Articles | Volume 13, issue 3
https://doi.org/10.5194/nhess-13-535-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-13-535-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigating rainfall estimation from radar measurements using neural networks
A. Alqudah
Yarmouk University, Irbid, Jordan
V. Chandrasekar
Colorado State University, Fort Collins, Colorado, USA
M. Le
Colorado State University, Fort Collins, Colorado, USA
Related authors
No articles found.
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
EGUsphere, https://doi.org/10.5194/egusphere-2024-1400, https://doi.org/10.5194/egusphere-2024-1400, 2024
Short summary
Short summary
Water is a precious resource, and it is essential to monitor and predict the current and future occurrence of precipitation-producing clouds. We investigate the cloud characteristics related to precipitation with several cloud cases in the United Arab Emirates using the data from aircraft measurements, satellite observations, and weather radar observations. This study provides scientific support to the development of an applicable framework to examine cloud precipitation processes.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Zhao Shi, Fangqiang Wei, and Venkatachalam Chandrasekar
Nat. Hazards Earth Syst. Sci., 18, 765–780, https://doi.org/10.5194/nhess-18-765-2018, https://doi.org/10.5194/nhess-18-765-2018, 2018
Short summary
Short summary
The aim of this paper is to evaluate the debris flow occurrence thresholds of the rainfall intensity–duration in the earthquake-affected areas of Sichuan province over the rainy seasons from 2012 to 2014. it is clear that radar-based rainfall estimate and threshold supplement the monitoring gap of EWS where rain gauge is scarce. A better understanding of relationship between rainfall and debris flow initiation can be enhanced by the radar with highly spatiotemporal resolution.
Mattia Vaccarono, Renzo Bechini, Chandra V. Chandrasekar, Roberto Cremonini, and Claudio Cassardo
Atmos. Meas. Tech., 9, 5367–5383, https://doi.org/10.5194/amt-9-5367-2016, https://doi.org/10.5194/amt-9-5367-2016, 2016
Short summary
Short summary
The data quality of radars must be ensured and continuously monitored. The aim of this paper is to provide an integrated approach able to monitor the calibration of operational dual-polarization radars. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. This is considered adequate to automatically detect any unexpected change in the radar system requiring further investigations.
Roberto Cremonini, Dmitri Moisseev, and Venkatachalam Chandrasekar
Atmos. Meas. Tech., 9, 5063–5075, https://doi.org/10.5194/amt-9-5063-2016, https://doi.org/10.5194/amt-9-5063-2016, 2016
Short summary
Short summary
Although high-spatial-resolution weather radar observations are of primary relevance for urban hydrology, weather radar siting and characterization are challenging in an urban environment. Buildings, masts and trees cause partial beam blockages and clutter that seriously affect the observations. For the first time, this paper investigates the benefits of using airborne laser scanner (ALS) data for quantitative estimations of partial beam blockages in an urban environment.
Altmetrics