Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 6, issue 3
Nat. Hazards Earth Syst. Sci., 6, 419–425, 2006
https://doi.org/10.5194/nhess-6-419-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Advances in radar, multi-sensor and hydrological modelling...

Nat. Hazards Earth Syst. Sci., 6, 419–425, 2006
https://doi.org/10.5194/nhess-6-419-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  02 Jun 2006

02 Jun 2006

Quantitative analysis of X-band weather radar attenuation correction accuracy

A. Berne and R. Uijlenhoet A. Berne and R. Uijlenhoet
  • Hydrology and Quantitative Water Management, Wageningen University, The Netherlands

Abstract. At short wavelengths, especially C-, X-, and K-band, weather radar signals are attenuated by the precipitation along their paths. This constitutes a major source of error for radar rainfall estimation, in particular for intense precipitation. A recently developed stochastic simulator of range profiles of raindrop size distributions (DSD) provides a controlled experiment framework to investigate the accuracy and robustness of attenuation correction algorithms. The work presented here focuses on the quantification of the influence of uncertainties concerning radar calibration, the parameterization of power law relations between the integral variables (radar reflectivity Z and specific attenuation k), and total path integrated attenuation (PIA) estimates at X-band. The analysis concerns single frequency, incoherent and non-polarimetric radar systems. Two attenuation correction algorithms, based on a forward and a backward implementation respectively, are studied. From DSD range profiles, the corresponding profiles of integral radar variables are derived. Using a Monte Carlo approach, the accuracy and robustness of the two algorithms are quantified for the different sources of error previously mentioned. This framework of realistic DSD variability provides a robust way to confirm that, under realistic assumptions concerning the PIA estimation uncertainty, the forward algorithm outperforms the backward algorithm for PIA values below 10 dB.

Publications Copernicus
Download
Citation
Altmetrics