Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/nhessd-3-6757-2015
https://doi.org/10.5194/nhessd-3-6757-2015
04 Nov 2015
 | 04 Nov 2015
Status: this preprint was under review for the journal NHESS but the revision was not accepted.

Exploration of diffusion kernel density estimation in agricultural drought risk analysis: a case study in Shandong, China

W. Chen, Z. Shao, and L. K. Tiong

Abstract. Drought caused the most widespread damage in China, making up over 50 % of the total affected area nationwide in recent decades. In the paper, a Standardized Precipitation Index-based (SPI-based) drought risk study is conducted using historical rainfall data of 19 weather stations in Shandong province, China. Kernel density based method is adopted to carry out the risk analysis. Comparison between the bivariate Gaussian kernel density estimation (GKDE) and diffusion kernel density estimation (DKDE) are carried out to analyze the effect of drought intensity and drought duration. The results show that DKDE is relatively more accurate without boundary-leakage. Combined with the GIS technique, the drought risk is presented which reveals the spatial and temporal variation of agricultural droughts for corn in Shandong. The estimation provides a different way to study the occurrence frequency and severity of drought risk from multiple perspectives.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
In the paper, a Standardized Precipitation Index-based drought risk study is conducted. Kernel...
Share