Articles | Volume 7, issue 3
15 Jun 2007
 | 15 Jun 2007

Slope stability assessment of weathered clay by using field data and computer modelling: a case study from Budapest

P. Görög and Á. Török

Abstract. A future development site of a housing estate, an abandoned-brick yard with clayey slopes was studied in details to assess slope stability and to calculate the factor of safety. The Oligocene clay, the former raw material, is divided into two different geotechnical units in the clay pit. The lower one consists of grey impermeable clays while the upper unit is characterised by yellowish weathered clay having a limited permeability. At some localities the topmost weathered clay layers are covered by loess, and slope debris. Parts of the former pit were also used as a landfill site. The slope stability analyses were performed based on borehole information and laboratory analyses in order to provide necessary engineering geological data for further site development and urban planning. Two geotechnical codes Plaxis and Geo4 were used to model the slope failures and assess the slope stability. The aim of using two different approaches was to compare them since Plaxis uses finite elements modelling while Geo4 uses conventional calculation methods to obtain circular and polygonal slip surfaces. According to model calculations and field data, the main trigger mechanisms of landslides seem to be high pore pressure due to rainwater and small slope debris covered springs. The slip surface is located at the boundary zone of yellow weathered and grey unaltered clay. Two computer models gave very similar results; although Plaxis provides combined safety factor which is slightly more pessimistic when compared to the safety factor obtained by using Geo4.