Articles | Volume 23, issue 8
https://doi.org/10.5194/nhess-23-2841-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2841-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A long record of European windstorm losses and its comparison to standard climate indices
Stephen Cusack
CORRESPONDING AUTHOR
Stormwise Ltd, Luton, LU4 9DU, United Kingdom
Related authors
Stephen Cusack and Tyler Cox
Nat. Hazards Earth Syst. Sci., 25, 2963–2972, https://doi.org/10.5194/nhess-25-2963-2025, https://doi.org/10.5194/nhess-25-2963-2025, 2025
Short summary
Short summary
The Mediterranean Sea has been warming rapidly since 1980, and its basic thermodynamic effect acts to boost hail in the higher-risk parts of Europe. Climate model experiments indicate the Mediterranean warming is mainly caused by rising greenhouse gases, with reduced anthropogenic aerosols contributing too. A review of research and data revealed hail losses rising at around 2 % per year over the same period. Moreover, the trajectory of anthropogenic forcings suggests hail risk will keep rising.
Stephen Cusack and Tyler Cox
Nat. Hazards Earth Syst. Sci., 25, 2963–2972, https://doi.org/10.5194/nhess-25-2963-2025, https://doi.org/10.5194/nhess-25-2963-2025, 2025
Short summary
Short summary
The Mediterranean Sea has been warming rapidly since 1980, and its basic thermodynamic effect acts to boost hail in the higher-risk parts of Europe. Climate model experiments indicate the Mediterranean warming is mainly caused by rising greenhouse gases, with reduced anthropogenic aerosols contributing too. A review of research and data revealed hail losses rising at around 2 % per year over the same period. Moreover, the trajectory of anthropogenic forcings suggests hail risk will keep rising.
Cited articles
Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H.
L., and Keenlyside, N. S.: Skillful prediction of northern climate provided
by the ocean, Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875,
2017.
Athanasiadis, P. J., Yeager, S., Kwon, Y.-O., Bellucci, A., Smith, D. W.,
and Tibaldi, S.: Decadal predictability of North Atlantic blocking and the
NAO, npj Clim. Atmos. Sci., 3, 20,
https://doi.org/10.1038/s41612-020-0120-6, 2020.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and
persistence of low-frequency atmospheric circulation patterns, Mon. Weather
Rev., 115, 1083–1126,
https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2,
1987.
Barredo, J. I.: No upward trend in normalised windstorm losses in Europe: 1970–2008, Nat. Hazards Earth Syst. Sci., 10, 97–104, https://doi.org/10.5194/nhess-10-97-2010, 2010.
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J. R., Haimberger, L., Woollen, J., Buontempo, C., and Thépaut, J. N.: The ERA5 global reanalysis: Preliminary extension
to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227,
https://doi.org/10.1002/qj.4174, 2021.
Bengtsson, L., M., Hagemann, S., and Hodges, K. I.: Can climate trends be
calculated from reanalysis data?, J. Geophys. Res., 109, D11111,
https://doi.org/10.1029/2004JD004536, 2004.
Brázdil, R., Dobrovolny, P., Stekl, J., Kotyza, O., Valasek, H., and
Jaroslav, J.: History of weather and climate in the Czech lands VI: Strong
winds, Masaryk University, Brno, Czech Republic, 378 pp., ISBN 80-210-3547-1, 2004.
Browning, K. A.: The sting at the end of the tail: Damaging winds associated
with extratropical cyclones, Q. J. Roy. Meteor. Soc., 130, 375–399,
https://doi.org/10.1256/qj.02.143, 2004.
Büeler, D. and Pfahl, S.: Potential vorticity diagnostics to quantify
effects of latent heating in extratropical cyclones. Part II: application to
idealized climate change simulations, J. Atmos. Sci., 76, 1885–1902,
https://doi.org/10.1175/JAS-D-18-0342.1, 2019.
Cassou, C., Kushnir, Y., Hawkins, E., Pirani, A., Kucharski, F., Kang,
I.-S., and Caltabiano, N.: Decadal climate variability and predictability:
Challenges and opportunities, B. Am. Meteorol. Soc., 99, 479–490,
https://doi.org/10.1175/BAMS-D-16-0286.1, 2018.
Catto, J. L., Ackerley, D., Booth, J. F., Champion, A. J., Colle, B. A., Pfahl, S.,
Pinto, J. G., Quinting, J. F., and Seiler, C.: The future of midlatitude cyclones,
Curr. Clim. Change Rep., 5, 407–420,
https://doi.org/10.1007/s40641-019-00149-4, 2019.
Center for International Earth Science Information Network (CIESIN)
Columbia University: Gridded Population of the World, Version 4.11 (GPWv4):
Population Count, Revision 11, Palisades, NY: NASA Socioeconomic Data and
Applications Center (SEDAC) [data set], https://doi.org/10.7927/H4JW8BX5, 2018.
Chang, E. K.-M.: CMIP5 projected change in Northern Hemisphere winter
cyclones with associated extreme winds, J. Climate, 31, 6527–6542,
https://doi.org/10.1175/JCLI-D-17-0899.1, 2018.
Christofides, S., Barlow, C., Michaelides, N., and Miranthis, C.: Storm
Rating in the Nineties, General Insurance Convention, Bournemouth, https://www.actuaries.org.uk/system/files/documents/pdf/storm-rating-nineties.pdf (last access: 25 September 2021), 1992.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., Tayler, P. C., Lee, S., Laliberte, F., Feldstein, S., Maslowski, W., Henderson, G., Stroeve, J., Coumou, D., Handorf, D., Semmler, T., Ballinger, T., Hell, M., Kretschmer, M., Vavrus, S., Wang, M., Wang, S., Wu, Y., Vihma, T., Bhatt, U., Ionita, M., Linderholm, H., Rigor, I., Routson, C., Singh, D., Wendisch, M., Smith, D., Screen, J., Yoon, J., Peings, Y., Chen, H., and Blackport, R.: Arctic change and
possible influence on mid-latitude climate and weather, US CLIVAR Report
2018-1, 41 pp., https://doi.org/10.5065/D6TH8KGW, 2018.
Cusack, S.: A 101-year record of windstorms in the Netherlands, Climatic
Change, 116, 693–704, https://doi.org/10.1007/s10584-012-0527-0, 2013.
Cusack, S.: The observed clustering of damaging extratropical cyclones in Europe, Nat. Hazards Earth Syst. Sci., 16, 901–913, https://doi.org/10.5194/nhess-16-901-2016, 2016.
Dawkins, L. C., Stephenson, D. B., Lockwood, J. F., and Maisey, P. E.: The 21st century decline in damaging European windstorms, Nat. Hazards Earth Syst. Sci., 16, 1999–2007, https://doi.org/10.5194/nhess-16-1999-2016, 2016.
Dawson, S., Smith, D. E., Jordan, J., and Dawson, A. G.: Late Holocene
coastal sand movements in the Outer Hebrides, N.W. Scotland, Mar. Geol.,
210, 281–306, https://doi.org/10.1016/j.margeo.2004.05.013, 2004.
Deroche, M.-S., Choux, M., Codron, F., and Yiou, P.: Three variables are better than one: detection of european winter windstorms causing important damages, Nat. Hazards Earth Syst. Sci., 14, 981–993, https://doi.org/10.5194/nhess-14-981-2014, 2014.
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L.,
and Robinson, N.: Do seasonal-to-decadal climate predictions under-estimate
the predictability of the real world?, Geophys. Res. Lett., 41, 5620–5628,
https://doi.org/10.1002/2014GL061146, 2014.
ECMWF: IFS Documentation CY41R2 – Part IV: Physical Processes,
https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes (last access: 2 June 2022),
2016.
European Insurance and Occupational Pensions Authority (EIOPA): Opinion on
the supervision of the use of climate change risk scenarios in ORSA,
https://www.eiopa.europa.eu/publications/opinion-supervision-use-climate-change-risk-scenarios-orsa_en (last access: 15 October 2022), 2021.
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia,
L.: Storminess over the North Atlantic and northwestern Europe – a review,
Q. J. Roy. Meteor. Soc., 141, 350–382, https://doi.org/10.1002/qj.2364,
2015.
Fink, A. H., Brücher, T., Ermert, V., Krüger, A., and Pinto, J. G.: The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change, Nat. Hazards Earth Syst. Sci., 9, 405–423, https://doi.org/10.5194/nhess-9-405-2009, 2009.
Greatbatch, R. J., Gollan, G., Jung, T., and Kunz, T.: Factors influencing
Northern Hemisphere winter mean atmospheric circulation anomalies during the
period 1960/61 to 2001/02, Q. J. Roy. Meteor. Soc., 138, 1970–1982,
https://doi.org/10.1002/qj.1947, 2012.
Gregow, H., Laaksonen, A., and Alper, M. E.: Increasing large scale
windstorm damage in Western, Central and Northern European forests,
1951–2010, Sci. Rep.-UK, 7, 46397, https://doi.org/10.1038/srep46397, 2017.
Guha-Sapir, D., Below, R., and Hoyois, P.: EM-DAT: The CRED/OFDA
International Disaster Database, https://www.emdat.be/ (last access: 15 January 2022), Université Catholique
de Louvain, Brussels, Belgium, 2022.
Harvey, B. J., Cook, P., Shaffrey, L. C., and Schiemann, R.: The response of
the northern hemisphere storm tracks and jet streams to climate change in
the CMIP3, CMIP5, and CMIP6 climate models, J. Geophys. Res.-Atmos., 125,
e2020JD032701, https://doi.org/10.1029/2020JD032701, 2020.
Hawkins, E., Brohan, P., Burgess, S. N., Burt, S., Compo, G. P., Gray, S. L., Haigh, I. D., Hersbach, H., Kuijjer, K., Martínez-Alvarado, O., McColl, C., Schurer, A. P., Slivinski, L., and Williams, J.: Rescuing historical weather observations improves quantification of severe windstorm risks, Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, 2023.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hewson, T. D. and Neu, U.: Cyclones, windstorms and the IMILAST project,
Tellus A, 67, 27128, https://doi.org/10.3402/tellusa.v67.27128, 2015.
Hu, D., Guan, Z., Guo, Y., Lu, C., and Jin, D.: Dynamical connection between
the stratospheric Arctic vortex and sea surface temperatures in the North
Atlantic, Clim. Dynam., 53, 6979–6993,
https://doi.org/10.1007/s00382-019-04971-2, 2019.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An Overview of
the North Atlantic Oscillation. In: The North Atlantic Oscillation: climatic
significance and environmental impact, edited by: Hurrell, J. W., Kushnir, Y.,
Ottersen, G. and Visbeck, M., Geophysical Monograph Series, 134, AGU
(American Geophysical Union), Washington, DC, 1–35, https://doi.org/10.1029/134GM01,
2003.
Karremann, M. K., Pinto, J. G., von Bomhard, P. J., and Klawa, M.: On the clustering of winter storm loss events over Germany, Nat. Hazards Earth Syst. Sci., 14, 2041–2052, https://doi.org/10.5194/nhess-14-2041-2014, 2014.
Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L., and Roeckner,
E.: Advancing decadal-scale climate prediction in the North Atlantic sector,
Nature, 453, 84–88, https://doi.org/10.1038/nature06921, 2008.
Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and
the identification of severe winter storms in Germany. Nat. Hazard Earth
Sys., 3:725-732, https://doi.org/10.5194/nhess-3-725-2003, 2003.
Lang, A., Yang, S., and Kaas, E.: Sea ice thickness and recent Arctic
warming, Geophys. Res. Lett., 44, 409–418,
https://doi.org/10.1002/2016GL071274, 2017.
Laurila, T. K., Sinclair, V. A., and Gregow, H.: Climatology, variability,
and trends in near-surface wind speeds over the North Atlantic and Europe
during 1979–2018 based on ERA5, Int. J. Climatol., 41, 2253–2278,
https://doi.org/10.1002/joc.6957, 2021.
Mailier, P. J., Stephenson, D. B., Ferro, C. A. T., and Hodges, K. I.:
Serial clustering of extratropical cyclones, Mon. Weather Rev., 134,
2224–2240, https://doi.org/10.1175/MWR3160.1, 2006.
Minola, L., Azorin-Molina, C., and Chen, D.: Homogenization and assessment of
observed near-surface wind speed trends across Sweden, 1956–2013, J.
Climate, 29, 7397–7415, https://doi.org/10.1175/JCLI-D-15-0636.1, 2016.
Munich Re: GeoRisks Research Department, Winter Storms in Europe (II)
Analysis of 1999 losses and loss potentials,
https://www.planat.ch/fileadmin/PLANAT/planat_pdf/alle_2012/2001-2005/Munich_Re_Group_2002_-_Winter_storms_in_Europe_II.pdf (last access: 14 April 2023), 2002.
Omrani, N. E., Keenlyside, N. S., Bader, J., and Manzini, E.: Stratosphere
key for wintertime atmospheric response to warm Atlantic decadal conditions,
Clim. Dynam., 42, 649–663, https://doi.org/10.1007/s00382-013-1860-3, 2014.
Peings Y. and Magnusdottir, G.: Forcing of the wintertime atmospheric
circulation by the multidecadal fluctuations of the North Atlantic Ocean,
Environ. Res. Lett., 9, 034018, https://doi.org/10.1088/1748-9326/9/3/034018, 2014.
Pielke Jr., R. A. and Landsea, C. W.: Normalized hurricane damages in the
United States: 1925–95, Weather Forecast., 13, 621–631,
https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2, 1998.
Prahl, B. F., Rybski, D., Burghoff, O., and Kropp, J. P.: Comparison of storm damage functions and their performance, Nat. Hazards Earth Syst. Sci., 15, 769–788, https://doi.org/10.5194/nhess-15-769-2015, 2015.
Priestley, M. D. K., Dacre, H. F., Shaffrey, L. C., Hodges, K. I., and Pinto, J. G.: The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data, Nat. Hazards Earth Syst. Sci., 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, 2018.
RMS: The Great Storm of 1987: 20 Year Retrospective, Risk Management
Solutions Inc. Special Report, https://web.archive.org/web/20091122171910/https://www.rms.com/Publications/Great_Storm_of_1987.pdf
(last access: 14 April 2023),
2007.
Roberts, J. F., Champion, A. J., Dawkins, L. C., Hodges, K. I., Shaffrey, L. C., Stephenson, D. B., Stringer, M. A., Thornton, H. E., and Youngman, B. D.: The XWS open access catalogue of extreme European windstorms from 1979 to 2012, Nat. Hazards Earth Syst. Sci., 14, 2487–2501, https://doi.org/10.5194/nhess-14-2487-2014, 2014.
Safaei Pirooz, A. A. and Flay, R. G. J.: Response characteristics of
anemometers used in New Zealand, in: The 19th Australasian Wind Engineering
Society Workshop, 4–6 April, Torquay, Victoria, https://www.awes.org/archives/workshop-proceedings/awes-19/ (last access: 15 April 2023), 2018.
Scaife, A. A., Knight, J. R., Vallis, G. K., and Folland, C. K.: A
stratospheric influence on the winter NAO and North Atlantic surface
climate, Geophys. Res. Lett., 32, L18715,
https://doi.org/10.1029/2005GL023226, 2005.
Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I.,
Hwang, Y.-T., Li, C., O'Gorman, P. A., Rivière, G., Simpson, I. R., and
Voigt, A.: Storm track processes and the opposing influences of climate
change, Nat. Geosci., 9, 656–664, https://doi.org/10.1038/ngeo2783, 2016.
Sloan, C. and Clark, M.: A comparison of three Met Office wind observing
systems, Atmos. Sci. Lett., 13, 283–288, https://doi.org/10.1002/asl.396,
2012.
Smith, A., Lott, N., and Vose, R.: The integrated surface database: Recent
developments and partnerships, B. Am. Meteorol. Soc., 92, 704–708,
https://doi.org/10.1175/2011BAMS3015.1, 2011.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Müller, W. A., Nicolí, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far
more predictable than models imply, Nature, 583, 796–800,
https://doi.org/10.1038/s41586-020-2525-0, 2020.
Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S., Deser, C., Dunstone, N. J., García-Serrano, J., Gastineau, G., Graff, L. S., Hardiman, S. C., He, B., Hermanson, L., Jung, T., Knight, J., Levine, X., Magnusdottir, G., Manzini, E., Matei, D., Mori, M., Msadek, R., Ortega, P., Peings, Y., Scaife, A. A., Screen, J. A., Seabrook, M., Semmler, T., Sigmond, M., Streffing, J., Sun, L., and Walsh, A.: Robust but weak winter
atmospheric circulation response to future Arctic sea ice loss, Nat.
Commun., 13, 727, https://doi.org/10.1038/s41467-022-28283-y, 2022.
Smits, A., Klein Tank, A. M. G., and Können, G. P.: Trends in Storminess
over the Netherlands, 1962–2002, Int. J. Climatol., 25, 1331–1344,
https://doi.org/10.1002/joc.1195, 2005.
Stucki, P., Brönnimann, S., Martius, O., Welker, C., Imhof, M., von Wattenwyl, N., and Philipp, N.: A catalog of high-impact windstorms in Switzerland since 1859, Nat. Hazards Earth Syst. Sci., 14, 2867–2882, https://doi.org/10.5194/nhess-14-2867-2014, 2014.
Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-Delmotte, V.,
Butler, P. G., Khodri, M., and Séférian, R.: Bidecadal North
Atlantic ocean circulation variability controlled by timing of volcanic
eruptions, Nat. Commun., 6, 6545, https://doi.org/10.1038/ncomms7545, 2015.
Swiss Re Sigma: No 1/2002: Natural catastrophes and man-made disasters in
2001: man-made losses take on a new dimension, Tech. Rep., Swiss Reinsurance
Company, https://www.eird.org/esp/cdcapra/pdf/eng/doc14399/doc14399.pdf
(last access: 5 April 2023),
2002.
Swiss Re Sigma: No 1/2008: Natural catastrophes and man-made disasters in
2007: high losses in Europe. Tech. rep., Swiss Reinsurance Company, https://www.swissre.com/institute/research/sigma-research/sigma-2008-01.html
(last access: 5 April 2023),
2008.
Thomas, C. M. and Schultz, D.M.: Global climatologies of fronts, airmass
boundaries, and airstream boundaries: Why the definition of “front”
matters, Mon. Weather. Rev., 147, 691–717,
https://doi.org/10.1175/MWR-D-18-0289.1, 2019.
Thorne, P. W. and Vose, R. S.: Reanalyses suitable for characterizing
long-term trends, B. Am. Meteorol. Soc., 91, 353–361,
https://doi.org/10.1175/2009BAMS2858.1, 2010.
WASA Group: Changing waves and storms in the northeast Atlantic?, B. Am.
Meteorol. Soc., 79, 741–760,
https://doi.org/10.1175/1520-0477(1998)079<0741:CWASIT>2.0.CO;2, 1998.
Wohland, J., Omrani, N., Witthaut, D., and Keenlyside, N. S.: Inconsistent
wind speed trends in current twentieth century reanalyses, J.
Geophys. Res.-Atmos., 124, 1931–1940,
https://doi.org/10.1029/2018jd030083, 2019.
Woollings, T., Franzke, C., Hodson, D., Dong, B., Barnes, E., Raible, C. C.,
and Pinto, J.: Contrasting interannual and multidecadal NAO variability,
Clim. Dynam., 45, 539–556,
https://doi.org/10.1007/s00382-014-2237-y, 2015.
Zhang, R.: Mechanisms for low-frequency variability of summer Arctic sea ice
extent, P. Natl. Acad. Sci. USA, 112, 4570–4575,
https://doi.org/10.1073/pnas.1422296112, 2015.
Short summary
The link from European windstorm research findings to insurance applications is strengthened by a new storm loss history spanning 1950 to 2022. It is based on ERA5 winds, together with long-term trends from observed gusts for improved validation. Correlations between losses and climate indices are around 0.4 for interannual variations, rising to 0.7 for decadal variations. A significant divergence between standard climate indices and storm losses over the past 20 years needs further research.
The link from European windstorm research findings to insurance applications is strengthened by...
Altmetrics
Final-revised paper
Preprint