Articles | Volume 18, issue 6
https://doi.org/10.5194/nhess-18-1535-2018
https://doi.org/10.5194/nhess-18-1535-2018
Research article
 | 
04 Jun 2018
Research article |  | 04 Jun 2018

Estimating grassland curing with remotely sensed data

Wasin Chaivaranont, Jason P. Evans, Yi Y. Liu, and Jason J. Sharples

Abstract. Wildfire can become a catastrophic natural hazard, especially during dry summer seasons in Australia. Severity is influenced by various meteorological, geographical, and fuel characteristics. Modified Mark 4 McArthur's Grassland Fire Danger Index (GFDI) is a commonly used approach to determine the fire danger level in grassland ecosystems. The degree of curing (DOC, i.e. proportion of dead material) of the grass is one key ingredient in determining the fire danger. It is difficult to collect accurate DOC information in the field, and therefore ground-observed measurements are rather limited. In this study, we explore the possibility of whether adding satellite-observed data responding to vegetation water content (vegetation optical depth, VOD) will improve DOC prediction when compared with the existing satellite-observed data responding to DOC prediction models based on vegetation greenness (normalised difference vegetation index, NDVI). First, statistically significant relationships are established between selected ground-observed DOC and satellite-observed vegetation datasets (NDVI and VOD) with an r2 up to 0.67. DOC levels estimated using satellite observations were then evaluated using field measurements with an r2 of 0.44 to 0.55. Results suggest that VOD-based DOC estimation can reasonably reproduce ground-based observations in space and time and is comparable to the existing NDVI-based DOC estimation models.

Download
Short summary
This study explore the feasibility of using a combination of recent and traditional satellite products to estimate the grassland fire fuel availability across space and time over Australia. We found a significant relationship between both recent and traditional satellite products and observed grassland fuel availability and develop an estimation model. We hope our estimation model will provide a more balanced alternative to the currently available grass fuel availability estimation models.
Altmetrics
Final-revised paper
Preprint