Articles | Volume 16, issue 12
https://doi.org/10.5194/nhess-16-2823-2016
https://doi.org/10.5194/nhess-16-2823-2016
Research article
 | 
21 Dec 2016
Research article |  | 21 Dec 2016

Spatial–temporal clustering of tornadoes

Bruce D. Malamud, Donald L. Turcotte, and Harold E. Brooks

Related authors

Review Article: Leveraging Social Media for Managing Natural Hazard Disasters: A Critical Review of Data Collection Strategies and Actionable Insights
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536,https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101,https://doi.org/10.5194/nhess-2024-101, 2024
Preprint under review for NHESS
Short summary
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022,https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022,https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Preface: Landslide–transport network interactions
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020,https://doi.org/10.5194/nhess-20-2585-2020, 2020

Related subject area

Atmospheric, Meteorological and Climatological Hazards
The risk of synoptic-scale Arctic cyclones to shipping
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024,https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024,https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024,https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024,https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024,https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary

Cited articles

Adlerman, E. J., Droegemeier, K. K., and Davies-Jones, R.: A numerical simulation of cyclic mesocyclogenesis, J. Atmos. Sci., 56, 2045–2069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2, 1999.
Aon Benfield: United States April & May 2011 Severe Weather Outbreaks, Impact Forecasting, Aon Benfield (Chicago, USA) report, available at: http://www.aon.com/attachments/reinsurance/201106_us_april_may_severe_weather_outbreaks_recap.pdf (last access: 22 June 2016), 2011.
Bluestein, H. B. and Weisman, M. L.: The interaction of numerically simulated supercells initiated along lines, Mon. Weather Rev., 128, 3128–3149, https://doi.org/10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2, 2000.
Brooks, H. E.: On the relationship of tornado path length and width to intensity, Weather Forecast., 19, 310–319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2, 2004.
Burgess, D. W., Wood, V. T., and Brown, R. A.: Mesocyclone evolution statistics. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424, 1982.
Download
Short summary
We introduce a novel method for the spatial–temporal cluster analysis of severe tornado touchdowns that are part of tornado outbreaks. Tornado outbreaks, groups of tornadoes occurring close to each other in time and space, constitute a severe hazard that has few quantitative measures. Our new approach, which we illustrate using three USA severe tornado outbreaks and models, differentiates between types of tornado outbreaks and, within outbreaks, identifies clusters in both time and space.
Altmetrics
Final-revised paper
Preprint