Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 2, issue 3/4
Nat. Hazards Earth Syst. Sci., 2, 187–191, 2002
https://doi.org/10.5194/nhess-2-187-2002
© Author(s) 2002. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Landslides and related phenomena: Avalanches

Nat. Hazards Earth Syst. Sci., 2, 187–191, 2002
https://doi.org/10.5194/nhess-2-187-2002
© Author(s) 2002. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  31 Dec 2002

31 Dec 2002

Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures

T. Faug, P. Lachamp, and M. Naaim T. Faug et al.
  • CEMAGREF ETNA, Domaine Universitaire, BP 76, F-38402 Saint-Martin-d’Hères Cedex, France

Abstract. An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length L was systematically measured as a function of the obstacle height H and the channel inclination θ, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on H, θ and the internal friction angle of the material, φ) and a Froude number of the flow depending on the obstacle height.

Publications Copernicus
Download
Citation
Altmetrics