerer, F.: SMART cables for observing the global ocean: science and implementation, Front. Mar. Sci., 6, 424, https://doi.org/10.3389/fmars.2019.00424, 2019.
Iida, K.: Magnitude, energy and generation mechanisms of tsunamis and a catalogue ofearthquakes associated with tsunamis, Proc. Tsunami Meeting, 10th Pacific Sci. Congress, Honolulu, Hawaii, 1961, IUGG Monograph, 24, 7–18, 1963.
Inglis, R. J.: In the New Hebrides, Reminiscences of missionary life and work, T. Nelson and Sons, London, 1887.
Ioualalen, M., Pelletier, B., Watts, P., and Regnier, M.: Numerical modeling of the 26 November 1999 Vanuatu tsunami, J. Geophys. Res.-Oceans, 111, C06030, https://doi.org/10.1029/2005JC003249, 2006.
Ioualalen, M., Pelletier, B., and Solis Gordillo, G.: Investigating the March 28th 1875 and the September 20th 1920 earthquakes/tsunamis of the Southern Vanuatu arc, offshore Loyalty Islands, New Caledonia, Tectonophysics, 709, 20–38, https://doi.org/10.1016/j.tecto.2017.05.006, 2017.
Kaverina, A., Dreger, D., and Antolik, M.: Source process of the 21 April, 1997 Santa Cruz Island earthquake (Mw 7.8), Geophys Res. Lett., 25, 4027–4030, https://doi.org/10.1029/1998GL900017, 1998.
Kirch, P. V. and Swift, J. A.: New AMS radiocarbon dates and a re-evaluation of the cultural sequence of Tikopia Island, Southeast Solomon Islands, J. Polynesian Soc., 126, 313–336, 2017.
Lagabrielle, Y., Pelletier, B., Cabioch, G., Regnier, M., and Calmant, S.: Coseismic and long-term vertical displacement due to back arc shortening, central Vanuatu: Offshore and onshore data following the Mw 7.5, 26 November 1999 Ambrym earthquake, J. Geophys. Res., 108, 2519, https://doi.org/10.1029/2002JB002083, 2003.
Lardy M.: Quelques remarques à propos du séisme et tsunami du 17 mai 1995 à Port Vila, Note ORSTOM Port-Vila du 29 mai 1995, 1995.
Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., and Ammon, C. J.: The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami, Tectonophysics, 608, 1109–1121, https://doi.org/10.1016/j.tecto.2013.07.001, 2013.
Lockridge, P. A. and Smith, R. H.: Tsunamis in the Pacific basin, 1900–1983, Map, National Geophysical Data Center, Boulder, Colorado, https://nla.gov.au/nla.obj-234313658/view (last access: 8 October 2024), 1984.
Louat, R. and Baldassari, C.: Chronologie des séismes et des tsunamis ressentis dans la région Vanuatu Nouvelle-Calédonie (1729–1989), ORSTOM, Nouméa, Nouvelle-Calédonie, Sciences de la Terre, Géologie Géophysique, Rapport Scientifique et Technique, no. 1, 46 pp., https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers08-01/27091.pdf (last access: 8 October 2024), 1989.
Mawson, D.: The geology of the New Hebrides, in: Vol. 30, part Ill, Proceedings of the Linnean Society of New South Wales, 400–485, 1905.
Monzier, M., Robin, C., and Eissen, J.-P.: Kuwae (∼ 1425 A.D.): the forgotten caldera, J. Volcanol. Geoth. Res., 59, 207–218, 1994.
National Geophysical Data Center/World Data Service: NCEI/WDS Global Historical Tsunami Database, NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5PN93H7, last access: 6 September 2023.
Nunn, P. D., Heorake, T., Tegu, E. T., Oloni, B., Simeon, K. A., Wini, L., Usuramo, S., and Geraghty, P.: Geohazards revealed by myths in the Pacific: a study of islands that have disappeared in Solomon Islands, South Pacific Studies, 27, 37–49, https://core.ac.uk/download/pdf/144568478.pdf (last access: 8 October 2024), 2006.
O'Reilly, P.: Chronologie des Nouvelles-Hebrides, Journal de la Societe des Oceanistes, 12, 6–61, 1956.
Patton, M. W.: Letters and Sketches from The New Hebrides, Rev. JAS PATON Editor, Hodder and Stroughton, London, 1894.
Pelletier, B., Calmant, S., and Pillet, R.: Current tectonics of the Tonga-New Hebrides region, Earth Planet. Sc. Lett., 164, 263–276, 1998.
Pelletier, B., Regnier, M., Calmant, S., Pillet, R., Cabioch, G., Lagabrielle, Y., Bore, J.-M., Caminade, J.-P., Cristopher, I., and Temakon, S.: Le séisme d'Ambrym-Pentecôte (Vanuatu) du 26 novembre 1999: données préliminaires sur la séismicité, le tsunami et les déplacements associés, CR Acad. Sci. A, 331, 21–28, https://doi.org/10.1016/S1251-8050(00)01382-3, 2000.
Petchey, F., Spriggs, M., Bedford, S., Valentin, F., and Buckley, H.: Radiocarbon dating of burials from the Teouma Lapita cemetery, Efate, Vanuatu, J. Archaeol. Sci., 50, 227–242, https://doi.org/10.1016/j.jas.2014.07.002, 2014.
Power, W. L., Fry, B., Gusman, A. R., Burbidge, D. R., Brewer, M., and Wang, X.: DART buoys network design. GNS Science consultancy report 2018/147, 53 pp., https://www.gns.cri.nz/research-projects/dart-deep-ocean-assessment-and-reporting-of-tsunami/ (last access: 8 October 2024), 2018.
Rahmi, R., Joho, H., and Shirai, T.: An analysis of natural disaster-related information-seeking behavior using temporal stages, J. Assoc. Inf. Sci. Tech., 70, 715–728, https://doi.org/10.1002/asi.24155, 2019.
Regnier, M., Calmant, S., Pelletier, B., Lagabrielle, Y., and Cabioch, G.: The Mw 7.5 1999 Ambrym earthquake, Vanuatu: A back arc intraplate thrust event, Tectonics, 22, 1034–1047, https://doi.org/10.1029/2002TC001422, 2003.
Robertson, M. A.: Erromanga the Martyr Isle, Hodder and Stoughton, London, 1892.
Roger, J.: Records of the 5 March 2021 Raoul Island transoceanic tsunami around the Pacific Ocean, New Zeal. J. Geol. Geop., https://doi.org/10.1080/00288306.2023.2225859, in press, 2023.
Roger, J., Pelletier, B., and Aucan, J.: Update of the tsunami catalogue of New Caledonia using a decision table based on seismic data and marigraphic records, Nat. Hazards Earth Syst. Sci., 19, 1471–1483, https://doi.org/10.5194/nhess-19-1471-2019, 2019.
Roger, J., Pelletier, B., Duphil, M., Lefèvre, J., Aucan, J., Lebellegard, P., Thomas, B., Bachelier, C., and Varillon, D.: The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling, Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, 2021.
Roger, J., Pelletier, B., Gusman, A., Power, W., Wang, X., Burbidge, D., and Duphil, M.: Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment, Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, 2023a.
Roger J., Ashraf, S., Pelletier, B., Krippner, J., Bani, P., Gusman, A.R., Thomas, B., and Kali, J.-C.: The East-Epi Volcano submarine eruption and associated tsunami of 31 January 2023: a powerful event in the shadow of the HTHH eruption, American Geophysical Union, Fall Meeting 2023, https://ui.adsabs.harvard.edu/abs/2023AGUFMNH51D0505R/abstract (last access: 8 October 2024), 2023b.
Roger, J., Bull, S., Watson, S., Mueller, C., Hillman, J., Wolter, A., Lamarche, G., Power, W., Lane, E., Woelz, S., and Davidson, S.: A review of approaches for submarine landslide tsunami hazard identification and assessment, in: Special issue on Submarine Geohazards in/along the western Pacific Ocean, edited by: Switzer, A., Mar. Petrol. Geol., 162, 106729, https://doi.org/10.1016/j.marpetgeo.2024.106729, 2024.
Romano, F., Molinari, I., Lorito, S., and Piatanesi, A.: Source of the 6 February 2013 Mw = 8.0 Santa Cruz Islands Tsunami, Nat. Hazards Earth Syst. Sci., 15, 1371–1379, https://doi.org/10.5194/nhess-15-1371-2015, 2015.
Rothé, J.-P.: Tableau de la seismicite du globe pendant l'annee – RUIS, 1966, N 5, 1965.
Sahal, A., Pelletier, B., Chatelier, J., Lavigne, F., and Schindelé, F.: A catalog of tsunamis in New Caledonia from 28 March 1875 to 30 September 2009, CR Geosci., 342, 434–447, https://doi.org/10.1016/j.crte.2010.01.013, 2010.
Shanmugam, G.: Process-sedimentological challenges in distinguishing paleo-tsunami deposits, Nat. Hazards, 63, 5–30, https://doi.org/10.1007/s11069-011-9766-z, 2012.
Shorten, G. G.: Summary of earthquake and tsunami damage assessment in Port Vila, January 2002 Supplement, ITIC Newsletter, vol. XXXIV, no. 1, 5 pp., 2002.
Soloviev, S. L. and Go, C. N.: A catalogue of tsunamis on the western shore of the Pacific Ocean (173–1968), Canadian Translation of Fisheries and Aquatic Sciences, 5077, 1984, Nauka Publishing House, Moscow, USSR, 310 pp., 1974.
Spiske, M., Tang, H., and Bahlburg, H.: Post-depositional alteration of onshore tsunami deposits–Implications for the reconstruction of past events, Earth-Sci. Rev., 202, 103068, https://doi.org/10.1016/j.earscirev.2019.103068, 2020.
Skoglund, P., Posth, C., Sirak, K., Spriggs, M., Valentin, F., Bedford, S., Clark, G. R., Reepmeyer, C., Petchey, F., Fernandes, D., and Fu, Q.: Genomic insights into the peopling of the Southwest Pacific, Nature, 538, 510–513, https://doi.org/10.1038/nature19844, 2016.
Sydney Morning Herald: Volcanic eruption at the New Hebrides. A tidal wave, https://trove.nla.gov.au/newspaper/article/14407505 (last access: 8 October 2024), 1901.
Synolakis, C. E., Bardet, J. P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., and Tappin, D. R.: The slump origin of the 1998 Papua New Guinea tsunami, P. Roy. Soc. Lond. A Mat., 458, 763–789, https://doi.org/10.1098/rspa.2001.0915, 2002.
Taylor, F. W.: Quaternary vertical tectonics of the central New Hebrides island arc, Proc. Ocean Drill. Program Initial Rep., 134, 33–42, 1992.
Taylor, F. W., Isacks, B. L., Jouannic, C., Bloom, A. L., and Dubois, J.: Coseismic and Quaternary vertical tectonic movements, Santo and Malekula islands, New Hebrides island arc, J. Geophys. Res., 85, 5367–5381, 1980.
Tendrayen, M.: Modélisation numérique du tsunami du 2 janvier 2002 au Vanuatu, Rapport de stage d'ingénieur ENSIM, 63 pp., 2006.
TL/ICMMG: TL/ICMMG Global Historical Tsunami Database, Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Tsunami Laboratory, Novosibirsk, Russia, http://tsun.sscc.ru/gtdb/default.aspx (last access: 6 September 2023), 2023.
Tryon, D. T. and Hackman, B. D.: Solomon Islands languages: An internal classification. Dept. of Linguistics, Research School of Pacific Studies, The Australian National University, https://openresearch-repository.anu.edu.au/bitstream/1885/145227/1/PL-C72.pdf (last access: 8 October 2024), 1983.
VLIZ/IOC: Sea level station monitoring facility, VLIZ/IOC [data set], https://doi.org/10.14284/482, 2024.
Wallez, S.: Etude des impacts socio-économiques des menaces volcaniques et autres risques naturels sur l'archipel du Vanuatu (Mélanésie), Mémoire DESS Sciences de l'environnement, Université Louis Pasteur de Strasbourg – Ecole et Observatoire des Sciences de la Terre, 177 pp., 1998.
Walter, R. and Sheppard, P.: A review of Solomon Island archaeology. Lapita, ancestors and descendants, New Zealand Archaeological Association, Auckland, New Zealand, 35–72, https://www.researchgate.net/publication/275213610_A_review_of_Solomon_Island_archaeology (last access: 8 October 2024), 2009.
Wawn, W. T.: The South Sea Islanders and the Queensland labour trade, a record of voyages and experiences in the Western Pacific from 1875 to 1891, Swan Sonnenschein & Co., London, 1893.
Witter, J. B. and Self, S.: The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release, B. Volcanol., 69, 301–318, https://doi.org/10.1007/s00445-006-0075-4, 2007.
Woodward, K.: A political memoir of the Anglo-French condominium of the New Hebrides, p. 93, ANU Press, https://library.oapen.org/handle/20.500.12657/33262 (last access: 8 October 2024), 2014.
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on...
Altmetrics
Final-revised paper
Preprint