Articles | Volume 16, issue 12
https://doi.org/10.5194/nhess-16-2823-2016
https://doi.org/10.5194/nhess-16-2823-2016
Research article
 | 
21 Dec 2016
Research article |  | 21 Dec 2016

Spatial–temporal clustering of tornadoes

Bruce D. Malamud, Donald L. Turcotte, and Harold E. Brooks

Related authors

Review Article: Leveraging Social Media for Managing Natural Hazard Disasters: A Critical Review of Data Collection Strategies and Actionable Insights
Lakshmi S. Gopal, Rekha Prabha, Hemalatha Thirugnanam, Maneesha Vinodini Ramesh, and Bruce D. Malamud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1536,https://doi.org/10.5194/egusphere-2024-1536, 2024
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101,https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022,https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
A methodology for the spatiotemporal identification of compound hazards: wind and precipitation extremes in Great Britain (1979–2019)
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022,https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Preface: Landslide–transport network interactions
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020,https://doi.org/10.5194/nhess-20-2585-2020, 2020

Related subject area

Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024,https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary

Cited articles

Adlerman, E. J., Droegemeier, K. K., and Davies-Jones, R.: A numerical simulation of cyclic mesocyclogenesis, J. Atmos. Sci., 56, 2045–2069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2, 1999.
Aon Benfield: United States April & May 2011 Severe Weather Outbreaks, Impact Forecasting, Aon Benfield (Chicago, USA) report, available at: http://www.aon.com/attachments/reinsurance/201106_us_april_may_severe_weather_outbreaks_recap.pdf (last access: 22 June 2016), 2011.
Bluestein, H. B. and Weisman, M. L.: The interaction of numerically simulated supercells initiated along lines, Mon. Weather Rev., 128, 3128–3149, https://doi.org/10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2, 2000.
Brooks, H. E.: On the relationship of tornado path length and width to intensity, Weather Forecast., 19, 310–319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2, 2004.
Burgess, D. W., Wood, V. T., and Brown, R. A.: Mesocyclone evolution statistics. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424, 1982.
Download
Short summary
We introduce a novel method for the spatial–temporal cluster analysis of severe tornado touchdowns that are part of tornado outbreaks. Tornado outbreaks, groups of tornadoes occurring close to each other in time and space, constitute a severe hazard that has few quantitative measures. Our new approach, which we illustrate using three USA severe tornado outbreaks and models, differentiates between types of tornado outbreaks and, within outbreaks, identifies clusters in both time and space.
Altmetrics
Final-revised paper
Preprint