Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2771-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2771-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Robert Šakić Trogrlić
Department of Geography, King's College London, London, WC2B 4BG, UK
Systemic Risk and Resilience (SYRR) Group, Advancing Systems Analysis
(ASA) Program, International Institute for Applied Systems Analysis (IIASA),
Laxenburg, 2361, Austria
Amy Donovan
Department of Geography, University of Cambridge, Cambridge, CB2 3EN,
UK
Department of Geography, King's College London, London, WC2B 4BG, UK
Related authors
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025, https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
Short summary
We present a methodology to compile single hazards and multi-hazard interrelationships in data-scarce urban settings, which we apply to the Kathmandu Valley, Nepal. Using blended sources, we collate evidence of 21 single natural hazard types and 83 multi-hazard interrelationships that could impact the Kathmandu Valley. We supplement these exemplars with multi-hazard scenarios developed by practitioner stakeholders, emphasising the need for inclusive disaster preparedness and response approaches.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025, https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
Short summary
We present a methodology to compile single hazards and multi-hazard interrelationships in data-scarce urban settings, which we apply to the Kathmandu Valley, Nepal. Using blended sources, we collate evidence of 21 single natural hazard types and 83 multi-hazard interrelationships that could impact the Kathmandu Valley. We supplement these exemplars with multi-hazard scenarios developed by practitioner stakeholders, emphasising the need for inclusive disaster preparedness and response approaches.
Uldis Zandovskis, Davide Pigoli, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-2733, https://doi.org/10.5194/egusphere-2024-2733, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study looks at how lightning strikes happen over time and space, focusing on six storms in the UK during 2012 and 2015. By using real data, the research examines how often lightning strikes occur, how fast the storms move, and how far the strikes spread. The storms had different speeds (47–111 km/h) and times between strikes (0.01 to 100 seconds), with strikes spreading up to 80 km. The study’s findings help create models to better characterise severe storms.
Julius Schlumberger, Robert Šakić Trogrlić, Jeroen C. J. H. Aerts, Jung-Hee Hyun, Stefan Hochrainer-Stigler, Marleen de Ruiter, and Marjolijn Haasnoot
EGUsphere, https://doi.org/10.5194/egusphere-2024-3655, https://doi.org/10.5194/egusphere-2024-3655, 2024
Short summary
Short summary
This study presents a dashboard to help decision-makers manage risks in a changing climate. Using interactive visualizations, it simplifies complex choices, even with uncertain information. Tested with 54 users of varying expertise, it enabled accurate responses to 71–80 % of questions. Users valued its scenario exploration and detailed data features. While effective, the guidance and set of visualizations could be extended and the prototype could be adapted for broader applications.
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536, https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
Short summary
We critically reviewed 250 articles from 2010 to 2023, analysed how social media is used to manage disasters, and developed the Social Media Literature Database. We summarise the methods used for data collection and filtering. Key findings include the widespread use of the latest technologies to handle data, proficiency in spatiotemporal analysis, and gaps in community interaction and resource identification. We also propose best practices for using social media to enhance disaster management.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Mirianna Budimir, Alison Sneddon, Issy Nelder, Sarah Brown, Amy Donovan, and Linda Speight
Geosci. Commun., 5, 151–175, https://doi.org/10.5194/gc-5-151-2022, https://doi.org/10.5194/gc-5-151-2022, 2022
Short summary
Short summary
This paper extracts key learning from two case studies (India and Mozambique), outlining solutions and approaches to challenges in developing forecast products. These lessons and solutions can be used by forecasters and practitioners to support the development of useful, appropriate, and co-designed forecast information for institutional decision-makers to support more effective early action in advance of disasters.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Cited articles
Aitsi-Selmi, A., Blanchard, K., and Murray, V.: Ensuring science is useful,
usable and used in global disaster risk reduction and sustainable
development: a view through the Sendai framework lens, Palgrave Commun., 2,
1–9, https://doi.org/10.1057/palcomms.2016.16, 2016a.
Aitsi-Selmi, A., Murray, V., Wannous, C., Dickinson, C., Johnston, D.,
Kawasaki, A., Stevance, A.-S., and Yeung, T.: Reflections on a science and
technology agenda for 21st century disaster risk reduction, Int. J.
Disaster Risk Sci., 7, 1–29, https://doi.org/10.1007/s13753-016-0081-x,
2016b.
Akenroye, T. O., Nygård, H. M., and Eyo, A.: Towards implementation of
sustainable development goals (SDG) in developing nations: A useful funding
framework, Int. Area Studies Rev., 21, 3–8,
https://doi.org/10.1177/2233865917743357, 2018.
Albris, K., Lauta, K. C., and Raju, E.: Disaster Knowledge Gaps: Exploring
the interface between science and policy for disaster risk reduction in
Europe, Int. J. Disaster Risk Sci., 11, 1–12,
https://doi.org/10.1007/s13753-020-00250-5, 2020.
Angeli, M.-G., Pasuto, A., and Silvano, S.: A critical review of landslide
monitoring experiences, Eng. Geol., 55, 133–147,
https://doi.org/10.1016/S0013-7952(99)00122-2, 2000.
Barclay, J., Haynes, K., Mitchell, T., Solana, C., Teeuw, R., Darnell, A.,
Crosweller, H. S., Cole, P., Pyle, D., Lowe, C., Fearnley, C., and Kelman,
I.: Framing volcanic risk communication within disaster risk reduction:
finding ways for the social and physical sciences to work together.
Geological Society, London, Spec. Publ., 305, 163–177,
https://doi.org/10.1144/SP305.14, 2008.
Boaz, A. and Hayden, C.: Pro-active evaluators: enabling research to be
useful, usable and used, Evaluation-US., 8, 440–453,
https://doi.org/10.1177/13563890260620630, 2002.
Boiten, W.: Hydrometry: IHE Delft Lecture Note Series, CRC Press, London,
256 pp., https://doi.org/10.1201/9780203971093, 2003.
Braun, V. and Clarke, V.: Using thematic analysis in psychology, Qual. Res.
Psychol., 3, 77–101, https://doi.org/10.1191/1478088706qp063oa, 2006.
Bretton, R. J., Gottsmann, J., Aspinall, W. P., and Christie, R.:
Implications of legal scrutiny processes (including the L'Aquila trial and
other recent court cases) for future volcanic risk governance, J. Appl.
Volcanol., 4, 18, https://doi.org/10.1186/s13617-015-0034-x, 2015.
Chmutina, K. and von Meding, J.: A dilemma of language: “Natural
disasters” in academic literature, Int. J. Disaster Risk Sci., 10,
283–292, https://doi.org/10.1007/s13753-019-00232-2, 2019.
Clarivate: Web of Science, https://webofknowledge.com/, last access: 1 July 2022.
Cochran, E. S., Lawrence, J. F., Christensen, C., and Jakka, R. S.: The
quake-catcher network: Citizen Ssience expanding seismic horizons, Seismol.
Res. Lett., 80, 26–30, https://doi.org/10.1785/gssrl.80.1.26, 2009.
Coronese, M., Lamperti, F., Keller, K., Chiaromonte, F., and Roventini, A.:
Evidence for sharp increase in the economic damages of extreme natural
disasters, P. Natl. Acad. Sci. USA, 116, 21450–21455,
https://doi.org/10.1073/pnas.1907826116, 2019.
Cui, P., Peng, J., Shi, P., Tang, H., Ouyang, C., Zou, Q., Liu, L., Li, C.,
and Lei, Y.: Scientific challenges of research on natural hazards and
disaster risk, Geog. Sustain., 2, 216–223,
https://doi.org/10.1016/j.geosus.2021.09.001, 2021.
Cutter, S. L. and Finch, C.: Temporal and spatial changes in social
vulnerability to natural hazards, P. Natl. Acad. Sci. USA, 105,
2301–2306, https://doi.org/10.1073/pnas.0710375105, 2008.
De Angeli, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., and
Rudari, R.: A multi-hazard framework for spatial-temporal impact analysis,
Int. J. Disast. Risk Red., 73, 102829,
https://doi.org/10.1016/j.ijdrr.2022.102829, 2022.
de Ruiter, M. C., Couasnon, A., van den Homberg, M. J. C., Daniell, J. E.,
Gill, J. C., and Ward, P. J.: Why we can no longer ignore consecutive
disasters, Earth's Future, 8, e2019EF001425,
https://doi.org/10.1029/2019EF001425, 2020.
de Ruiter, M. C., de Bruijn, J., Englhardt, J., Daniell, J., de Moel, H., and
Ward, P. J.: The asynergies of structural disaster risk reduction measures:
comparing floods and earthquakes, Earth's Future, 8, e2020EF001531, https://doi.org/10.1029/2020EF001531, 2021.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013.
Freddi, F., Galasso, C., Cremen, G., Dall'Asta, A., Di Sarno, L., Giaralis,
A., Gutiérrez-Urzúa, F., Málaga-Chuquitaype, C., Mitoulis, S.
A., Petrone, C., Sextos, A., Sousa, L., Tarbali, K., Tubaldi, E., Wardman,
J., and Woo, G.: Innovations in earthquake risk reduction for resilience:
Recent advances and challenges, Int. J. Disast. Risk Red., 60, 102267,
https://doi.org/10.1016/j.ijdrr.2021.102267, 2021.
Gill, J. C. and Malamud, B. D.: Reviewing and visualising the interactions of
natural hazards, Rev. Geophys., 52, 680–722,
https://doi.org/10.1002/2013RG000445, 2014.
Gill, J. C. and Malamud, B. D.: Hazard interactions and interaction networks (cascades) within multi-hazard methodologies, Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, 2016.
Gill, J. C. and Smith, M. (Eds.): Geosciences and the Sustainable Development Goals.
Sustainable Development Goals Series, Springer, Cham,
https://doi.org/10.1007/978-3-030-38815-7, 2021.
Gill, J. C., Barich, A., Bilham, N., Caven, S., Donovan, A., Ruiter, M. D., and
Smith, M.: Peace, Justice, and Strong Institutions, in: Geosciences and the Sustainable Development Goals, edited by: Gill, J. C. and Smith, M., 393–421, Sustainable Development Goals Series, Springer, Cham,
https://doi.org/10.1007/978-3-030-38815-7_16, 2021.
Gillespie, T. W., Chu, J., Frankenberg, E., and Thomas, D.: Assessment and
prediction of natural hazards from satellite imagery, Prog. Phys. Geog., 31,
459–470, https://doi.org/10.1177/0309133307083296, 2007.
Glasser, R.: The climate change imperative to transform disaster risk
management, Int. J. Disaster Risk Sci., 11, 152–154,
https://doi.org/10.1007/s13753-020-00248-z, 2020.
Hemingway, R. and Gunawan, O.: The Natural Hazards Partnership: A
public-sector collaboration across the UK for natural hazard disaster risk
reduction, Int. J. Disaster Risk Red., 27, 499–511,
https://doi.org/10.1016/j.ijdrr.2017.11.014, 2018.
Herrmann, R. B., Benz, H., and Ammon, C. J.: Monitoring the earthquake
source process in North America, Seismol. Soc. Am., 101, 2609–2625,
https://doi.org/10.1785/0120110095, 2011.
Herzig Van Wees, S. L., Målqvist, M., and Irwin, R.: Achieving the SDGs
through interdisciplinary research in global health, Scand. J. Public
Health, 47, 793–795, https://doi.org/10.1177/1403494818812637, 2019.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate
change, Nat. Clim. Change, 3, 816–821,
https://doi.org/10.1038/nclimate1911, 2013.
Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B., McShane, C.,
Cattau, M., Koontz, M. J., McGlinchy, J., Nagy, R. C., Balch, J., Leyk, S.,
and Travis, W. R.: Risky development: Increasing exposure to natural hazards
in the United States, Earth's Future., 9, e2020EF001795,
https://doi.org/10.1029/2020EF001795, 2021.
Izumi, T., Shaw, R., Ishiwatari, M., Djalante, R., Komino, T., Sukhwani, V.,
and Adu Gyamfi, B.: 30 Innovations linking disaster risk reduction with
sustainable development goals, Keio University, the University of Tokyo,
UNU-IAS, CWS Japan, Japan, 97 pp., http://collections.unu.edu/view/UNU:7607 (last access: 1 May 2022), 2020.
Johansen, P. H., Ejrnæs, R., Kronvang, B., Olsen, J. V., Præstholm,
S., Schou, J. S., and Johansen, S. K.: Exploring the interdisciplinary
potential of the Agenda2030 – Interactions between five Danish societal
demands for sustainable land use, Land Use Policy, 94, 104501,
https://doi.org/10.1016/j.landusepol.2020.104501, 2020.
Johnston, B. and van de Lindt, J. W.: Barriers and possibilities for
interdisciplinary disaster science research: Critical appraisal of the
literature, Nat. Hazards Rev., 23, 04021053,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000520, 2022.
JRC (Joint Research Centre): Science for disaster risk management 2017:
knowing better and losing less, edited by: Marin Ferrer, M., Poljanšek, K.,
Clark, I., and De Groeve, T., Science for Disaster Risk Management, EUR 28034,
European Commission Publications Office, https://doi.org/10.2788/842809,
2017.
King, N.: Using templates in the thematic analysis of text, in: Essential guide to qualitative methods in organisational
research, edited by: Cassell, C. and Symon, G., 257–270, London, UK, Sage, https://doi.org/10.4135/9781446280119.n21, 2004.
Kreibich, H., de Ruiter, M. C., Goda, K., Keiler, M., Suppasri, A., and
Malamud, B.D.: Critical research in the water-related multi-hazard field,
Nat. Sustain., 5, 90–91, https://doi.org/10.1038/s41893-021-00833-0, 2022a.
Kreibich, H., Malamud, B. D., Tarolli, P., and Ulbrich, U. (Eds.): Perspectives
on challenges and step changes for addressing natural hazards, Special
Issue, Nat. Hazards Earth Syst. Sci., https://nhess.copernicus.org/articles/special_issue1146.html, last access: 20 July 2022b.
Leal Filho, W., Lovren, V. O., Will, M., Salvia, A. L., and Frankenberger,
F.: Poverty: A central barrier to the implementation of the UN Sustainable
Development Goals, Environ. Sci. Policy, 125, 96–104,
https://doi.org/10.1016/j.envsci.2021.08.020, 2021.
Lerner-Lam, A.: Assessing global exposure to natural hazards: Progress and
future trends, Environ. Hazards-UK, 7, 10–19,
https://doi.org/10.1016/j.envhaz.2007.04.007, 2007.
Luebken, U. and Mauch, C.: Uncertain environments: Natural hazards, risk and
insurance in historical perspective, Environ. Hist.-UK, 17, 1–12,
https://doi.org/10.3197/096734011X12922358301012, 2011.
Mazzoleni, M., Mård, J., Rusca, M., Odongo, V., Lindersson, S., and Di
Baldassarre, G.: Floodplains in the Anthropocene: A global analysis of the
interplay between human population, built environment, and flood severity,
Water Resour. Res., 57, e2020WR027744, https://doi.org/10.1029/2020WR027744,
2021.
Miles, M. B., Huberman, A. M., and Saldaña, J.: Qualitative Data Analysis: a methods sourcebook, 4th ed., SAGE Publications, London, UK, 408 p., ISBN 9781506353074, 2019.
Morss, R., Lazrus, H., and Demith, J. L.: The “inter” within
interdisciplinary research: Strategies for building integration across
fields, Risk Anal., 41, 1152–1161, https://doi.org/10.1111/risa.13246,
2021.
Nowell, L. S., Norris, J. M., White, D. E., and Moules, N. J.: Thematic
analysis: Striving to meet the trustworthiness criteria, Int. J. Qual.
Meth., 16, 1609406917733847, https://doi.org/10.1177/1609406917733847, 2017.
NVivo: Qualitatitive Data Analysis Version 1.5, https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home, last access: 1 October 2021.
O'Keefe, P., Westgate, K., and Wisner, B.: Taking the naturalness out of
natural disasters, Nature, 260, 566–567, https://doi.org/10.1038/260566a0,
1976.
OECD (Organisation for Economic Co-operation and Development): Revised field
of science and technology (FOS) classification in the Frascati manual, Directorate for Science, Technology and Industry, Committee for Scientific
and Technological Policy, Working Party of National Experts on Science and
Technology Indicators, Organisation for Economic Co-operation and
Development, Paris, France, https://unstats.un.org/unsd/EconStatKB/KnowledgebaseArticle10269.aspx
(last access: 1 April 2022), 2007.
OECD (Organisation for Economic Co-operation and Development): Global
modelling of natural hazard risks: enhancing existing capabilities to
address new challenges, Organization for Economic Co-operation and
Development, Paris, France, https://www.oecd.org/science/Final GRMI report.pdf (last access: 1 May 2022), 2012.
Paul, J. D., Buytaert, W., Allen, S., Ballesteros-Cánovas, J. A.,
Bhusal, J., Cieslik, K., Clark, J., Dugar, S., Hannah, D. M., Stoffel, M.,
Dewulf, A., Dhital, M. R., Liu, W., Nayaval, J. L., Neupane, B., Schiller,
A., Smith, P. J., and Supper, R.: Citizen science for hydrological risk
reduction and resilience building, Wiley Interdisciplinary Reviews, Water,
5, e1262, https://doi.org/10.1002/wat2.1262, 2018.
Paulus, T. M. and Lester, J. N.: Using software to support qualitative data
analysis, in: Handbook of Qualitative
Research in Education, edited by: Ward, M. R. M. and Delamont, S., Ch. 37, Edward Elgar Publishing, Cheltenham, UK, https://doi.org/10.4337/9781788977159.00048, 2020.
Peek, L. A. and Mileti, D. S.: The history and future of disaster research,
in: Handbook of environmental
psychology, edited by: Bechtel, R. B. and Churchman, A., 511–524, John Wiley & Sons, Inc., Hoboken, NJ, US, 2002.
Peek, L. and Guikema, S.: Interdisciplinary theory, methods, and approaches
for hazards and disaster research: An introduction to the special issue,
Nat. Hazards Rev., 41, 1047–1058, https://doi.org/10.1111/risa.13777, 2021.
Pescaroli, G. and Alexander, D.: Understanding compound, interconnected,
interacting, and cascading risks: a holistic framework, Risk Anal.,
38, 2245–2257, https://doi.org/10.1111/risa.13128, 2018.
Poursanidis, D. and Chrysoulakis, N.: Remote Sensing, natural hazards and
the contribution of ESA Sentinels missions, Rem. Sens. Appl. Society
Enviro., 6, 25–38, https://doi.org/10.1016/j.rsase.2017.02.001, 2017.
Rädler, A. T.: Invited perspectives: how does climate change affect the risk of natural hazards? Challenges and step changes from the reinsurance perspective, Nat. Hazards Earth Syst. Sci., 22, 659–664, https://doi.org/10.5194/nhess-22-659-2022, 2022.
Robins, C. S. and Eisen, K.: Strategies for the effective use of NVivo in a
large-scale study: Qualitative analysis and the repeal of Don't Ask, Don't
Tell, Qual. Inq., 23, 768–778, https://doi.org/10.1177/1077800417731089,
2017.
Sakic Trogrlic, R., Cumiskey, L., Triyanti, A., Duncan, M., Eltinay, N.,
Hogeboom, R., Jasuja, M.m Meechaiya, C., Pickering, C., and Murray, V. :
Science and technology networks: a helping hand to boost implementation of
the Sendai Framework for Disaster Risk Reduction 2015–2030, Int. J. Disaster
Risk Sci., 8, 100–105, https://doi.org/10.1007/s13753-017-0117-x, 2017.
Sakic Trogrlic, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon
A. and Golding, B.: Early warning systems and their role in disaster risk
reduction, in: Towards the “perfect” weather warning:
bridging disciplinary gaps through partnerships and communication, edited by: Golding, B., Springer
Nature Switzerland AG, Cham, https://doi.org/10.1007/978-3-030-98989-7_2., 2022.
Shi, P., Ye, T., Wang, Y., Zhou, T., Xu, W., Du, J., Wang, J., Li, N.,
Huang, C., Liu, L., Chen, B., Su, Y., Fang, W., Wang, M., Hu, X., Wu, J.,
He, C., Zhang, Q., Ye, Q., Jaeger, C., and Okada, N.: Disaster risk science:
A geographical perspective and a research framework, Int. J. Disaster Risk
Sci., 11, 426–440, https://doi.org/10.1007/s13753-020-00296-5, 2020.
Sidle, R. C., Taylor, D., Lu, X. X., Adger, W. N., Lowe, D. J., de Lange, W.
P., Newnham, R. M., and Dodson, J. R.: Interactions of natural hazards and
society in Austral-Asia: evidence in past and recent records, Quatern. Int.,
118–119, 181–203, https://doi.org/10.1016/S1040-6182(03)00137-X, 2004.
Simonelli, T., Zoppi, L., Molinari, D., and Ballio, F.: Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin, Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, 2022.
Smith, M. and Bricker, S.: Sustainable Cities and Communities, in: Geosciences and the Sustainable Development Goals, edited by: Gill, J. C.
and Smith, M., 259–282, Development Goals Series, Springer, Cham,
https://doi.org/10.1007/978-3-030-38815-7_11, 2021.
Strauch, R., Istanbulluoglu, E., and Riedel, J.: A new approach to mapping landslide hazards: a probabilistic integration of empirical and physically based models in the North Cascades of Washington, USA, Nat. Hazards Earth Syst. Sci., 19, 2477–2495, https://doi.org/10.5194/nhess-19-2477-2019, 2019.
Taylor, F. E., Millington, J. D., Jacob, E., Malamud, B. D., and Pelling, M.:
Messy maps: qualitative GIS representations of resilience, Landscape Urban
Plan., 198, 103771, https://doi.org/10.1016/j.landurbplan.2020.103771, 2020.
Thiebes, B., Winkhardt-Enz, R., Schwarze, R., and Pickl, S.: Invited perspectives: Challenges and step changes for natural hazard – perspectives from the German Committee for Disaster Reduction (DKKV), Nat. Hazards Earth Syst. Sci., 22, 1969–1972, https://doi.org/10.5194/nhess-22-1969-2022, 2022.
Ujjwal, K. C., Garg, S., Hilton, J., Aryal, J., and Forbes-Smith, N.: Cloud
computing in natural hazard modeling systems: current research trends and
future directions, Int. J. Disast. Risk R., 38, 101188,
https://doi.org/10.1016/j.ijdrr.2019.101188, 2019.
UNISDR (United Nations International Strategy for Disaster Reduction):
Developing early warning systems: a checklist, United Nations International
Strategy for Disaster Reduction, Geneva, Switzerland,
https://www.undrr.org/publication/developing-early-warning-systems-checklist-third-international-conference-early-warning,
(last access: 1 December 2021), 2006.
UNISDR (United Nations Office for Disaster Risk Reduction): Disaster risk
reduction and resilience in the 2030 Agenda for sustainable development,
United Nations Office for Disaster Risk Reduction, Geneva, Switzerland,
https://www.undrr.org/publication/disaster-risk-reduction-and-resilience-2030-agenda-sustainable-development,
(last access: 1 February 2022), 2015a.
UNISDR (United Nations International Strategy for Disaster Reduction):
Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations
Office for Disaster Risk Reduction, Geneva, Switzerland,
https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
(last access: 20 November 2021), 2015b.
United Nations: Sustainable Development Goals, Communication material,
https://www.un.org/sustainabledevelopment/news/communications-material/ (last access: 1 March 2022), 2019.
United Nations: Standard country or area codes for statistical use (M49),
Geography Regions, https://unstats.un.org/unsd/methodology/m49/ (last access: 30 November 2021),
2021.
Wabbels, D. and Bezzola, G. R.: Invited Perspectives: “Small country, big challenges – Switzerland's hazard prevention research”, Nat. Hazards Earth Syst. Sci., 22, 927–930, https://doi.org/10.5194/nhess-22-927-2022, 2022.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Wartman, J., Berman, J. W., Bostrom, A., Miles, S., Olsen, M., Gurley, K.,
Irish, J., Lowes, L., Tanner, T., Dafni, J., Grilliot, M., Lyda, A., and
Peltier, J.: Research needs, challenges, and strategic approaches for
natural hazards and disaster reconnaissance, Front. Built Environ., 6,
573068, https://doi.org/10.3389/fbuil.2020.573068, 2020.
WMO (World Meterological Organization): WMO Atlas of Mortality and Economic
Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267),
WMO, Geneva, 90 pp., https://library.wmo.int/doc_num.php?explnum_id=10989 (last access: 1 May 2022), 2021.
WordClouds.com: Software for designing wordclouds,
https://www.wordclouds.co.uk/, last access: 12 July 2022.
Zuccaro, G., Leone, M. F., and Martucci, C.: Future research and innovation
priorities in the field of natural hazards, disaster risk reduction,
disaster risk management and climate change adaptation: A shared vision from
the ESPREssO project, Int. J. Disaster Risk Red., 51, 101783,
https://doi.org/10.1016/j.ijdrr.2020.101783, 2020.
Executive editor
The paper can be considered as highlight paper
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Here we present survey responses of 350 natural hazard community members to key challenges in...
Altmetrics
Final-revised paper
Preprint