Articles | Volume 15, issue 11
https://doi.org/10.5194/nhess-15-2449-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-15-2449-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Lightning characteristics over the eastern coast of the Mediterranean during different synoptic systems
Y. Ben Ami
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
O. Altaratz
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
School of Sustainability, Interdisciplinary Center (IDC), Herzliya, Israel
Department of Life and Natural Sciences, The Open University of Israel, Ra'anana, Israel
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Related authors
No articles found.
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574, https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
Short summary
Clouds play a crucial role in Earth's climate by reflecting sunlight and trapping heat. Understanding how clouds respond to global warming (cloud feedback) is essential for climate change. However, the natural climate variability, like ENSO, can distort these estimates. Relying on long-term reanalysis data and simulations, this study finds that ENSO with a typical periodicity of 2–7 years can introduce a significant bias on cloud feedback estimates on even decadal to century time scales.
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545, https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Short summary
This letter explores a novel approach for the formation of cloud droplets in rising adiabatic air parcels. Our approach combines microphysical equations accounting for moisture, updrafts and concentration of aerosols. Our analysis reveals three regimes: A) Low moisture and high concentration can hinder activation; B) Droplets can activate and stabilize above critical sizes, and C) sparse clouds can have droplets exhibiting activation and deactivation cycles.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023, https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022, https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021, https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Mengyu Sun, Dongxia Liu, Xiushu Qie, Edward R. Mansell, Yoav Yair, Alexandre O. Fierro, Shanfeng Yuan, Zhixiong Chen, and Dongfang Wang
Atmos. Chem. Phys., 21, 14141–14158, https://doi.org/10.5194/acp-21-14141-2021, https://doi.org/10.5194/acp-21-14141-2021, 2021
Short summary
Short summary
By acting as cloud condensation nuclei (CCN), increasing aerosol loading tends to enhance lightning activity through microphysical processes. We investigated the aerosol effects on the development of a thunderstorm. A two-moment bulk microphysics scheme and bulk lightning model were coupled in the WRF Model to simulate a multicell thunderstorm. Sensitivity experiments show that the enhancement of lightning activity under polluted conditions results from an increasing ice crystal number.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Cited articles
Alpert, P., Neeman, B. U., and Shay-El, Y.: Climatological analysis of Mediterranean cyclones using ECMWF data, Tellus A, 42, 65–77, https://doi.org/10.1034/j.1600-0870.1990.00007.x, 1990.
Altaratz, O., Levin, Z., Yair, Y., and Ziv, B.: Lightning activity over land and sea on the eastern coast of the Mediterranean, Mon. Weather Rev., 131, 2060–2070, https://doi.org/10.1175/1520-0493(2003)131<2060:LAOLAS>2.0.CO;2, 2003.
Brook, M., Nakano, M., Krehbiel, P., and Takeuti, T.: The electrical structures of the Hokuriku winter thunderstorms, J. Geophys. Res., 87, 1207–1215, https://doi.org/10.1029/JC087iC02p01207, 1982.
Buzzi, A. and Tibaldi, S.: Cyclogenesis in the lee of the Alps: a case study, Q. J. Roy. Meteor. Soc., 104, 271–287, https://doi.org/10.1002/qj.49710444004, 1978.
Cummins, K. L., Murphy, M. J., Bardo, E. A., Hiscox, W. L., Pyle, R. B., and Pifer, A. E.: A combined TOA/MDF technology upgrade of the US National Lighting Detection Network, J. Geophys. Res., 103, 9035–9044, https://doi.org/10.1029/98JD00153, 1998a.
Cummins, K. L., Krider, E. P., and Malone, M. D.: The US National Lightning Detection Network\textsuperscript\texttrademark and applications of cloud-to-ground lightning data by electric power utilities, IEEE T. Electromagn. C., 40, 465–480, https://doi.org/10.1109/15.736207, 1998b.
Dayan, U., Ziv, B., Margalit, A., Morin, E., and Sharon, D.: A severe autumn storm over the middle-east: synoptic and mesoscale convection analysis, Theor. Appl. Climatol., 69, 103–122, https://doi.org/10.1007/s007040170038, 2001.
Deierling, W. and Petersen, W. A.: Total lightning activity as an indicator of updraft characteristics, J. Geophys. Res., 113, 598, https://doi.org/10.1029/2007JD009598, 2008.
Deierling, W., Petersen, W. A., Latham, J., Ellis, S., and Christian, H. J.: The relationship between lightning activity and ice fluxes in thunderstorms, J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700, 2008.
Ezcurra, A., Areitio, J., and Herrero, I.: Relationships between cloud-to-ground lightning and surface rainfall during 1992–1996 in the Spanish Basque Country area, Atmos. Res., 61, 239–250, https://doi.org/10.1016/S0169-8095(01)00133-8, 2002.
Finke, U. and Hauf, T.: The characteristics of lightning occurrence in southern Germany, Contr. Atmos. Phys., 69, 361–374, 1996.
Heiblum, R. H., Koren, I., and Altaratz, O.: Analyzing coastal precipitation using TRMM observations, Atmos. Chem. Phys., 11, 13201–13217, https://doi.org/10.5194/acp-11-13201-2011, 2011.
Hojo, J., Ishii, M., Kawamura, T., Suzuki, F., Komuro, H., and Shiogama, M.: Seasonal variation of cloud-to-ground lightning flash characteristics in the coastal area of the Sea of Japan, J. Geophys. Res., 941, 13207–13212, https://doi.org/10.1029/JD094iD11p13207, 1989.
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major floods in the Negev Desert, Israel, Int. J. Climatol., 22, 867–822, https://doi.org/10.1002/joc.766, 2002.
Kanamitsu, M.: Description of the NMC global data assimilation and forecast system, Weather Forecast., 4, 335–342, https://doi.org/10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2, 1989.
Katz, E. and Kalman, G.: The impact of environmental and geographical conditions on lightning parameters derived from lightning location system in Israel, in: Proceeding of the 10th International Symposium on Lightning Protection, Curitiba, Brazil, November, 9–13 November 2009, 249–254, 2009.
Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., and Evans R.: A decade of sea surface temperature from MODIS, Remote Sens. of Environ., 165, 27–41, https://doi.org/10.1016/j.rse.2015.04.023, 2015.
Kitagawa, N. and Michimoto, K.: Meteorological and electrical aspects of winter thunderclouds, J. Geophys. Res., 99, 10713–10721, https://doi.org/10.1029/94JD00288, 1994.
Krichak, S. O., Alpert, P., and Krishnamurti, T. N.: Interaction of topography and tropospheric flow – A possible generator for the Red Sea Trough?, Meteorol. Atmos. Phys., 63, 3–4, https://doi.org/10.1007/BF01027381, 1997.
Levin, Z., Yair, Y., and Ziv, B.: Positive cloud-to-ground flashes and wind shear in Tel-Aviv thunderstorms, Geophys. Res. Lett., 23, 2231–2234, 1996.
Mackerras, D. and Darveniza, M.: Latitudinal variation of lightning occurrence characteristics, J. Geophys. Res., 99, 10813–10821, https://doi.org/10.1029/94JD00018, 1994.
Manoochehrnia, P., Rachidi, F., Rubinstein, M., and Schulz, W.: Lightning Statistics in Switzerland, in: Proceedings of the International Symposium on Lightning Protection, Foz Do Iguassu, Brazil, 26–30 November 2007, 2007.
Matsui, M. and Hara, Y.: The characteristics of winter lightning in Hokkaido as observed by the JLDN, Lightning Protection (ICLP), 2014 International Conference, Shanghai, China, 11–18 October, 116–121, 2014.
Orville, R. E, Weisman, R. A., Pyle, R. B., Henderson, R. W., and Orville Jr., R. E.: Cloud-to-ground lightning flash characteristics from June 1984 through May 1985, J. Geophys. Res., 92, 5640–5644, https://doi.org/10.1029/JD092iD05p05640, 1987.
Pierce, E. T.: Latitudinal variation of lightning parameters, J. Appl. Meteorol., 9, 194–195, https://doi.org/10.1175/1520-0450(1970)009<0194:LVOLP>2.0.CO;2, 1970.
Prentice, S. A. and Mackerras, D.: The ratio of cloud to cloud-ground lightning flashes in thunderstorms, J. Appl. Meteorol., 16, 545–550, https://doi.org/10.1175/1520-0450(1977)016<0545:TROCTC>2.0.CO;2, 1977.
Rakov, V. A. and Uman, M. A.: Lightning: Physics and Effects, Cambridge Univ. Press, Cambridge, UK, 687 pp., 2006.
Randell, S. C., Rutledge, S. A., Farley, R. D., and Helsdon Jr., J. H.: A modeling study on the early electrical development of tropical convection: continental and oceanic (monsoon) storms, Mon. Weather Rev., 122, 1852–1877, https://doi.org/10.1175/1520-0493(1994)122<1852:AMSOTE>2.0.CO;2, 1994.
Saunders, C. P. R.: Charge generation and separation charge separation mechanisms in clouds, Saunders, Space Sci. Rev., 137, 335, https://doi.org/10.1007/s11214-008-9345-0, 2008.
Saunders, C. P. R., Keith, W. D., and Mitzeva, R. P.: The effect of liquid water on thunderstorm charging, J. Geophys. Res., 96, 11007–11017, https://doi.org/10.1029/91JD00970, 1991.
Shalev, S., Saaroni, H., Izsak, T., Yair, Y., and Ziv, B.: The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems, Nat. Hazards Earth Syst. Sci., 11, 2125–2135, https://doi.org/10.5194/nhess-11-2125-2011, 2011.
Shay-El, Y. and Alpert, P.: A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclones, Q. J. Roy. Meteor. Soc., 117, 715–747, https://doi.org/10.1002/qj.49711750004, 1991.
Suzuki, T.: Long term observation of winter lightning on Japan Sea Coast, Res. Lett. Atmos. Electr., 12, 53–56, 1992.
Suzuki, T., Matsudo, Y., Asano, T., Hayakawa, M., Michimoto, K.: Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan, J. Geophys. Res., 116, D06205, https://doi.org/10.1029/2009JD013358, 2011.
Takahashi, T.: Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., 35, 1536–1548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2, 1978.
Williams, E. and Renno, N.: An analysis of the conditional instability of the Tropical Atmosphere, Mon. Weather Rev., 121, 21–36, https://doi.org/10.1175/1520-0493(1993)121<0021:AAOTCI>2.0.CO;2, 1993.
Williams, E. and Stanfill, S.: The physical origin of the land-ocean contrast in lightning activity, C. R. Phys., 3, 1277–1292, https://doi.org/10.1016/S1631-0705(02)01407-X, 2002.
Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S., and Boccippio, D.: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmos. Res., 76, 288–306, https://doi.org/10.1016/j.atmosres.2004.11.009, 2005.
Williams, E. R. and Yair, Y.: The microphysical and electrical properties of sprite producing thunderclouds, in: Sprites, Elves and Intense Lightning Discharges, edited by: Füllekrug, M., Mareev, E. A., and Rycroft, M. J., Springer, Dordrecht, the Netherlands, 57–83, 2006.
Yair, Y., Levin, Z., and Altaratz, O.: Lightning phenomenology in the Tel-Aviv area from 1989 to 1996, J. Geophys. Res., 103, 9015–9025, https://doi.org/10.1029/98JD00087, 1998.
Yair, Y., Shalev, S., Erlich, Z., Agrachov, A., Katz, E., Saaroni, H., Price, C., and Ziv, B.: Lightning flash multiplicity in eastern Mediterranean thunderstorms, Nat. Hazards Earth Syst. Sci., 14, 165–173, https://doi.org/10.5194/nhess-14-165-2014, 2014.
Zangvil, A. and Druyan, P.: Upper air trough axis orientation and the spatial distribution of rainfall over Israel, Int. J. Climatol, 10, 57–62, https://doi.org/10.1002/joc.3370100107, 1990.
Ziv, B. and Yair, Y.: The weather in Israel, Unit 5, Hebrew, in: Introduction to Meteorology, The Open University Press, Tel Aviv, Israel, 5–59, 1994.
Ziv, B.: A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East, Theor. Appl. Climatol., 69, 91–102, https://doi.org/10.1007/s007040170037, 2001.
Ziv, B., Saaroni, H., Ganot, M., Yair, Y., Baharad, A., and Isaschari, D.: Atmospheric factors governing winter lightning activity in the region of Tel Aviv, Israel, Theor. Appl. Climatol., 95, 301–310, https://doi.org/10.1007/s00704-008-0008-6, 2009.
Altmetrics
Final-revised paper
Preprint