Articles | Volume 14, issue 8
Research article
15 Aug 2014
Research article |  | 15 Aug 2014

Spatiotemporal multifractal characteristics of electromagnetic radiation in response to deep coal rock bursts

S. Hu, E. Wang, and X. Liu

Abstract. Dynamic collapses of deeply mined coal rocks are severe threats to miners; in order to predict collapses more accurately using electromagnetic radiation (EMR), we investigate the spatiotemporal multifractal characteristics and formation mechanism of EMR induced by underground coal mining. Coal rock in the burst-prone zone often exchanges materials (gas, water and coal) and energy with its environment and gradually transitions from its original stable equilibrium structure to a nonequilibrium dissipative structure with implicit spatiotemporal complexity or multifractal structures, resulting in temporal variation in multifractal EMR. The inherent law of EMR time series during damage evolution was analyzed by using time-varying multifractal theory. Results show that the time-varying multifractal characteristics of EMR are determined by damage evolution processes. Moreover, the dissipated energy caused by the damage evolutions, such as crack propagation, fractal sliding and shearing, can be regarded as the fingerprint of various EMR micro-mechanics. The dynamic spatiotemporal multifractal spectrum of EMR considers both spatial (multiple fractures) and temporal (dynamic evolution) characteristics of coal rocks and records the dynamic evolution processes of rock bursts. Thus, it can be used to evaluate the coal deformation and fracture process. The study is of significance for us to understand the EMR mechanism in detail and to increase the accuracy of the EMR method in forecasting dynamic disasters.

Final-revised paper