Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 11, issue 9
Nat. Hazards Earth Syst. Sci., 11, 2497–2509, 2011
https://doi.org/10.5194/nhess-11-2497-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 11th Plinius Conference on Mediterranean Storms

Nat. Hazards Earth Syst. Sci., 11, 2497–2509, 2011
https://doi.org/10.5194/nhess-11-2497-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Sep 2011

Research article | 22 Sep 2011

Stochastic bias-correction of daily rainfall scenarios for hydrological applications

I. Portoghese1, E. Bruno1,2, N. Guyennon3, and V. Iacobellis2 I. Portoghese et al.
  • 1Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Via F. de Blasio 5, 70132 Bari, Italy
  • 2Dipartimento di Ingegneria delle Acque e di Chimica, Politecnico di Bari, Campus Universitario, Via E. Orabona 4, 70125 Bari, Italy
  • 3Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma – Montelibretti, Via Salaria km 29,300, C. P. 10, 00015 Roma, Italy

Abstract. The accuracy of rainfall predictions provided by climate models is crucial for the assessment of climate change impacts on hydrological processes. In fact, the presence of bias in downscaled precipitation may produce large bias in the assessment of soil moisture dynamics, river flows and groundwater recharge.

In this study, a comparison between statistical properties of rainfall observations and model control simulations from a Regional Climate Model (RCM) was performed through a robust and meaningful representation of the precipitation process. The output of the adopted RCM was analysed and re-scaled exploiting the structure of a stochastic model of the point rainfall process. In particular, the stochastic model is able to adequately reproduce the rainfall intermittency at the synoptic scale, which is one of the crucial aspects for the Mediterranean environments. Possible alteration in the local rainfall regime was investigated by means of the historical daily time-series from a dense rain-gauge network, which were also used for the analysis of the RCM bias in terms of dry and wet periods and storm intensity. The result is a stochastic scheme for bias-correction at the RCM-cell scale, which produces a realistic representation of the daily rainfall intermittency and precipitation depths, though a residual bias in the storm intensity of longer storm events persists.

Publications Copernicus
Download
Citation
Altmetrics