Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Preprints
https://doi.org/10.5194/nhess-2020-154
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-2020-154
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  14 Jul 2020

14 Jul 2020

Review status
This preprint is currently under review for the journal NHESS.

The impact of hydrological model structure on the simulation of extreme runoff events

Gijs van Kempen1, Karin van der Wiel2, and Lieke Anna Melsen1 Gijs van Kempen et al.
  • 1Hydrology and Quantitative Water Management, Wageningen University, Wageningen, the Netherlands
  • 2Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

Abstract. Hydrological extremes affect societies and ecosystems around the world in many ways, stressing the need to make reliable predictions using hydrological models. However, several hydrological models can be selected to simulate extreme events. A difference in hydrological model structure results in a spread in the simulation of extreme runoff events. We investigated the impact of different model structures on the magnitude and timing of simulated extreme high- and low-flow events, by combining two state-of-the-art approaches; a modular modelling framework (FUSE) and large ensemble meteorological simulations. This combination of methods created the opportunity to isolate the impact of specific hydrological process formulations at long return periods without relying on statistical models. We showed that the impact of hydrological model structure was larger for the simulation of low-flow compared to high-flow events and varied between the four evaluated climate zones. In cold and temperate climate zones, the magnitude and timing of extreme runoff events were significantly affected by different parameter sets and hydrological process formulations, such as evaporation. The impact of hydrological model structures on extreme runoff events was smaller in the arid and tropical climate zones. This novel combination of approaches provided insights into the importance of specific hydrological processes formulations in different climate zones, which can support adequate model selection for the simulation of extreme runoff events.

Gijs van Kempen et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Gijs van Kempen et al.

Gijs van Kempen et al.

Viewed

Total article views: 230 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
155 64 11 230 12 12
  • HTML: 155
  • PDF: 64
  • XML: 11
  • Total: 230
  • BibTeX: 12
  • EndNote: 12
Views and downloads (calculated since 14 Jul 2020)
Cumulative views and downloads (calculated since 14 Jul 2020)

Viewed (geographical distribution)

Total article views: 238 (including HTML, PDF, and XML) Thereof 238 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 23 Oct 2020
Publications Copernicus
Download
Short summary
In this study, we combine climate model results with a hydrological model, to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of ‘current climate’ was created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on flood and drought risk, in four different climate zones with return periods of up to 500 years.
In this study, we combine climate model results with a hydrological model, to investigate...
Citation
Altmetrics