Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 4, issue 5/6
Nat. Hazards Earth Syst. Sci., 4, 633–639, 2004
https://doi.org/10.5194/nhess-4-633-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Precursory phenomena, seismic hazard evaluation and seismo-tectonic...

Nat. Hazards Earth Syst. Sci., 4, 633–639, 2004
https://doi.org/10.5194/nhess-4-633-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  18 Oct 2004

18 Oct 2004

Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation

V. Hadjicontis, C. Mavromatou, and D. Ninos V. Hadjicontis et al.
  • Department of Solid State Physics, University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece

Abstract. A crucial question of the scientific community nowadays, concerns the existence of electric signals preceding earthquakes. In order to give a plausible answer to this question, we carried out two kinds of laboratory experiments of uniaxial deformation of ionic crystals and rock samples: a) In the first kind, stress induced polarization currents are detected and recorded. Our experimental results showed not only the existence of stress induced polarization currents before the fracture of the samples, but the possibility of the propagation of these signals, as well, through conductive channels, for distances much longer than the source dimensions. b) In the second, acoustic and electromagnetic signals are detected and recorded in the frequency range from 1KHz to some MHz. The mechanism of generation of these signals is shown to be different for those emitted from piezoelectric and from non-piezoelectric materials. A plausible model is also suggested, on the compatibility of our laboratory results with the processes occurring in the earth during the earthquake preparatory stage.

Publications Copernicus
Download
Citation
Altmetrics