Articles | Volume 21, issue 5
https://doi.org/10.5194/nhess-21-1551-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1551-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integrated mapping of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos
Sengphrachanh Phakonkham
CORRESPONDING AUTHOR
Department of Environmental Engineering, Faculty of Engineering,
National University of Laos, Lao-Thai Friendship Road, Sisattanak District, Vientiane Prefecture, Laos
So Kazama
Department of Civil Engineering, Tohoku University, Sendai,
980-8579, Japan
Daisuke Komori
Department of Civil Engineering, Tohoku University, Sendai,
980-8579, Japan
Related authors
No articles found.
Hayata Yanagihara, So Kazama, Kei Gomi, Yusuke Hiraga, and Atsuya Ikemoto
EGUsphere, https://doi.org/10.5194/egusphere-2025-5949, https://doi.org/10.5194/egusphere-2025-5949, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flooding can influence population movements. However, most studies of future flood damage costs do not consider these movements. We examined how such movements may change future flood damage costs in Japan. National and prefectural effects were small, but some municipalities showed reductions of more than 10 % in these costs. These results show that considering population movements can improve future flood risk planning.
Vempi Satriya Adi Hendrawan, Adam Pamudji Rahardjo, Hanggar Ganara Mawandha, Edvin Aldrian, Abdul Muhari, and Daisuke Komori
EGUsphere, https://doi.org/10.5194/egusphere-2025-584, https://doi.org/10.5194/egusphere-2025-584, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study reveals that floods dominate the country, followed by landslides, droughts, extreme weather, and wildfires. Climate change has increased extreme rainfall by ~25 %, especially in northern regions (Kalimantan, northern Sumatera, Sulawesi, Papua), and amplified it by ~60 % in drier areas (southern Sumatera, Java, Nusa Tenggara). Further studies on rainfall-induced landslides, flash floods, and Global teleconnections (ENSO, IOD, MJO) intensifying extreme events are needed.
Ke Shi, Yoshiya Touge, and So Kazama
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-416, https://doi.org/10.5194/nhess-2020-416, 2021
Preprint withdrawn
Short summary
Short summary
This study is the first to identify homogeneous regions with distinct drought characteristics over Japan and connect the drought in Japan with the global climatic drivers. In particular, two regions with similar drought spatiotemporal characteristics were first identified. Then we found that a lack of soil moisture could increase the risk of severe wildfires in these two regions. Finally, we identified the most significant global climatic drivers affecting these two regions.
Cited articles
Adeloye, A., Nawaz, N. R., and Bellerby, T. J.: Modelling the impact of climate change on water systems and implications for decision-makers, Climate Change Modelling, Mitigation, and Adaptation, 299–326, https://doi.org/10.1061/9780784412718, 2013..
Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., and Hall, J. W.: The effects
of changing land use and flood hazard on poverty in coastal Bangladesh, Land
Use Policy, https://doi.org/10.1016/j.landusepol.2020.104868, in press, 2020.
Asadzadeh, A., Sikder, S. K., Mahmoudi, F., and Kötter, T.: Assessing
Site Selection of New Towns Using TOPSIS Method under Entropy Logic: A Case
study: New Towns of Tehran Metropolitan Region (TMR), Environ. Manage.
Sustain. Dev., 3, 123–137, https://doi.org/10.5296/emsd.v3i1.4874, 2014.
Asadzadeh, A., Kötter, T., and Zebardast, E.: An augmented approach for
measurement of disaster resilience using connective factor analysis and
analytic network process (F'ANP) model, Int. J. Disast. Risk Reduct., 99, 104868, https://doi.org/10.1016/j.ijdrr.2015.10.002, 2015.
Baird, I. G. and Shoemaker, B.: Unsettling Experiences: Internal
Resettlement and International Aid Agencies in Laos, Dev. Change, 38,
865–888, https://doi.org/10.1111/j.1467-7660.2007.00437.x, 2007.
Bednarik, M., Magulová, B., Matys, M., and Marschalko, M.: Landslide
susceptibility assessment of the Kral'ovany–Liptovský Mikuláš
railway case study, Phys. Chem. Earth Pt. A/B/C, 35, 162–171,
https://doi.org/10.1016/j.pce.2009.12.002, 2010.
Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., and Ignatius, J.: A
state-of the-art survey of TOPSIS applications, Exp. Syst. Appl., 39,
13051–13069, https://doi.org/10.1016/j.eswa.2012.05.056, 2012.
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological
studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Bouwer, L. M., Bubeck, P., and Aerts, J. C. J. H.: Changes in future flood
risk due to climate and development in a Dutch polder area, Global Environ.
Change, 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010.
Ceballos-Silva, A. and López-Blanco, J.: Delineation of suitable areas
for crops using a Multi-Criteria Evaluation approach and land use/cover
mapping: a case study in Central Mexico, Agric. Syst., 77, 117–136,
https://doi.org/10.1016/S0308-521X(02)00103-8, 2003.
Ciabatta, L., Camici, S., Brocca, L., Ponziani, F., Stelluti, M., Berni, N.,
and Moramarco, T.: Assessing the impact of climate-change scenarios on
landslide occurrence in Umbria Region, Italy, J. Hydrol., 541, 285–295,
https://doi.org/10.1016/j.jhydrol.2016.02.007, 2016.
Constantin, M., Bednarik, M., Jurchescu, M. C., and Vlaicu, M.: Landslide
susceptibility assessment using the bivariate statistical analysis and the
index of entropy in the Sibiciu Basin (Romania), Environ. Earth Sci., 63,
397–406, https://doi.org/10.1007/s12665-010-0724-y, 2011.
Cutter, S. L., Mitchell, J. T., and Scott, M. S.: Revealing the Vulnerability
of People and Places: A Case Study of Georgetown County, South Carolina, Ann. Assoc. Am. Geogr., 90, 713–737, https://doi.org/10.1111/0004-5608.00219, 2000.
Dallo, I., Stauffacher, M., and Marti, M.: What defines the success of maps
and additional information on a multi-hazard platform?, Int. J. Disast.
Risk Reduct., 49, 101761, https://doi.org/10.1016/j.ijdrr.2020.101761, 2020.
Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe:
An assessment based on high-resolution climate simulations, J. Geophys. Res.-Atmos., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008.
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A., Arnold, M., Agwe,
J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G.: Natural disaster
hotspots: A global risk analysis, World Bank Disaster Risk Manag. Ser.,
Washington, DC, 2005.
Dinh, Q., Balica, S., Popescu, I., and Jonoski, A.: Climate change impact on
flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the
Mekong Delta, Int. J. River Basin Manage., 10, 103–120,
https://doi.org/10.1080/15715124.2012.663383, 2012.
Erener, A. and Düzgün, H. S. B.: Improvement of statistical
landslide susceptibility mapping by using spatial and global regression
methods in the case of More and Romsdal (Norway), Landslides, 7, 55–68,
https://doi.org/10.1007/s10346-009-0188-x, 2010.
Fajar Januriyadi, N., Kazama, S., Riyando Moe, I., and Kure, S.: Evaluation
of future flood risk in Asian megacities: a case study of Jakarta, Hydrol.
Res. Lett., 12, 14–22, https://doi.org/10.3178/hrl.12.14, 2018.
Falaschi, F., Giacomelli, F., Federici, P. R., Puccinelli, A., D'Amato Avanzi, G., Pochini, A., and Ribolini, A.: Logistic regression versus
artificial neural networks: landslide susceptibility evaluation in a sample
area of the Serchio River valley, Italy, Nat. Hazards, 50, 551–569,
https://doi.org/10.1007/s11069-009-9356-5, 2009.
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction
methods in downscaling meteorological variables for a hydrologic impact
study in an arid area in China, Hydrol. Earth Syst. Sci., 19, 2547–2559,
https://doi.org/10.5194/hess-19-2547-2015, 2015.
Fernández, D. S. and Lutz, M. A.: Urban flood hazard zoning in
Tucumán Province, Argentina, using GIS and multicriteria decision
analysis, Eng. Geol., 111, 90–98, https://doi.org/10.1016/j.enggeo.2009.12.006, 2010.
Fishburn, P. C.: Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments, Operations Research Society of America – ORSA, Baltimore, MD, USA, p. 445, 1967.
Gigović, L., Pamučar, D., Bajić, Z., and Drobnjak, S.:
Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping
in Urban Areas, Water, 9, 360, https://doi.org/10.3390/w9060360, 2017.
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Huynh, V. C.: Multicriteria land suitability evaluation for crops using GIS
at community level in central Vietnam with case study in Thuy Bang-Thua
Thien Hue province, Hanoi, Vietnam, 2008.
Hwang, C. L. and Yoon, K.: Multiple Attribute Decision Making: Methods and
Applications, Springer-Verlag, New York, 1981.
IPCC: Climate change 2007: mitigation of climate change: contribution of Working Group III to the Fourth Assessment 455 Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, 2007.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen,
L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative
flood damage model assessment: towards a European approach, Nat. Hazards
Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Kawagoe, S., Kazama, S., and Sarukkalige, P. R.: Probabilistic modelling of
rainfall induced landslide hazard assessment, Hydrol. Earth Syst. Sci., 14, 1047–1061, https://doi.org/10.5194/hess-14-1047-2010, 2010.
Kazakis, N., Kougias, I., and Patsialis, T.: Assessment of flood hazard areas
at a regional scale using an index-based approach and Analytical Hierarchy
Process: Application in Rhodope–Evros region, Greece, Sci. Total Environ.,
538, 555–563, https://doi.org/10.1016/j.scitotenv.2015.08.055, 2015.
Keeney, R. L. and Raiffa, H.: Decisions with Multiple Objectives, Cambridge University Press, Cambridge, New York, 465–475, https://doi.org/10.1002/bs.3830390206, 1993.
Komori, D., Rangsiwanichpong, P., Inoue, N., Ono, K., Watanabe, S., and Kazama, S.: Distributed probability of slope failure in Thailand under climate change, Clim. Risk Manage., 20, 126–137, https://doi.org/10.1016/j.crm.2018.03.002, 2018.
Konidari, P. and Mavrakis, D.: A multi-criteria evaluation method for
climate change mitigation policy instruments, Energ. Policy, 35, 6235–6257, https://doi.org/10.1016/j.enpol.2007.07.007, 2007.
Lafon, T., Dadson, S., Buys, G., and Prudhomme, C.: Bias correction of daily
precipitation simulated by a regional climate model: a comparison of methods, Int. J. Climatol., 33, 1367–1381, https://doi.org/10.1002/joc.3518, 2013.
Lauri, H., de Moel, H., Ward, P. J., Räsänen, T. A., Keskinen, M.,
and Kummu, M.: Future changes in Mekong River hydrology: impact of climate
change and reservoir operation on discharge, Hydrol. Earth Syst. Sci., 16, 4603–4619, https://doi.org/10.5194/hess-16-4603-2012, 2012.
Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L., and
Di Ruocco, A.: Basic principles of multi-risk assessment: a case study in
Italy, Nat. Hazards, 62, 551–573, https://doi.org/10.1007/s11069-012-0092-x, 2012.
Mirza, M. M. Q.: Climate change, flooding in South Asia and implications,
Reg. Environ. Change, 11, 95––107, https://doi.org/10.1007/s10113-010-0184-7, 2011.
Mohan, V. R., Jeyaseelan, A., Raj, T. N., Narmatha, T., Jayaprakash, M., Madras, U., Campus, G., and Chennai: Landslide susceptibility mapping using frequency ratio method and GIS in south eastern part of Nilgiri District, Tamilnadu, India, Int. J. Geomat. Geosci., 1, 951–961, 2011.
Ohlmacher, G. C. and Davis, J. C.: Using multiple logistic regression and
GIS technology to predict landslide hazard in northeast Kansas, USA, Eng.
Geol., 69, 331–343, https://doi.org/10.1016/S0013-7952(03)00069-3, 2003.
Ono, K., Akimoto, T., Gunawardhana, L. N., Kazama, S., and Kawagoe, S.:
Distributed specific sediment yield estimations in Japan attributed to
extreme-rainfall-induced slope failures under a changing climate, Hydrol.
Earth Syst. Sci., 15, 197–207, https://doi.org/10.5194/hess-15-197-2011, 2011.
Parmesan, C. and Yohe, G.: A globally coherent fingerprint of climate change
impacts across natural systems, Nature, 421, 37–42,
https://doi.org/10.1038/nature01286, 2003.
Parry, J. A., Ganaie, S. A., and Sultan Bhat, M.: GIS based land suitability
analysis using AHP model for urban services planning in Srinagar and Jammu
urban centers of J–K, India, J. Urban Manage., 7, 46–56,
https://doi.org/10.1016/j.jum.2018.05.002, 2018.
Phrakonkham, S., Kazama, S., Komori, D., and Sopha, S.: Distributed
Hydrological Model for Assessing Flood Hazards in Laos, J. Water Resour.
Prot., 11, 937–958, https://doi.org/10.4236/jwarp.2019.118056, 2019.
Ponziani, F., Pandolfo, C., Stelluti, M., Berni, N., Brocca, L., and
Moramarco, T.: Assessment of rainfall thresholds and soil moisture modeling
for operational hydrogeological risk prevention in the Umbria region (central Italy), Landslides, 9, 229–237, https://doi.org/10.1007/s10346-011-0287-3, 2012.
Pourghasemi, H. R., Mohammady, M., and Pradhan, B.: Landslide susceptibility
mapping using index of entropy and conditional probability models in GIS:
Safarood Basin, Iran, Catena, 97, 71–84, https://doi.org/10.1016/j.catena.2012.05.005,
2012.
Pourkhabbaz, H. R., Javanmardi, S., and Faraji Sabokbar, H. A.: Suitability
analysis for determining potential agricultural land use by the
multi-criteria decision making models SAW and VIKOR-AHP (case study:
takestan-Qazvin plain, J. Agric. Sci. Technol., 16, 1005–1016, 2014.
Prakash, T.: Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach, available at: https://pdfs.semanticscholar.org/0ea0/1f638e71f9e514d90ad989c5246dd0a0e5db.pdf?_ga=2.122219535.564011215.1575598334-1946236735.1571628183 (last access: 6 May 2021), 2003.
Priest, S., Tapsell, S., Penning-Rowsell, E., Viavattene, C., and Wilson, T.: Building Models to Estimate Loss of Life for Flood Events, FLOODsite, available at: https://www.researchgate.net/publication/257343008_Building_Models_to_Estimate_Loss_of_Life_for_Flood_Events/citation/download (last access: 6 May 2021), 2008.
Qin, X. S., Huang, G. H., Chakma, A., Nie, X. H., and Lin, Q. G.: A
MCDM-based expert system for climate-change impact assessment and adaptation
planning – A case study for the Georgia Basin, Canada, Exp. Syst. Appl., 34, 2164–2179, https://doi.org/10.1016/j.eswa.2007.02.024, 2008.
Ramya, S. and Devadas, V.: Integration of GIS, AHP and TOPSIS in evaluating
suitable locations for industrial development: A case of Tehri Garhwal
district, Uttarakhand, India, J. Clean. Prod., 238, 117872,
https://doi.org/10.1016/j.jclepro.2019.117872, 2019.
Saaty, T. L.: How to make a decision: The analytic hierarchy process, Eur.
J. Oper. Res., 48, 9–26, https://doi.org/10.1016/0377-2217(90)90057-I, 1990.
Saaty, T. L. and Vargas, L. G.: Decision Making with the Analytic Network
Process Economic, Political, Social and Technological Applications with
Benefits, Opportunities, Costs and Risks, Springer, New York, 2006.
Salem, G. S. A., Kazama, S., Shahid, S. and Dey, N. C.: Groundwater-dependent irrigation costs and benefits for adaptation to global change, Mitig. Adapt. Strateg. Glob. Change, 23, 953–979, https://doi.org/10.1007/s11027-017-9767-7, 2018.
Sendai Framework: Sendai Framework for Disaster Risk Reduction 2015–2030, available at: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf
(last access: 6 May 2021), 2015.
Shah, M. I., Khan, A., Akbar, T. A., Hassan, Q. K., Khan, A. J., and Dewan,
A.: Predicting hydrologic responses to climate changes in highly glacierized
and mountainous region Upper Indus Basin, Roy. Soc. Open Sci., 7, 191957,
https://doi.org/10.1098/rsos.191957, 2020.
Sidle, R. C. and Ochiai, H.: Landslides: Processes, Prediction, and Land Use, American Geophysical Union, Washington, D.C., 2006.
Stefanidis, S. and Stathis, D.: Assessment of flood hazard based on natural
and anthropogenic factors using analytic hierarchy process (AHP), Nat. Hazards, 68, 569–585, https://doi.org/10.1007/s11069-013-0639-5, 2013.
Sullivan-Wiley, K. A. and Short Gianotti, A. G.: Risk Perception in a
Multi-Hazard Environment, World Dev., 97, 138–152,
https://doi.org/10.1016/j.worlddev.2017.04.002, 2017.
Tate, E., Cutter, S. L., and Berry, M.: Integrated Multihazard Mapping,
Environ. Plan. B, 37, 646–663, https://doi.org/10.1068/b35157, 2010.
van Westen, C. J., van Asch, T. W. J., and Soeters, R.: Landslide hazard and
risk zonation – why is it still so difficult?, Bull. Eng. Geol. Environ.,
65, 167–184, https://doi.org/10.1007/s10064-005-0023-0, 2006.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V, Berg, P., Johnson,
F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the
intensity and frequency of short-duration extreme rainfall, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F.
P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood
risk, Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016.
Yousefi, S., Pourghasemi, H. R., Emami, S. N., Pouyan, S., Eskandari, S., and
Tiefenbacher, J. P.: A machine learning framework for multi-hazards modeling
and mapping in a mountainous area, Sci. Rep., 10, 12144, https://doi.org/10.1038/s41598-020-69233-2, 2020.
Short summary
The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. The results from integrated hazard maps can identify dangerous areas from both individual and integrated hazards.
The main objective of this study was to propose a new approach to integrating hazard maps to...
Altmetrics
Final-revised paper
Preprint