Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Download
Short summary
Our research presents a method that allows one to calculate an estimate for the maximum upward surge of a wave from the 2018 Palu tsunami as it touches the beach. The method involves using ideal geometric shapes to approach the shape of the real bay, yielding one estimate that equals the recorded tsunami wave height of 4.89 m. The direct formulae derived using three idealized bay shapes can be used to gain instant wave run-up estimates for emergency disaster response purposes.
Altmetrics
Preprints
https://doi.org/10.5194/nhess-2020-223
https://doi.org/10.5194/nhess-2020-223

  23 Jul 2020

23 Jul 2020

Review status: this discussion paper is a preprint. It has been under review for the journal Natural Hazards and Earth System Sciences (NHESS). The manuscript was not accepted for further review after discussion.

A mathematical formulation for estimating maximum run-up height of 2018 Palu tsunami

Ikha Magdalena, Antonio Hugo Respati Dewabrata, Alvedian Mauditra Aulia Matin, Adeline Clarissa, and Muhammad Alif Aqsha Ikha Magdalena et al.
  • Industrial and Financial Mathematics Group, Institut Teknologi Bandung, West Java, Indonesia

Abstract. Run-up is defined as sea wave up-rush on a beach. Run-up height is affected by many factors, including the shape of the bay. As an archipelagic country, Indonesia consists of thousands of islands with bays of diverse profiles, including Palu Bay, which is a well-known example of a bay with a drastically-increasing wave run-up height. In the case of the 2018 Palu tsunami, scientists found that the incident wave was amplified by the shape of the bay. The amplifying wave played a large role in the significant increase of run-up height. The run-up in question caused severe inundation, which led to a high number of casualties and damages. Therefore a mathematical model will be constructed to investigate the wave run-up. The bay's geometry will be approximated using three linearly-inclined channel types: one of parabolic cross-section, one of triangular cross-section, and a plane beach. We use the generalized nonlinear shallow water equations, which is then solved analytically using a hodograph-type transformation. As a result, the nonlinear shallow water equation system can be reduced to a one-dimensional linear equation system. Assuming the incident wave is sinusoidal, we can obtain a simple formula for calculating maximum run-up height on the shoreline.

Ikha Magdalena et al.

 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Ikha Magdalena et al.

Ikha Magdalena et al.

Viewed

Total article views: 345 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
253 76 16 345 20 19
  • HTML: 253
  • PDF: 76
  • XML: 16
  • Total: 345
  • BibTeX: 20
  • EndNote: 19
Views and downloads (calculated since 23 Jul 2020)
Cumulative views and downloads (calculated since 23 Jul 2020)

Viewed (geographical distribution)

Total article views: 324 (including HTML, PDF, and XML) Thereof 317 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Jan 2021
Publications Copernicus
Download
Short summary
Our research presents a method that allows one to calculate an estimate for the maximum upward surge of a wave from the 2018 Palu tsunami as it touches the beach. The method involves using ideal geometric shapes to approach the shape of the real bay, yielding one estimate that equals the recorded tsunami wave height of 4.89 m. The direct formulae derived using three idealized bay shapes can be used to gain instant wave run-up estimates for emergency disaster response purposes.
Citation
Altmetrics