Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 7, issue 6
Nat. Hazards Earth Syst. Sci., 7, 637–650, 2007
https://doi.org/10.5194/nhess-7-637-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Nat. Hazards Earth Syst. Sci., 7, 637–650, 2007
https://doi.org/10.5194/nhess-7-637-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  06 Nov 2007

06 Nov 2007

Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar

F. Ardizzone, M. Cardinali, M. Galli, F. Guzzetti, and P. Reichenbach F. Ardizzone et al.
  • CNR IRPI, via della Madonna Alta 126, 06128 Perugia, Italy

Abstract. A high resolution Digital Elevation Model with a ground resolution of 2 m×2 m (DEM2) was obtained for the Collazzone area, central Umbria, through weighted linear interpolation of elevation points acquired by Airborne Lidar Swath Mapping. Acquisition of the elevation data was performed on 3 May 2004, following a rainfall period that resulted in numerous landslides. A reconnaissance field survey conducted immediately after the rainfall period allowed mapping 70 landslides in the study area, for a total landslide area of 2.7×105 m2. Topographic derivative maps obtained from the DEM2 were used to update the reconnaissance landslide inventory map in 22 selected sub-areas. The revised inventory map shows 27% more landslides and 39% less total landslide area, corresponding to a smaller average landslide size. Discrepancies between the reconnaissance and the revised inventory maps were attributed to mapping errors and imprecision chiefly in the reconnaissance field inventory. Landslides identified exploiting the Lidar elevation data matched the local topography more accurately than the same landslides mapped using the existing topographic maps. Reasons for the difference include an incomplete or inaccurate view of the landslides in the field, an unfaithful representation of topography in the based maps, and the limited time available to map the landslides in the field. The high resolution DEM2 was compared to a coarser resolution (10 m×10 m) DEM10 to establish how well the two DEMs captured the topographic signature of landslides. Results indicate that the improved topographic information provided by DEM2 was significant in identifying recent rainfall-induced landslides, and was less significant in improving the representation of stable slopes.

Publications Copernicus
Download
Citation
Altmetrics