Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Joris Pianezze
Operational Oceanography Department, Mercator Ocean International, Toulouse, France
now at: Laboratoire d'Aérologie/OMP, Université de Toulouse, CNRS, UPS, UMR5560, Toulouse, France
Jonathan Beuvier
CORRESPONDING AUTHOR
Operational Oceanography Department, Mercator Ocean International, Toulouse, France
Cindy Lebeaupin Brossier
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Guillaume Samson
Operational Oceanography Department, Mercator Ocean International, Toulouse, France
Ghislain Faure
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Gilles Garric
Operational Oceanography Department, Mercator Ocean International, Toulouse, France
Related authors
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Meredith Dournaux, Pierre Tulet, Joris Pianezze, Jérome Brioude, Jean-Marc Metzger, and Melilotus Thyssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3747, https://doi.org/10.5194/egusphere-2024-3747, 2025
Short summary
Short summary
Aerosol measurements collected during six oceanographic campaigns carried out in 2021 and 2023 in the southwest Indian Ocean are presented and analyzed in this paper. The results highlight a large variability in the aerosol concentration, size and water vapor affinity depending on in-situ conditions and air mass transport over the ocean. Marine aerosol chemical composition is highly variable over this region, and should be considered to better study their impacts on regional weather and climate.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870, https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary
Short summary
Upward transport within tropical cyclones of water vapor from the low troposphere into the colder upper troposphere/lower stratosphere can result in the moistening of this region. Balloon observations and model simulations of tropical cyclone Enawo in the less-observed Southwest Indian Ocean (the third most tropical cyclone active region on Earth) are used to show how convective overshoots within Enawo penetrate the tropopause directly, injecting water/ice into the stratosphere.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Meredith Dournaux, Pierre Tulet, Joris Pianezze, Jérome Brioude, Jean-Marc Metzger, and Melilotus Thyssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3747, https://doi.org/10.5194/egusphere-2024-3747, 2025
Short summary
Short summary
Aerosol measurements collected during six oceanographic campaigns carried out in 2021 and 2023 in the southwest Indian Ocean are presented and analyzed in this paper. The results highlight a large variability in the aerosol concentration, size and water vapor affinity depending on in-situ conditions and air mass transport over the ocean. Marine aerosol chemical composition is highly variable over this region, and should be considered to better study their impacts on regional weather and climate.
Aliette Chenal, Gilles Garric, Charles-Emmanuel Testut, Mathieu Hamon, Giovanni Ruggiero, Florent Garnier, and Pierre-Yves Le Traon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3633, https://doi.org/10.5194/egusphere-2024-3633, 2024
Short summary
Short summary
This study proposes to improve the representation of ice and snow volumes in the Arctic and Antarctic based on a novel multivariate assimilation method using freeboard radar and snow depth satellite data. The approach leads to an improved sea ice and snow volume representation, even during summer when satellite data is limited. The performance of the assimilated system is better in the Arctic than in Antarctica, where ocean/ice interactions play a key role.
Adam M. Cook, Youyu Lu, Xianmin Hu, David Brickman, David Hebert, Chantelle Layton, and Gilles Garric
State Planet Discuss., https://doi.org/10.5194/sp-2024-14, https://doi.org/10.5194/sp-2024-14, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Ocean bottom temperatures from a global ocean reanalysis product are found to be consistent with in situ observations on Scotian Shelf. Statistical analysis reveals positive relationship between changes in lobster catch rate and ocean bottom temperature off the southwest coast of Nova Scotia during 2008–2023. A standardized lobster catch rate index with influence of bottom temperature included is more consistent with available stock biomass compared to the index without such influence.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Li Zhai, Youyu Lu, Haiyan Wang, Gilles Garric, and Simon Van Gennip
State Planet Discuss., https://doi.org/10.5194/sp-2024-17, https://doi.org/10.5194/sp-2024-17, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Statistics of Marine Heatwaves and Cold Spells in the water column of Northwest Atlantic during 1993–2023 are derived for the first time using a global ocean reanalysis product. On Scotian Shelf temperature and parameters of extreme events present layered structures in the water column, long-term trends and sharp increases around 2012. Quantification of extreme warm (cold) conditions in 2012 (1998) supports previous studies on the impacts of these conditions on several marine life species.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
César Sauvage, Cindy Lebeaupin Brossier, and Marie-Noëlle Bouin
Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, https://doi.org/10.5194/acp-21-11857-2021, 2021
Short summary
Short summary
Air–sea processes are key elements during Mediterranean heavy precipitation events. We aim to progress in their representation in high-resolution weather forecast. Using coupled ocean–air–wave simulations, we investigated air–sea mechanisms modulated by ocean and waves during a case that occurred in southern France. Results showed significant impact of the forecast on low-level dynamics and air–sea fluxes and illustrated potential benefits of coupled numerical weather prediction systems.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan Madec
Geosci. Model Dev., 14, 543–572, https://doi.org/10.5194/gmd-14-543-2021, https://doi.org/10.5194/gmd-14-543-2021, 2021
Short summary
Short summary
A simplified model of the atmospheric boundary layer (ABL) of intermediate complexity between a bulk parameterization and a full three-dimensional atmospheric model has been developed and integrated to the NEMO ocean model.
An objective in the derivation of such a simplified model is to reach an apt representation of ocean-only numerical simulations of some of the key processes associated with air–sea interactions at the characteristic scales of the oceanic mesoscale.
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870, https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary
Short summary
Upward transport within tropical cyclones of water vapor from the low troposphere into the colder upper troposphere/lower stratosphere can result in the moistening of this region. Balloon observations and model simulations of tropical cyclone Enawo in the less-observed Southwest Indian Ocean (the third most tropical cyclone active region on Earth) are used to show how convective overshoots within Enawo penetrate the tropopause directly, injecting water/ice into the stratosphere.
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Ocean Sci., 16, 1125–1142, https://doi.org/10.5194/os-16-1125-2020, https://doi.org/10.5194/os-16-1125-2020, 2020
Short summary
Short summary
A kilometre-scale coupled ocean–atmosphere simulation is used to study the impact of a medicane on the oceanic upper layer. The processes responsible for the surface cooling are comparable to those of weak tropical cyclones. The oceanic response is influenced by the dynamics of the central Mediterranean. In particular, a cyclonic eddy leads to weaker cooling. Heavy rain occuring early in the event creates a salinity barrier layer, reinforcing the effects of the surface fluxes on the cooling.
Cited articles
Amodei, M., Sanchez, I., and Stein, J.: Verification of the French operational
high-resolution model AROME with the regional Brier probability score,
Meteorol. Appl., 22, 731–745,
https://doi.org/10.1002/met.1510, 2015. a
Arnold, A. K., Lewis, H. W., Hyder, P., Siddorn, J., and O'Dea, E.: The
Sensitivity of British Weather to Ocean Tides, Geophys. Res. Lett.,
48, e2020GL090732, https://doi.org/10.1029/2020GL090732, 2021. a
AVISO+ Satellite Altimetry Data: https://www.aviso.altimetry.fr/en/home.html, last access: 7 April 2022. a
Bao, J.-W., Wilczak, J. M., Choi, J.-K., and Kantha, L. H.: Numerical
Simulations of Air-Sea Interaction under High Wind Conditions
Using a Coupled Model: A Study of Hurricane Development,
Mon. Weather Rev., 128, 2190–2210,
https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2, 2000. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1,
2006. a
Bastin, S., Drobinski, P., Guénard, V., Caccia, J.-L., Campistron, B., Dabas,
A. M., Delville, P., Reitebuch, O., and Werner, C.: On the Interaction
between Sea Breeze and Summer Mistral at the Exit of the Rhône Valley,
Mon. Weather Rev., 134, 1647–1668, https://doi.org/10.1175/MWR3116.1, 2006. a
Bender, M. A. and Ginis, I.: Real-Case Simulations of Hurricane–Ocean
Interaction Using A High-Resolution Coupled Model: Effects on
Hurricane Intensity, Mon. Weather Rev., 128, 917–946,
https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2, 2000. a
Bergeron, J.-P.: Contrasting years in the Gironde estuary (Bay of Biscay, NE
Atlantic) springtime outflow and consequences for zooplankton pyruvate kinase
activity and the nutritional condition of anchovy larvae: an early view,
ICES J. Mar. Sci., 61, 928–932,
https://doi.org/10.1016/j.icesjms.2004.06.019, 2004. a
Blayo, E. and Debreu, L.: Revisiting open boundary conditions from the point of
view of characteristic variables, Ocean Model., 9, 231–252,
https://doi.org/10.1016/j.ocemod.2004.07.001, 2005. a
Bouin, M.-N. and Lebeaupin Brossier, C.: Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling, Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, 2020a. a
Bouin, M.-N. and Lebeaupin Brossier, C.: Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation, Ocean Sci., 16, 1125–1142, https://doi.org/10.5194/os-16-1125-2020, 2020b. a
Brassington, G., Martin, M., Tolman, H., Akella, S., Balmeseda, M., Chambers,
C., Chassignet, E., Cummings, J., Drillet, Y., Jansen, P., Laloyaux, P., Lea,
D., Mehra, A., Mirouze, I., Ritchie, H., Samson, G., Sandery, P., Smith, G.,
Suarez, M., and Todling, R.: Progress and challenges in short- to
medium-range coupled prediction, J. Oper. Oceanogr., 8,
s239–s258, https://doi.org/10.1080/1755876X.2015.1049875, 2015. a
Brenon, I. and Le Hir, P.: Modelling the Turbidity Maximum in the Seine
Estuary (France): Identification of Formation Processes, Estuar. Coast. Shelf S., 49, 525–544,
https://doi.org/10.1006/ecss.1999.0514, 1999. a
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the
forecast of convective activity from the AROME-France system, Q. J. Roy. Meteor. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016. a
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M.,
Ricchi, A., and Sclavo, M.: Scratching beneath the surface while coupling
atmosphere, ocean and waves: Analysis of a dense water formation event, Ocean Model., 101, 101–112, https://doi.org/10.1016/j.ocemod.2016.03.007, 2016. a
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a new tidal
model on the global ocean with enhanced accuracy in shallow seas and in the
Arctic region, in: EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015, 5481 pp.,
EGU General Assembly Conference Abstracts, 2015. a, b
Carret, A., Birol, F., Estournel, C., Zakardjian, B., and Testor, P.: Synergy between in situ and altimetry data to observe and study Northern Current variations (NW Mediterranean Sea), Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019, 2019. a
Caumont, O., Mandement, M., Bouttier, F., Eeckman, J., Lebeaupin Brossier, C., Lovat, A., Nuissier, O., and Laurantin, O.: The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations, Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, 2021. a, b
CeCILL-C Free Software License Agreement: https://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt, last access: 7 April 2022. a
Charnock, H.: Wind stress on a water surface, Q. J. Roy. Meteor. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027, 1955. a
Chen, S., Campbell, T. J., Jin, H., Gabersek, S., Hodur, R. M., and Martin, P.:
Effect of Two-Way Air–Sea Coupling in High and Low Wind Speed Regimes,
Mon. Weather Rev., 138, 3579–3602, https://doi.org/10.1175/2009MWR3119.1, 2010. a
Chevallier, C., Herbette, S., Marié, L., Le Borgne, P., Marsouin, A.,
Péré, S., Levier, B., and Reason, C.: Observations of the Ushant front
displacements with MSG/SEVIRI derived sea surface temperature data, in: Remote sensing of ocean colour, temperature and salinity, Remote Sens. Environ., 146, 3–10, https://doi.org/10.1016/j.rse.2013.07.038, 2014. a
Colella, S., Böhm, E., Cesarini, C., Garnesson, P., Netting, J., and Calton,
B.: Product User Manual for All Ocean Colour Products (CMEMS-OC-PUM-009-ALL), Tech. rep., Copernicus Marine Environment Monitoring Service, https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-OC-PUM-009-ALL.pdf (last access: 7 April 2022), 2020. a
Coriolis Operational Oceanography: Measurements for Ocean Understanding, The Coriolis Project, https://www.coriolis.eu.org/, last access: 7 April 2022. a
Courtier, P., Freydier, C., Geleyn, J.-F., Rabier, F., and Rochas, M.: The
ARPEGE project at Météo-France, in: ECMWF workshop on numerical methods in atmospheric modeling, ECMW, Reading, UK, 2, 193–231, 1991. a
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a, b
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme
allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteor. Soc., 126, 1–30, https://doi.org/10.1002/qj.49712656202, 2000. a
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V. m., Li, L., Sannino, G., and Sein, D. V.:
Future evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam., 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019. a
De Bono, A., Peduzzi, P., Kluser, S., and Giuliani, G.: Impacts of Summer 2003 Heat Wave in Europe, 4,
https://archive-ouverte.unige.ch/unige:32255 (last access: 7 April 2022), 2004. a
D'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D.,
Marullo, S., Santoleri, R., and Madec, G.: Seasonal variability of the mixed
layer depth in the mediterranean sea as derived from in situ profiles,
Geophys. Res. Lett., 32, L12605, https://doi.org/10.1029/2005GL022463, 2005. a
Ducrocq, V., Davolio, S., Ferretti, R., Flamant, C., Homar Santaner, V.,
Kalthoff, N., Richard, E., and Wernli, H.: Advances in understanding and
forecasting of heavy precipitation in Mediterranean through the HyMeX SOP1
field campaign, Q. J. Roy. Meteor. Soc., 142, 1–6, https://doi.org/10.1002/qj.2856,
2016. a
Echevin, V., Crepon, M., and Mortier, L.: Interaction of a Coastal Current
with a Gulf: Application to the Shelf Circulation of the Gulf of Lions in the
Mediterranean Sea, J. Phys. Oceanogr., 33, 188–206,
https://doi.org/10.1175/1520-0485(2003)033<0188:IOACCW>2.0.CO;2, 2003. a
Estournel, C., Broche, P., Marsaleix, P., Devenon, J.-L., Auclair, F., and
Vehil, R.: The Rhone River Plume in Unsteady Conditions: Numerical and
Experimental Results, Estuar. Coast. Shelf S., 53, 25–38,
https://doi.org/10.1006/ecss.2000.0685, 2001. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.:
Bulk Parameterization of Air-Sea Fluxes: Updates and Verification
for the COARE Algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a, b
Fouquart, Y. and Bonnel, B.: Computations of Solar Heating of the
Earth’s Atmosphere: A New Parameterization, Beitrage zur Physik der Atmosphare, 53, 35–62, 1980. a
Fujiwhara, S.: The natural tendency towards symmetry of motion and its
application as a principle in meteorology, Q. J. Roy. Meteor. Soc., 47,
287–293, 1921. a
García, M. J. L., Millot, C., Font, J., and García-Ladona, E.: Surface
circulation variability in the Balearic Basin, J. Geophys. Res.-Oceans, 99, 3285–3296, https://doi.org/10.1029/93JC02114, 1994. a
Grifoll, M., Navarro, J., Pallares, E., Ràfols, L., Espino, M., and
Palomares, A.: Ocean–atmosphere–wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea), Nonlinear Proc. Geoph., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, 2016. a
Gutknecht, E., Reffray, G., Mignot, A., Dabrowski, T., and Sotillo, M. G.: Modelling the marine ecosystem of Iberia–Biscay–Ireland (IBI) European waters for CMEMS operational applications, Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019, 2019. a
Hewitt, H. T., Roberts, M., Mathiot, P., Biastoch, A., Blockley, E.,
Chassignet, E. P., Fox-Kemper, B., Hyder, P., Marshall, D. P., Popova, E.,
Treguier, A.-M., Zanna, L., Yool, A., Yu, Y., Beadling, R., Bell, M.,
Kuhlbrodt, T., Arsouze, T., Bellucci, A., Castruccio, F., Gan, B.,
Putrasahan, D., Roberts, C. D., Van Roekel, L., and Zhang, Q.: Resolving and
Parameterising the Ocean Mesoscale in Earth System Models,
Current Climate Change Reports, 6, 137–152,
https://doi.org/10.1007/s40641-020-00164-w, 2020. a
Intergovernmental Panel on Climate Change: Climate Change 2013 – The
Physical Science Basis: Working Group I Contribution to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9781107415324, 2014. a
Jullien, S., Marchesiello, P., Menkes, C. E., Lefèvre, J., Jourdain, N. C.,
Samson, G., and Lengaigne, M.: Ocean feedback to tropical cyclones:
climatology and processes, Clim. Dynam., 43, 2831–2854,
https://doi.org/10.1007/s00382-014-2096-6, 2014. a
Jullien, S., Masson, S., Oerder, V., Samson, G., Colas, F., and Renault, L.:
Impact of Ocean-Atmosphere Current Feedback on Ocean Mesoscale
Activity: Regional Variations and Sensitivity to Model
Resolution, J. Climate, 33, 2585–2602,
https://doi.org/10.1175/JCLI-D-19-0484.1, 2020. a
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization,
Journal of Atmospheric Sciences, 47, 2784–2802,
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990. a
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., and Legg, T.: State of
the UK climate 2018, Int. J. Climatol., 39, 1–55,
https://doi.org/10.1002/joc.6213, 2019. a, b
Le Boyer, A., Charria, G., Le Cann, B., Lazure, P., and Marié, L.:
Circulation on the shelf and the upper slope of the Bay of Biscay,
Cont. Shelf Res., 55, 97–107,
https://doi.org/10.1016/j.csr.2013.01.006, 2013. a
Lebeaupin Brossier, C., Léger, F., Giordani, H., Beuvier, J., Bouin, M.,
Ducrocq, V., and Fourrié, N.: Dense water formation in the north‐western
Mediterranean area during HyMeX‐SOP2 in 1/36∘ ocean simulations:
Ocean‐atmosphere coupling impact, J. Geophys. Res.-Oceans, 122, 5749–5773, https://doi.org/10.1002/2016JC012526, 2017. a, b, c, d
Leclair, M. and Madec, G.: A conservative leapfrog time stepping method, Ocean Model., 30, 88–94, https://doi.org/10.1016/j.ocemod.2009.06.006, 2009. a
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Palmer, T., Lock, A., Edwards, J., Bricheno, L., Martínez-de la Torre, A., and Clark, J.: The UKC3 regional coupled environmental prediction system, Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, 2019. a
Liberato, M. L. R., Pinto, J. G., Trigo, R. M., Ludwig, P., Ordóñez, P., Yuen, D., and Trigo, I. F.: Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean, Nat. Hazards Earth Syst. Sci., 13, 2239–2251, https://doi.org/10.5194/nhess-13-2239-2013, 2013. a
Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan, S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling, Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, 2016. a
Léger, F., Lebeaupin Brossier, C., Giordani, H., Arsouze, T., Beuvier, J.,
Bouin, M.-N., Bresson, E., Ducrocq, V., Fourrié, N., and Nuret, M.: Dense
water formation in the north-western Mediterranean area during HyMeX-SOP2 in
1/36∘ ocean simulations: Sensitivity to initial conditions, J. Geophys. Res.-Oceans, 121, 5549–5569,
https://doi.org/10.1002/2015JC011542, 2016. a
Ma, F., Yuan, X., Jiao, Y., and Ji, P.: Unprecedented Europe Heat in
June–July 2019: Risk in the Historical and Future Context, Geophys. Res. Lett., 47, e2020GL087809, https://doi.org/10.1029/2020GL087809, 2020. a
Madec, G., Bourdallé-Badie, R., Pierre-Antoine Bouttier, Bricaud, C.,
Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso,
D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D.,
Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J.,
Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean
engine, Zenodo [software], https://doi.org/10.5281/ZENODO.1472492, 2017. a, b
Mandement, M. and Caumont, O.: A numerical study to investigate the roles of former Hurricane Leslie, orography and evaporative cooling in the 2018 Aude heavy-precipitation event, Weather Clim. Dynam., 2, 795–818, https://doi.org/10.5194/wcd-2-795-2021, 2021. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a
Masson, V.: A Physically-Based Scheme For The Urban Energy
Budget In Atmospheric Models, Bound.-Lay. Meteorol., 94,
357–397, https://doi.org/10.1023/A:1002463829265, 2000. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a, b
Meehl, G. A.: Development of global coupled ocean-atmosphere general
circulation models, Clim. Dynam., 5, 19–33, https://doi.org/10.1007/BF00195851,
1990. a
Meroni, A. N., Renault, L., Parodi, A., and Pasquero, C.: Role of the Oceanic
Vertical Thermal Structure in the Modulation of Heavy Precipitations Over the
Ligurian Sea, Pure App. Geophys., 175, 4111–4130,
https://doi.org/10.1007/s00024-018-2002-y, 2018. a, b
Meurdesoif, Y.: XIOS, in: Second Workshop on Coupling Technologies for Earth System Models (CW2013), NCAR, Boulder, CO, USA,
http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-BOULDER.pdf (last access: 7 April 2022), 2013. a
Miglietta, M. M. and Rotunno, R.: Development mechanisms for Mediterranean
tropical-like cyclones (medicanes), Q. J. Roy. Meteor. Soc., 145, 1444–1460, https://doi.org/10.1002/qj.3503, 2019. a
Millot, C.: Mesoscale and seasonal variabilities of the circulation in the
western Mediterranean, Dyn. Atmos. Oc., 15, 179–214,
https://doi.org/10.1016/0377-0265(91)90020-G, 1991. a
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea, edited by: Saliot, A., Springer Berlin
Heidelberg, Berlin, Heidelberg, 29–66, https://doi.org/10.1007/b107143, 2005. a
Millot, C., Taupier-Letage, I., and Benzohra, M.: The Algerian eddies,
Earth-Sci. Rev., 27, 203–219, https://doi.org/10.1016/0012-8252(90)90003-E,
1990. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Mogensen, K. S., Hewson, T., Keeley, S., and Magnusson, L.: Effects of ocean
coupling on weather forecasts, ECMWF newsletter, 6–7,
https://www.ecmwf.int/en/newsletter/156/news/effects-ocean-coupling-weather-forecasts (last access: 7 April 2022), 2018. a
NEMO Community Ocean Model: https://www.nemo-ocean.eu/, last access: 7 April 2022. a
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface
Processes for Meteorological Models, Mon. Weather Rev., 117,
536–549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a
Obermann, A., Bastin, S., Belamari, S., Conte, D., Gaertner, M. A., Li, L., and
Ahrens, B.: Mistral and Tramontane wind speed and wind direction patterns in
regional climate simulations, Clim. Dynam., 51, 1059–1076,
https://doi.org/10.1007/s00382-016-3053-3, 2018. a
Orain, F., Roquet, H., and Saux Picart, E.: European Near Real Time Level 3S
Sea Surface Temperature Product
SST_EUR_L3S_NRT_OBSERVATIONS_010_009_a, Quality Information Document
#1.6, Tech. rep., Copernicus Marine Environment Monitoring Service, 16 pp., https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-009-a.pdf (last access: 7 April 2022), 2021. a
Pasch, R. J. and Roberts, D. P.: Hurricane Leslie, National
Hurricane Center Tropical Cyclone Report, Tech. rep. AL132018, 18 pp.,
https://www.nhc.noaa.gov/data/tcr/AL132018_Leslie.pdf(last access: 7 April 2022), 2019. a
Pellerin, P., Ritchie, H., Saucier, F. J., Roy, F., Desjardins, S., Valin, M.,
and Lee, V.: Impact of a Two-Way Coupling between an Atmospheric and an
Ocean-Ice Model over the Gulf of St. Lawrence, Mon. Weather Rev., 132,
1379–1398, https://doi.org/10.1175/1520-0493(2004)132<1379:IOATCB>2.0.CO;2, 2004. a
Pianezze, J., Barthe, C., Bielli, S., Tulet, P., Jullien, S., Cambon, G.,
Bousquet, O., Claeys, M., and Cordier, E.: A New Coupled
Ocean-Waves-Atmosphere Model Designed for Tropical Storm
Studies: Example of Tropical Cyclone Bejisa (2013–2014) in the
South-West Indian Ocean, J. Adv. Model. Earth Sy., 10, 801–825, https://doi.org/10.1002/2017MS001177, 2018. a
Pinty, J.-P. and Jabouille, P.: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: simulations of a squall line and of
orographic precipitation, in: Proceedings of the AMS conference on cloud physics, Amer. Meteor. soc., Everett, WA, USA, 17–21 August 1998, 217–220,
http://mesonh.aero.obs-mip.fr/mesonh/dir_publication/pinty_jabouille_ams_ccp1998.pdf,
1998. a
Pullen, J., Doyle, J. D., and Signell, R. P.: Two-way air-sea coupling: A
study of the Adriatic, Mon. Wea. Rev., 135, 1465–1483,
https://doi.org/10.1175/MWR3137.1, 2006. a
Pullen, J., Allard, R., Seo, H., Miller, A. J., Chen, S., Pezzi, L. P., Smith,
T., Chu, P., Alves, J., and Caldeira, R.: Coupled ocean-atmosphere
forecasting at short and medium time scales, J. Mar. Res., 75, 877–921,
https://doi.org/10.1357/002224017823523991, 2017. a
Rainaud, R., Lebeaupin Brossier, C., Ducrocq, V., Giordani, H., Nuret, M.,
Fourrié, N., Bouin, M.-N., Taupier-Letage, I., and Legain, D.:
Characterization of air–sea exchanges over the Western Mediterranean Sea
during HyMeX SOP1 using the AROME–WMED model, Q. J. Roy. Meteor. Soc., 142, 173–187, https://doi.org/10.1002/qj.2480, 2016. a
Rainaud, R., Lebeaupin Brossier, C., Ducrocq, V., and Giordani, H.:
High-resolution air-sea coupling impact on two heavy precipitation events in
the Western Mediterranean: Air-Sea Coupling Impact on Two
Mediterranean HPEs, Q. J. Roy. Meteor. Soc., 143, 2448–2462, https://doi.org/10.1002/qj.3098, 2017. a, b, c, d, e, f
Redelsperger, J.-L., Bouin, M.-N., Pianezze, J., Garnier, V., and Marié, L.:
Impact of a sharp, small-scale SST front on the marine atmospheric boundary
layer on the Iroise Sea: Analysis from a hectometric simulation, Q.
J. Roy. Meteor. Soc., 145, 3692–3714, https://doi.org/10.1002/qj.3650, 2019. a
Renault, L., Lemarié, F., and Arsouze, T.: On the implementation and
consequences of the oceanic currents feedback in ocean–atmosphere coupled
models, Ocean Model., 141, 101423, https://doi.org/10.1016/j.ocemod.2019.101423,
2019a. a
Renault, L., Marchesiello, P., Masson, S., and McWilliams, J. C.: Remarkable
Control of Western Boundary Currents by Eddy Killing , a
Mechanical Air‐Sea Coupling Process, Geophys. Res. Lett., 46, 2743–2751, https://doi.org/10.1029/2018GL081211, 2019b. a
Sauvage, C., Lebeaupin Brossier, C., and Bouin, M.-N.: Towards kilometer-scale ocean–atmosphere–wave coupled forecast: a case study on a Mediterranean heavy precipitation event, Atmos. Chem. Phys., 21, 11857–11887, https://doi.org/10.5194/acp-21-11857-2021, 2021. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F.,
Lac, C., and Masson, V.: The AROME-France Convective-Scale
Operational Model, Mon. Weather Rev., 139, 976–991,
https://doi.org/10.1175/2010MWR3425.1, 2011. a
Shukla, J., Palmer, T. N., Hagedorn, R., Hoskins, B., Kinter, J., Marotzke, J.,
Miller, M., and Slingo, J.: Toward a New Generation of World Climate
Research and Computing Facilities, B. Am. Meteorol. Soc., 91, 1407–1412, https://doi.org/10.1175/2010BAMS2900.1, 2010. a
Simpson, J. H., Bos, W. G., Schirmer, F., Souza, A. J., Rippeth, T. P., Jones,
S. E., and Hydes, D.: Periodic stratification in the rhine ROFI in the
north-sea, https://archimer.ifremer.fr/doc/00099/21050/ (last access: 7 April 2022), 1993. a
Small, R., Carniel, S., Campbell, T., Teixeira, J., and Allard, R.: The
response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A
coupled atmosphere–ocean approach, Ocean Model., 48, 30–44,
https://doi.org/10.1016/j.ocemod.2012.02.003, 2012. a
Small, R. J., Campbell, T., Teixeira, J., Carniel, S., Smith, T. A., Dykes, J.,
Chen, S., and Allard, R.: Air-Sea Interaction in the Ligurian Sea:
Assessment of a Coupled Ocean-Atmosphere Model Using In Situ Data from
LASIE07, Mon. Weather Rev., 139, 1785–1808,
https://doi.org/10.1175/2010MWR3431.1, 2011. a
Smith, R. K., Montgomery, M. T., and Van Sang, N.: Tropical cyclone spin-up
revisited, Q. J. Roy. Meteor. Soc., 135,
1321–1335, https://doi.org/10.1002/qj.428, 2009. a
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray, G.,
Amo-Baladron, A., Chanut, J., Benkiran, M., and Alvarez-Fanjul, E.: The
MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products and
roadmap to the future Copernicus Service, J. Oper. Oceanogr., 8, 63–79, https://doi.org/10.1080/1755876X.2015.1014663, 2015. a, b
Sotillo, M. G., Levier, B., Lorente, P., Guihou, K., Aznar, R., Amo, A., Aouf,
L., and Ghantous, M.: Quality information document for Atlantic -Iberian
Biscay Irish-Ocean Physics Analysis and Forecasting Product
(CMEMS-IBI-QUID-005-001), Copernicus Marine Environment
Monitoring Service, Tech. rep., 120 pp., https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-001.pdf,
2021. a, b, c, d
Stockdale, T. N., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A.:
Global seasonal rainfall forecasts using a coupled ocean–atmosphere model,
Nature, 392, 370–373, https://doi.org/10.1038/32861, 1998. a
SURFEX: https://www.umr-cnrm.fr/surfex/, last access: 7 April 2022. a
Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G.: The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and validation, Ocean Sci., 15, 1601–1614, https://doi.org/10.5194/os-15-1601-2019, 2019. a
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B.,
Kolendowicz, L., Lagouvardos, K., Kotroni, V., and Schulz, W.: A Climatology
of Thunderstorms across Europe from a Synthesis of Multiple Data Sources,
J. Climate, 32, 1813–1837, https://doi.org/10.1175/JCLI-D-18-0372.1, 2019. a
Taylor, J. P., Edwards, J. M., Glew, M. D., Hignett, P., and Slingo, A.:
Studies with a flexible new radiation code. II: Comparisons with aircraft
short-wave observations, Q. J. Roy. Meteor. Soc., 122, 839–861, https://doi.org/10.1002/qj.49712253204, 1996. a
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H.,
Dausse, D., Labaste, M., Karstensen, J., Hayes, D., Olita, A., Ribotti, A.,
Schroeder, K., Chiggiato, J., Onken, R., Heslop, E., Mourre, B., D'ortenzio,
F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L.,
Taillandier, V., Durrieu de Madron, X., Bourrin, F., Many, G., Damien, P.,
Estournel, C., Marsaleix, P., Taupier-Letage, I., Raimbault, P., Waldman, R.,
Bouin, M.-N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan,
P.: Multiscale Observations of Deep Convection in the Northwestern
Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms, J. Geophys. Res.-Oceans, 123, 1745–1776, https://doi.org/10.1002/2016JC012671,
2018. a
The Oasis Coupler: https://oasis.cerfacs.fr/en/, last access: 7 April 2022. a
Thompson, B., Sanchez, C., Heng, B. C. P., Kumar, R., Liu, J., Huang, X.-Y., and Tkalich, P.: Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 1: Evaluation of ocean forecasts, Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021, 2021. a
Trigo, I. F.: Climatology and interannual variability of storm-tracks in the
Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses,
Clim. Dynam., 26, 127–143, https://doi.org/10.1007/s00382-005-0065-9, 2006. a
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of Cyclogenesis
Mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569,
https://doi.org/10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2, 2002. a
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003. a
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for
geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25, 795–827, https://doi.org/10.1016/j.csr.2004.08.004, 2005. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a, b
van Aken, H. M.: Surface currents in the Bay of Biscay as observed with
drifters between 1995 and 1999, Deep Sea Research Part I: Oceanographic
Research Papers, 49, 1071–1086,
https://doi.org/10.1016/S0967-0637(02)00017-1, 2002. a
Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., Dunić, N., Dadić, V., Pasarić, M., Muslim, S., Gerin, R., Matić, F., Šepić, J., Mauri, E., Kokkini, Z., Tudor, M., Kovač, Ž., and Džoić, T.: Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment, Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, 2018. a
Viúdez, A., Pinot, J.-M., and Haney, R. L.: On the upper layer circulation in
the Alboran Sea, J. Geophys. Res.-Oceans, 103,
21653–21666, https://doi.org/10.1029/98JC01082, 1998. a
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.: SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, 2017.
a, b
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a
Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling
System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010,
2010. a
Weusthoff, T., Ament, F., Arpagaus, M., and Rotach, M. W.: Assessing the
Benefits of Convection-Permitting Models by Neighborhood
Verification: Examples from MAP D-PHASE, Mon. Weather Rev.,
138, 3418–3433, https://doi.org/10.1175/2010MWR3380.1, 2010. a
Yelekçi, O., Charria, G., Capet, X., Reverdin, G., Sudre, J., and Yahia, H.:
Spatial and seasonal distributions of frontal activity over the French
continental shelf in the Bay of Biscay, Cont. Shelf Res., 144,
65–79, https://doi.org/10.1016/j.csr.2017.06.015, 2017. a
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback...
Altmetrics
Final-revised paper
Preprint