Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF 5-year value: 3.284
IF 5-year
CiteScore value: 5.1
SNIP value: 1.37
IPP value: 3.21
SJR value: 1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
h5-index value: 42
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  23 Sep 2020

23 Sep 2020

Review status
This preprint is currently under review for the journal NHESS.

Analytical Study of North Indian Oceanic Cyclonic Disturbances with Special Reference to Extremely Severe Cyclonic Storm Fani: Meteorological Variability, India's Preparedness with Terrible Aftermath

Soumen Chatterjee Soumen Chatterjee
  • Department of Geography, University of Burdwan, Golapbag, Purba Bardhaman 713 104, West Bengal, India

Abstract. Having a total coastal tract of about 7,516 km with 5,400 km long mainland coastline, India is highly vulnerable to natural hazards like tropical cyclones (TCs). The analysis based on the historical dataset (1891–2019) of TCs over North Indian Ocean (NIO) also claims that the four coastal states (Andhra Pradesh, Odisha, Tamil Nadu and West Bengal) and one union territory (Pondicherry) on the east coast frequently face cyclonic storm than other coastal parts of India. The seasonal distribution (Pre-monsoon, Monsoon and Post-monsoon) of cyclonic storms over the Arabian Sea (AS) and Bay of Bengal (BoB) in last 150 years also help to unfold the fact that the Odisha and West Bengal coast are exposed to TCs mostly during the monsoon season (June to September) encompassing with strong winds, heavy rainfall and high storm surge. The extremely severe cyclonic storm (ESCS) Fani is the rarest summer cyclones, the first one in 43 years to strike the coastal part of Odisha on May 3, 2019 and one of the three worst cyclones in last 150 years with a sustained surface wind speed of 175–180 kmph. Odisha has been affected horribly due to the vulnerability of Fani. Although the death toll was limited within 64 due to rapid evacuation of nearly 1.68 million people, the killer cyclone has caused irreparable damages in social sectors (housing, education and food security), productive sectors (agriculture, fisheries and livestock) and also informative sectors (power, telecommunication, road, water facilities and public buildings). The estimated costs have reached nearly 4.18 billion USD only in Odisha. The southern part of West Bengal has also affected badly due to intense downpour and very high storm surges (2–3 m above mean sea level). To map the flooded areas of Odisha and West Bengal due to intense rainfall (cause inland flooding) and storm surges (cause coastal flooding), the Sentinel-1 SAR GRD dataset has also been used in Google Earth Engine (GEE) environment to link with the deadly cyclone Fani. So, the present study successfully advocates the historical background of TCs over NIO with particular reference to ESCS Fani including its meteorological variability, preparedness and the trail of devastation.

Soumen Chatterjee

Interactive discussion

Status: open (until 04 Nov 2020)
Status: open (until 04 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Soumen Chatterjee

Soumen Chatterjee


Total article views: 259 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
215 40 4 259 2 3
  • HTML: 215
  • PDF: 40
  • XML: 4
  • Total: 259
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 23 Sep 2020)
Cumulative views and downloads (calculated since 23 Sep 2020)

Viewed (geographical distribution)

Total article views: 229 (including HTML, PDF, and XML) Thereof 228 with geography defined and 1 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 26 Oct 2020
Publications Copernicus