Articles | Volume 20, issue 1
https://doi.org/10.5194/nhess-20-59-2020
https://doi.org/10.5194/nhess-20-59-2020
Research article
 | 
13 Jan 2020
Research article |  | 13 Jan 2020

Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling

Alessia Ferrari, Susanna Dazzi, Renato Vacondio, and Paolo Mignosa

Related authors

Brief communication: Hydrological and hydraulic investigation of the extreme September 2024 flood on the Lamone River in Emilia-Romagna, Italy
Alessia Ferrari, Giulia Passadore, Renato Vacondio, Luca Carniello, Mattia Pivato, Elena Crestani, Francesco Carraro, Francesca Aureli, Sara Carta, Francesca Stumpo, and Paolo Mignosa
EGUsphere, https://doi.org/10.5194/egusphere-2025-216,https://doi.org/10.5194/egusphere-2025-216, 2025
Short summary
Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model
Alessia Ferrari, Marco D'Oria, Renato Vacondio, Alessandro Dal Palù, Paolo Mignosa, and Maria Giovanna Tanda
Hydrol. Earth Syst. Sci., 22, 5299–5316, https://doi.org/10.5194/hess-22-5299-2018,https://doi.org/10.5194/hess-22-5299-2018, 2018
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025,https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025,https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Content analysis of multi-annual time series of flood-related Twitter (X) data
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025,https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025,https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary

Cited articles

Alfieri, L., Feyen, L., Dottori, F., and Bianchi, A.: Ensemble flood risk assessment in Europe under high end climate scenarios, Global Environ. Change, 35, 199–212, 2015. a
Alkema, D. and Middelkoop, H.: The influence of floodplain compartmentalization on flood risk within the Rhine–Meuse Delta, Nat. Hazards, 36, 125–145, 2005. a
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: Flood risk assessment and associated uncertainty, Nat. Hazards Earth Syst. Sci., 4, 295–308, https://doi.org/10.5194/nhess-4-295-2004, 2004. a
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: A probabilistic modelling system for assessing flood risks, Nat. Hazards, 38, 79–100, 2006. a, b, c, d
Arrighi, C., Pregnolato, M., Dawson, R., and Castelli, F.: Preparedness against mobility disruption by floods, Sci. Total Environ., 654, 1010–1022, 2019. a
Download
Short summary
With the aim of improving resilience to flooding, this paper presents a methodology for creating a wide database of hypothetical levee-breach scenarios obtained from 2-D numerical modelling. The results can support civil protection activities during emergency planning and management, increasing preparedness against floods. The methodology is applicable to any lowland area protected by river levees. An example of the outcome concerning a pilot area in northern Italy is presented here.
Share
Altmetrics
Final-revised paper
Preprint