Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF 5-year value: 3.284
IF 5-year
CiteScore value: 5.1
SNIP value: 1.37
IPP value: 3.21
SJR value: 1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
h5-index value: 42
Volume 4, issue 5/6
Nat. Hazards Earth Syst. Sci., 4, 783–791, 2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Landslides and debris flows: analysis, monitoring, modeling...

Nat. Hazards Earth Syst. Sci., 4, 783–791, 2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Nov 2004

30 Nov 2004

Analysis of different water-sediment flow processes in a mountain torrent

M. Arattano1 and L. Franzi2 M. Arattano and L. Franzi
  • 1CNR-IRPI, Strada delle Cacce,73, 10135 Torino, Italy
  • 2Regione Piemonte, Corso Tortona, 12, 10183 Torino, Italy

Abstract. Sediment – water flows occurring in mountain torrents may show a variety of regimes, ranging from water flows with transport of individual particles to massive transport of debris, as it occurs in case of debris flows. Sometimes it is possible, by means of accurate field investigations, to identify the kind of processes that took place in a torrent after the occurrence of an event. However this procedure cannot give indications regarding the development of the process in time. In fact, because of the frequent presence of different surges within the same event, the rheological characteristics of an event can be detected only when some recorded hydrographs or videos are available. For the same reason, since the rheological behaviour of the flow changes according to the solid concentration, the analysis of the materials deposited on the debris fan cannot directly give any information on the particular types of flow that took place: a possible alternation in time of different water sediment surges with different concentrations may have occurred, during the same event. The installation of ultrasonic gauges or videocameras along the torrent might give more information on this issue. To this regard, the analysis of a flow event which occurred in 2002 in the Moscardo torrent watershed, instrumented for debris flow monitoring, has been undertaken, studying the hydrographs recorded at two different ultrasonic gauges placed at a known distance along the torrent. An empirical flow resistance law has been applied analysing the values assumed by its parameters after calibration. The application of this law actually spans from debris flow and immature debris flow to bed load transport. Only field observations and surveys, together with ultrasonic data, may allow to clearly discriminate which type of flow really occurred. The analysis confirms that different water sediment surges alternated in time while the mathematical simulation of the flow compared with field observations revealed that the dynamic behaviour of the flow was different from that of previous debris flow events and might reflect, among the different types of possible rheological behaviors, a dilatant-type behavior typical of stony debris flows.

Publications Copernicus