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Abstract. After a flood disaster, the question often arises: “What could have happened if the event had gone 15 
differently?” For example, what would be the effects of a flood if the path of a pressure system and the 

precipitation field had taken a different trajectory? In this paper, we use alternative scenarios of precipitation 

footprints shifted in space, the so-called “spatial counterfactuals” to generate plausible but unprecedented events. 

We explore the spatial counterfactuals of the deadly July 2021 flood in the Ahr Valley, Germany. We drive the 

mHM hydrological model of the Ahr catchment with precipitation fields of this event systematically shifted in 20 
space. The resulting discharge is used as a boundary condition for the high-resolution two-dimensional 

hydrodynamic model RIM2D calibrated and validated for this area. We simulate changes in peak flows, 

hydrograph volumes, maximum inundation extent and depths and affected assets and compare them to the 

simulations of the actual event. We show that even a slight shift of the precipitation field by 15-25 km eastwards, 

which does not seem implausible due to orographic conditions, causes an increase in peak flows at the gauge 25 
Altenahr of about 32 % and of up to 160 % at the individual tributaries. Also, significantly larger flood volumes 

of more than 25 % can be expected due to this precipitation shift. This results in significantly larger inundation 

extents and maximum depths at a number of analyzed focus areas. For example, in the focus area around 

Altenahr, the increase of mean and maximum depth of up to 1.25 m and 1.75 m, respectively, is simulated.  The 

presented results should encourage flood risk managers as well as the general public to meet precautionary 30 
measures for extreme and unprecedented events. 

1. Introduction 

On 14-15 July 2021, an exceptional flood event struck a vast region in western Germany, Belgium, Luxemburg 

and the Netherlands, causing more than 230 deaths and total economic loss of up to 50 billion euro (Szöni et al., 

2022). In Germany alone, more than 180 people lost their lives and loss estimates range between 35 and 40 35 
billion euro. The Ahr river valley in the Eifel mountains was a hotspot of flood impact with 134 deaths and two 
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people still missing (DKKV, 2022). This is the highest human life loss due to a flood catastrophe in Germany 

since the storm surge in 1962 in Northern Germany. 

In the first half of July 2021, a low-pressure system formed over the Northern German Plains resulting in a 

southwestward air flow strongly enriched with moisture from the Baltic Sea and the North Sea (Mohr et al., 40 
2023). As a result, precipitation sums of up to 150 mm were recorded within 15 to 18 h in parts of the Ahr 

catchment. Using the hourly radar-based RADOLAN data (Weigl and Winterrath, 2009, Winterrath et al., 2018) 

and the daily station-based HYRAS dataset (Rauthe et al., 2013), Mohr et al. (2023) estimated the return period 

of precipitation in the order of 500 years in parts of the Ahr catchment. Kreienkamp et al. (2021) and Tradowsky 

et al. (2023) estimated a return period of about 400 years for daily precipitation sums in the period from April to 45 
September by pooling the HYRAS data over a larger region between the North Sea and the Alps. This heavy and 

intense rainfall resulted in an extreme catchment response, with strong field evidence for massive overland flow, 

where ephemeral drainages in forests and grassland turned into concentrated streams (Dietze et al., 2022). The 

rapid water rise within a few hours led to unprecedented water levels of up to 10 m exceeding the instrumental 

record since 1947 and the historical water marks since 1804. The gauges Altenahr and Müsch (Figure 1) were 50 
destroyed, so no discharge could be recorded instrumentally. The post-event peak flow reconstructions at gauge 

Altenahr range from 750 to 1100 m3 s-1. Roggenkamp and Herget (2022) suggested a peak flow of 1000 m3 s-1 

and higher based on the recorded wrack marks, surveyed topography and the application of Manning’s equation 

with typical roughness values. The model-based flow reconstruction by Berker et al. (2022) resulted in 

somewhat lower values between 750 and 1000 m3 s-1, partly considering the backwater effect due to clogging of 55 
several bridges. The reconstructed peak flow exceeded the highest instrumental record of 236 m3 s-1 in 2016 by 

three to more than four times. It reached about the same level as the reconstructed peak flow of the 1804 summer 

flood, for which a few historical high-water marks are available (Roggenkamp and Herget, 2014). Remarkably, 

the water levels during the 2021 flood exceeded those of 1804 by more than 2 m (Mohr et al., 2023), probably 

due to the aforementioned bridge clogging and resulting backwater effects, but also due to denser settlements 60 
and higher macroscopic roughness at present time. Considering the historical floods of 1804, 1888, 1910, 1918, 

1920 and recent instrumental records, Vorogushyn et al. (2002) estimated the local return period at gauge 

Altenahr of more than 8500 years based on the peak flow reconstruction by Roggenkamp and Herget (2022). 

Due to limited records, the very high skewness of the timeseries and the poor fit of the statistical model to the 

extremes, the return period estimates are associated with very high uncertainties.  65 

The likelihood and intensity of extreme floods as in July 2021 can increase in a warmer climate due to increased 

heavy precipitation. Deploying ensembles of regional and global climate models, the extreme event attribution 

studies of Kreienkamp et al. (2021) and Tradowsky et al. (2023) suggested an increased likelihood of the 

observed maximum 1-day precipitation to occur in the present climate compared to the pre-industrial state (1.2 

°C cooler) by a factor of 1.2 – 9. A further increase in the likelihood by a factor of 1.2 – 1.4 is suggested in a 2 70 
°C warmer climate compared to the pre-industrial state. The maximum 1-day precipitation intensity was 

suggested to increase by 3.8 – 25%. The estimation by Ludwig et al. (2023) with an increase of 11 – 18% in 

event precipitation totals in the region around the Ahr catchment for the +2 °C climate falls within the above 

range estimated by Kreienkamp et al. (2021) and Tradowsky et al. (2023). Ludwig et al. (2023) used the pseudo 

global warming approach (Schär et al., 1996), in which the temperature changes corresponding to the fixed 75 
warming level of +2 °C are prescribed at the initial and lateral boundary conditions of a regional climate model. 
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They further analyzed the hydrologic response of the Ahr catchment to higher precipitation in a +2 °C warmer 

climate with a distributed hydrological model. The projected increase in peak flows of up to 39% at gauge 

Altenahr is alarming and underlines the non-linearity of the hydrologic catchment response. 

The severity of the July 2021 flood disaster, but also the adverse potential future changes, call for a set of actions 80 
to improve flood risk management and climate adaptation in the catchment communities. Besides the 

reassessment of flood design values used for flood hazard mapping and infrastructure planning, i.e., in the range 

of 30 – 200 y return periods, it is highly valuable to explore extreme and unprecedented scenarios that have not 

been observed in the past but may occur in the near future (Montanari et al., 2024). Kreibich et al. (2022) 

concluded from a study of 45 paired subsequent extreme events (floods and droughts) that risk management in 85 
general reduces the impacts of a second event in the same area. Societies however face difficulties in reducing 

the impacts of unprecedented events if the magnitude of the second event exceeds past experience. The water-

proof design for all possible unprecedented scenarios is not possible and too costly. However, some actions can 

be taken with small additional effort and cost that unfold pivotal effects when unprecedented scenarios are put on 

the mind map of decision makers. Flood-prone people and crisis managers need to be prepared for such 90 
situations to reduce at least the most harmful consequences such as death toll. Critical infrastructure, e.g., local 

crises centers, need to be located outside of the potentially affected areas to ensure their functionality during 

catastrophic situations.  

There is a plethora of approaches to constructing scenarios of exceptional events (Merz et al., 2021). A standard 

approach relies on the extrapolation using extreme value statistics and estimating high return period floods, 95 
which may or may not have occurred in the past in the specific catchments. For example, Apel et al. (2004) 

upscaled the averaged observed hydrographs from the past floods to the peak flows extrapolated up to 10,000 

years from extreme value statistics. These scenarios were used to estimate flood risk along the Rhine River in 

Germany. In the Ahr valley, Vorogushyn et al. (2022) estimated the 1,000-year flood and analyzed the 

associated inundation based on extrapolating the GEV distribution considering historical floods. Extrapolations 100 
based on extreme value statistics suffer well-known limitations rooted in the limited sample size, selection of a 

statistical model and parameter estimation procedure (e.g. Hu et al., 2020). Furthermore, extreme floods are 

often different from small floods in terms of the atmospheric, runoff generation and river network processes, so 

the extrapolation may not be valid, see Merz et al. (2022) for discussion. To partly overcome this limitation, 

stochastic weather generators can be used in combination with hydrological models to continuously simulate 105 
long-term series of events which include unprecedented events (e.g., Falter et al., 2015, Viviroli et al., 2022). 

Another set of approaches includes the estimation of probable maximum precipitation (PMP) and associated 

probable maximum floods (PMF). The World Meteorological Organization (WMO) provides guidelines for 

estimating PMP containing several methods (WMO, 2009). PMP is typically estimated for storms of various 

durations for a specific catchment by applying theoretically grounded maximizations to the storm parameters. 110 
Various approaches can be used for the spatial and temporal representation of the PMP in a specific catchment 

and for the computation of the resulting PMF (Felder and Weingartner, 2017). Recently, approaches have been 

developed to adjust PMP estimates for non-stationary climate based on information from physically-based 

climate models (Chen et al., 2017, Visser et al., 2022).  
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The climate community proposed the future weather or storyline approach, in particular to explore the evolution 115 
of extreme weather events and their impacts under future climate conditions (Hazeleger et al., 2015, Shepherd, 

2018). To this end, the past synoptic-scale extremes are imposed onto perturbed boundary conditions in climate 

models, e.g., changed atmospheric composition, land use and/or sea surface temperature. Following this 

approach, Manola et al. (2018) imposed a heavy summer precipitation event in July 2014 over The Netherlands 

onto the present and future climate conditions in a high-resolution convection-permitting numerical weather 120 
prediction model. The precipitation event generated in this way for future climate conditions unfolds a displaced 

pattern with an increase in precipitable water per degree of warming of nearly double the Clausius-Clapeyron 

rate. The above-mentioned pseudo global warming simulations by Ludwig et al. (2023) can also be regarded as a 

type of future weather or storyline approach. 

A fourth approach for developing extreme scenarios is the construction of so-called “perfect storms”. The term 125 
“perfect storm” denotes an unfavorable superposition of several factors or phenomena that lead to an 

unprecedented event, whereas these phenomena have previously occurred in isolation (Paté-Cornell, 2012). The 

term refers to a severe storm that occurred over the North Atlantic in October 1991 as a conjunction of a storm 

over the US, a cold front from the north and a tropical storm from the south (Paté-Cornell, 2012). In hydrology, 

an example of  a “perfect storm” would be a scenario with an unfavorable superposition of extreme antecedent 130 
catchment conditions and extreme precipitation that occurred in isolation, but not in combination. To the best of 

our knowledge, there is only one study in the hydrological literature that recombined historical snowpack with 

design precipitation events in Sweden for estimation of design floods for dams and spillways (Bergström et al., 

1992). 

Finally, past events can be explored by analyzing event properties and processes that could have been worse. 135 
This approach, introduced to natural hazards by Woo (2019), provides so-called downward counterfactual 

scenarios. Downward counterfactuals contrast with upward counterfactuals where things turn for the better. In 

general terms, counterfactual refers to a possible realization of a past event, upward or downward. Spatial 

counterfactuals can be defined as a special case of counterfactuals, where the past events are shifted in space. 

Spatial counterfactuals are an intuitive approach to explore the possibility of unseen and exceptional events in a 140 
specific area. Merz et al. (2024) pioneered this concept for flood hazard assessment and explored alternative 

scenarios of the 10 most damaging floods in Germany. By shifting precipitation fields by several tens of 

kilometers in space, they explored changes in return periods of peak flows generated by a hydrological model. In 

a similar vein, Voit and Heistermann (2024a) generated spatial counterfactuals from the 10 most severe high 

precipitation events in 2021-2022 and combined them with more than 22,000 sub-catchments in Germany. The 145 
analysis of more than 220,000 combinations resulted in many unprecedented floods across Germany. The results, 

however, are based on the strong assumption that any of the past high precipitation events could occur anywhere 

in Germany. 

Flood hazard and risk assessment has tremendously advanced in the past decades. The European Union Member 

States have implemented nation-wide flood hazard mapping, as enforced by the EU Flood Directive (EU, 2007). 150 
In Germany, inundation hazard is mapped for a low return period flood (~10 – 20 yr), a high return period event 

(100 yr) and an extreme scenario (200 – 1000 yr) with some variation between the federal states (Vorogushyn et 

al., 2022). Similar return periods of 30, 100 and 300 years have been used in Austria (Blöschl et al., 2024). 

However, exceptional floods exceeding even the mapped extreme scenario continue to occur, such as the July 
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2021 flood in the Ahr valley and as the 2002 and 2013 floods in the Elbe basin (Schröter et al., 2015). This is to 155 
be expected due to the stochastic nature of the flood generation processes within the space of possible event 

realizations. In addition, climate change may contribute to the occurrence of exceptional or even unprecedented 

events (Robinson et al., 2021). Further, the poor estimation of flood quantiles (Vorogushyn et al., 2022) and the 

ignorance of the variety of possible unprecedented events by risk managers, decision makers and the public may 

catch everyone by surprise and result in devastating consequences (Merz et al., 2015, Woo, 2019). Hence, a 160 
systematic procedure is needed for exploring the space of potential unprecedented events that may turn into 

catastrophes (Woo, 2019).  

In the present study, we address the challenge of exploring the space of unprecedented flood events in the Ahr 

catchment by developing spatial counterfactuals for the July 2021 flood. In particular, we search for downward 

counterfactuals by answering the key questions of where, how much and why the intensity and impacts turn out 165 
to be more severe that during the actual flood event. This analysis is expected to raise awareness for extreme 

events exceeding any previous experience among flood managers as well as potentially affected population and 

help better prepare for such scenarios and reduce risk of death toll and economic damage. Spatial counterfactuals 

are constructed by shifting the observed spatio-temporal precipitation footprint in space. We go beyond the 

previous studies by Merz et al. (2024) and Voit and Heistermann (2024a) and deploy for the first time a flood 170 
process model chain encompassing hydrology, flood inundation and impact quantification for the analysis of 

spatial counterfactual scenarios. 

 

2. Study area 

We analyze spatial counterfactuals for the Ahr river catchment in western Germany. The catchment, with an area 175 
of about 900 km2, drains the Ahr-Eifel mountains in the German federal states of Rhineland-Palatinate and 

Northern Rhine-Westphalia to the Rhine River (Fig. 1). The 86 km long river springs up at the elevation of about 

520 m a.s.l. and crosses the deeply incised valley down to the Rhine mouth near Sinzig. Several major tributaries 

with respective gauges, such as Adenauerbach (gauge Niederadenau), Staffelerbach (gauge Denn), Sahrbach 

(gauge Kreuzberg) enter the main river, which is gauged at Müsch, Altenahr and Bad Bodendorf from upstream 180 
to downstream (Fig. 1). The catchment is characterized by shallow soils of primarily clay slate. Large parts of 

the catchment are covered by forests, and some grassland at the elevated plateaus. Arable land is particularly 

concentrated in the northeastern lowlands, whereas steep slopes in the middle reaches are used as vineyards that 

are located between the riverine villages and the mountain ranges (LfU, 2005). The mean annual catchment 

precipitation ranges between 550 and 900 mm (HAD, 2024), with mean monthly July totals of 70 mm in 1991-185 
2020 (Berkler et al., 2022). The mean flow at the gauges Müsch and Altenahr amounts to about 3 and 8 m3 s-1 

with mean annual flood peak flow of 65 and 90 m3 s-1, respectively. 
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Figure 1. Ahr catchment, major river network from the Open Street Map (OSM), Digital Elevation Model 190 
(DEM5), location of the real and virtual (“model”) gauges. Virtual gauges represent the locations, where inflow 

boundary conditions from mHM to RIM2D model are specified. RIM2D modelling domains Müsch-Altenahr 

and Altenahr-Sinzig are shown in orange and yellow boxes, respectively. © OpenStreetMap contributors 2024. 

Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 

 195 

3. Data and Methods 

3.1 Counterfactual precipitation fields 

For the development of spatial counterfactuals, we use the E-OBS dataset v.25e of daily precipitation sums at the 

resolution of 0.11° x 0.11° (Cornes et al., 2018), which extends till 31 December 2021 and includes the 2021 

flood. For the purpose of hydrological modelling, the precipitation fields are re-gridded to the 0.0625° x 0.0625° 200 
grid using bi-linear interpolation. Since we focus on relative changes in flood characteristics between spatial 

counterfactuals, we expect the choice of this simple interpolation method not to notably affect the final results 

and conclusions. Furthermore, daily precipitation sums are disaggregated to hourly values using the method of 

fragments (Guan et al, 2023). A vector of hourly fragments, representing the relative distribution of hourly 

precipitation to the daily sum, is obtained from RADOLAN hourly observations. The RADOLAN dataset (Weigl 205 
and Winterrath, 2009, Winterrath et al., 2018) provides historical, hourly, German-wide, gridded, highly 

resolved precipitation data from the combination of the hourly values measured at climate stations with the 

precipitation recording of 17 weather radars. The RADOLAN data has a spatial resolution of 1 km and covers 
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the period from 1 June 2005 to the present. We use the coarser E-OBS data instead of directly applying 

RADOLAN hourly fields because of two reasons. First, E-OBS contains consistent precipitation and temperature 210 
data needed for hydrological modelling. Second, the hydrological model used in this study is calibrated with the 

E-OBS data as a part of the setup covering German catchments including parts outside of Germany, for which 

RADOLAN is not available. 

The major trajectory of the atmospheric moisture transport into the affected region was from northeast to 

southwest on the northern flank of a low-pressure system (Mohr et al., 2023). Hourly precipitation footprints 215 
indicate that the Ahr catchment was only partly hit by the most extreme precipitation cells (Fig. 2). The 24 h 

precipitation totals inferred from the radar-based RADOLAN data product corroborate this observation (Mohr et 

al., 2023). The northwestern part of the catchment received the highest precipitation, but a large part of the 

extreme rainfall fell outside the catchment (Fig. 2). Comparison of the areas of the most intense precipitation 

(Fig. 2) with the orography (Fig. 1) reveals that these areas are not necessarily associated with high elevations in 220 
the Eifel mountains, but rather aligned with the major trajectory of the moisture transport. This suggests that the 

position of the trough, which controls the moisture transport, strongly influences the location of the precipitation 

footprint. 

 

Figure 2. Hourly precipitation footprints from the disaggregated E-OBS dataset in the Eifel region around the 225 
Ahr catchment for 14 July 2021, between 00:00 and 23:00 UTC.  

We develop spatial counterfactuals by shifting the entire precipitation field to the west and east, mimicking 

alternative positions of the low-pressure system. Additionally, we explore a few scenarios by shifting the 
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precipitation footprint a few kilometers eastward and then southwards (in a few steps). These counterfactuals not 

only mimic an alternative position of the trough, but also alternative scenarios of peak precipitation footprints 230 
along the major trajectory of moisture transport. We shift the precipitation field in steps of 0.0625°, 

corresponding to about 4.5 km at the latitude of the Ahr catchment (50° N). We explore precipitation shifts with 

3 steps westward (W1, W2, W3) and 13 steps eastward (E1 to E13). Furthermore, after shifting the precipitation 

field 5 steps eastward, we investigate a range of steps along the north-south axis (E5N1 – E5N4, E5S1 – E5S5). 

The latter counterfactuals explore the effect of placing the most intensive precipitation between 18:00 and 20:00 235 
UTC of 14 July 2021 centrally over the catchment (Fig. 2). In total, 25 scenarios are examined in addition to the 

reference scenario without shift (S0). The shifts are consistently applied to all hourly precipitation totals for the 

period of 5 days around the event date from 12 July 00:00 to 18 July 2021 23:00 UTC. 

3.2 Hydrological model 

The hydrological response of the Ahr catchment to different spatial counterfactuals is investigated with the grid-240 
based mesoscale Hydrologic Model mHM (Samaniego et al., 2010, Kumar et al., 2013, Samaniego et al., 2019). 

mHM is set up for the Ahr catchment with 3 x 3 km grid resolution and an hourly timestep. mHM is driven by E-

OBS precipitation fields disaggregated from daily to hourly values as described in Sect. 3.1. Hourly air 

temperature 𝑇𝑇𝑗𝑗(𝑗𝑗 = 1,2,⋯24) is disaggregated from E-OBS daily maximum (Tmax) and minimum (Tmin) air 

temperature using a cosine function (Förster et al., 2016): 245 

𝑇𝑇𝑗𝑗 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
2

�1 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋(𝑗𝑗+𝑎𝑎)
12

�,        (1) 

where 𝑎𝑎 controls the time of daily maximum temperature within a day. The value of 𝑎𝑎 is calibrated based on 

observed hourly air temperature data and is set to 8 from January to April and 9 for other months for the study 

area. 

The land surface characteristics required by mHM include a digital elevation model acquired from the Federal 250 
Agency for Cartography and Geodesy (BKG) and a digitized soil map from the Federal Institute for Geosciences 

and Natural Resources (BGR). Based on these maps, we extract information on soil texture properties, hydraulic 

conductivities, and topographic properties (such as slope, aspect, flow direction and flow accumulation). Land 

cover information is derived from CORINE land cover scenes of the years 2000, 2006, 2012, and 2018 

(European Environmental Agency, EEA). mHM utilizes the Multiscale Parameter Regionalization (MPR) 255 
(Samaniego et al., 2010) technique for consistent parameterization across space resulting in a consistent 

parameter set for the entire model domain. The hydrological model is calibrated in a multi-site framework based 

on the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) using 6 years (2016-

2021) of hourly discharge time series at the gauges Müsch and Altenahr. Unfortunately, due to gauge failure, no 

instrumental records are available for the July 2021 event. We thus use the reconstructed flow hydrographs for 260 
model calibration considering high-water marks, inundation extents and downstream gauge records as described 

by the Environment Agency of Rhineland-Palatinate (Berker et al., 2022). We use the modified weighted Nash-

Sutcliffe Efficiency (wNSE) as the objective function which puts a stronger weight on predicting high peak 

flows (Hundecha and Merz, 2012): 



 
 

9 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1 − ∑ 𝑄𝑄𝑜𝑜(𝑡𝑡𝑚𝑚)�𝑄𝑄𝑠𝑠(𝑡𝑡𝑚𝑚)−𝑄𝑄𝑜𝑜(𝑡𝑡𝑚𝑚)�
2𝑁𝑁

𝑚𝑚=1

∑ 𝑄𝑄𝑜𝑜(𝑡𝑡𝑚𝑚)𝑁𝑁
𝑚𝑚=1 �𝑄𝑄𝑜𝑜(𝑡𝑡𝑚𝑚)−𝑄𝑄𝑜𝑜�

2        (2) 265 

where 𝑄𝑄𝑜𝑜(𝑡𝑡𝑚𝑚) and  𝑄𝑄𝑠𝑠(𝑡𝑡𝑚𝑚) are the observed and simulated discharges at time step 𝑡𝑡𝑚𝑚; 𝑄𝑄𝑜𝑜 is the mean observed 

discharge over the period of N time steps. Additionally, the Kling-Gupta Efficiency, the Nash-Sutcliffe 

Efficiency and the percentage difference between the maximum simulated and reference discharge (i.e., 

observed or reconstructed) are used to characterize the model performance. Calibration and validation of 

hydrological models are typically performed using a split-sample approach (Klemeš, 1986). Since the July 2021 270 
flood was an exceptional event, it should be included in both the calibration and validation. Given the presence 

of exceptional runoff conditions with widespread overland flow and very high runoff coefficients, it would be 

naïve to expect the model to capture such an event with parameters calibrated without this event. Finally, the 

validation should also include the 2021 flood, since this is the target event for the developed model. Hence, we 

need to adopt a different calibration and validation approach than a split-sample test. Here we use a spatial 275 
validation approach: We calibrate the model at the gauges Müsch and Altenahr and validate the model at 5 

gauges (Kreuzberg, Denn, Kirmutscheid, Niederadenau, and Bad Bodendorf;  see Fig. 1), which are not used for 

calibration. 

For the analysis of spatial counterfactuals, mHM is driven by different precipitation scenarios, whereas the 

temperature field is kept constant in space. Each mHM model run uses a warm-up period of 5 years (2016-2020) 280 
prior to the July 2021 flood. The shifted precipitation field for the period of 5 days is inserted into the time 

series. Hence, spatial counterfactuals are applied to the factual simulated antecedent catchment conditions. 

Nevertheless, small deviations from the real antecedent soil moisture state occurs during the 5 days, where 

shifting is applied. They can be considered relatively small since no strong rainfall events occurred in this period. 

3.3 Hydrodynamic model 285 

We use the raster-based two-dimensional hydrodynamic model RIM2D which solves a simplified shallow water 

equation. This so-called local inertia approximation disregards the convective acceleration term of the 

momentum equation and can be solved efficiently in the explicit manner (Bates et al., 2010). The inertia 

formulation has been previously evaluated in a number of synthetic tests (Bates et al., 2010) and real-case 

applications (e.g. Neal et al., 2011). Numerical instability occurring at super-critical flows can be efficiently 290 
tackled by introducing numerical diffusion, as proposed by de Almeida et al. (2012). RIM2D is coded in CUDA 

Fortran and parallelized for NVIDIA Graphical Processor Units (GPUs). This efficient parallelization enabled 

long-term continuous simulations for flood risk assessments (Falter et al., 2015, Sairam et al., 2021) and paved 

the avenue for operational flood inundation and impact forecasting (Apel et al. 2022). In the latter study, Apel et 

al. (2022) set up the RIM2D model in a hindcast mode for the downstream part of the Ahr valley, from the gauge 295 
Altenahr down to the confluence with the Rhine River. This setup forms the basis for the analysis presented in 

this study and was further extended upstream for the domain Müsch-Altenahr (Fig. 1).  

RIM2D runs at the spatial resolution of 5 x 5 m. The topography is represented by the respective digital 

elevation model (DEM5), aggregated from the 1 x 1 m DEM of the federal state of Rhineland-Palatinate. The 

river channel bathymetry is poorly represented in the DEM5, i.e. the bankfull depth is underestimated. The mean 300 
long-term water depth along the Ahr river is between 0.4 m at gauge Müsch and 0.85 m at gauge Bad Bodendorf. 
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With water depths of up to 10 m during the July 2021 flood, Apel et al. (2022) showed that even the 10 m 

resolution is acceptable for simulating the inundation of this event. For the reach Altenahr – Sinzig, RIM2D 

exhibited a very high critical success index (CSI, Aronica et al., 2002) of 0.845 when run for event re-analysis 

driven by the reconstructed water depth hydrograph (Apel et al., 2022). The comparison of simulated and 305 
reported water depths also showed very good agreement: Based on 75 high water marks recorded at buildings in 

the inundated areas in the aftermath of the flood, the bias between reported and simulated water depth was -0.39 

m and the root mean squared error (RMSE) was 0.66 m.  

The model domain used in Apel et al. (2022) is extended here to the gauge Müsch encompassing the entire reach 

Müsch – Sinzig (Fig. 1). The roughness parameterization of the RIM2D model is carried out based on the 310 
Mundialis1 land cover mapping for Germany derived from Sentinel-2 data. . The land use map is reclassified into 

7 classes. 12 different sets of Manning’s values for these 7 land use classes (Table S1) are tested to find the best 

fit to the reconstructed flow hydrograph at gauge Altenahr. 

Buildings are extracted from the OpenStreetMap (OSM) building layer, rasterized to the resolution of the DEM 

and overlaid with the topography. Hence, buildings are treated as impermeable obstacles in the hydrodynamic 315 
simulation, i.e., water flow is simulated around the buildings. 

The upstream boundary condition for RIM2D is given by the hourly water depth hydrograph at gauge Müsch. 

The water depth is estimated from discharge time series simulated by mHM using the official gauge rating curve. 

The lateral inflow of the gauged tributaries Kirmutscheid, Niederadenau, Denn and Kreuzberg is added by 

assigning the water depth hydrographs derived from the gauge rating curves from mHM discharges at the 320 
tributary mouths. For the 9 ungauged tributaries (Fig. 1) synthetic rating curves are derived to convert mHM 

discharge to water levels using Manning’s equation. The wetted perimeter, slope and gauge datum (= bed 

elevation) are derived from the DEM5 and a roughness value of n = 0.03 s m-1/3 is assumed. The resulting water 

level hydrographs are provided as lateral boundaries to RIM2D. At the downstream boundary, the normal depth 

condition is assumed, i.e., the water level gradient is the same across the domain boundary as for the previous 325 
two cells at the boundary. The two RIM2D simulation domains are initialized with steady-state conditions 

corresponding to the discharge just before the flood wave. For gauge Müsch, this was Q = 9 m3 s-1 (0.8 m water 

depth), which corresponds to the discharge recorded on 14 July 10:00. For gauge Altenahr, the discharge from 

the initial phase of the rising limb of the flood event with Q = 130 m3 s-1 (2.68 m water depth) at 14 July 17:00 is 

used. The simulations are continued until the steady state is established and the river channel represented by the 330 
DEM is filled.  

3.4 Simulation experiments and evaluation procedure 

All 25 spatial counterfactuals are simulated with mHM and RIM2D in addition to the reference scenario (S0). 

The mHM results in terms of peak flow and event volume are compared for all 7 gauges in the Ahr catchment. 

From all simulations with RIM2D, we select two counterfactuals with the highest and the lowest water level at 335 
the gauge Altenahr and compare them to the reference scenario. To evaluate the changes in the resulting 

 
1 https://www.mundialis.de/en/germany-2020-land-cover-based-on-sentinel-2-data/ 



 
 

11 
 

inundation areas, maximum and mean water depths, we select 11 focus areas (Fig. 3) and compute the respective 

changes. 

 

Figure 3. Overview of 11 focus areas used for evaluation of spatial counterfactuals with regards to inundation 340 
impact. These areas were particularly hit by the July 2021 flood. 

 

4. Results 

4.1 Antecedent and event precipitation in the counterfactual scenarios 

For all scenarios, we compute the mean areal precipitation of the catchment gauged at Altenahr. We aggregate 345 
the event precipitation into 1, 3, 6, 12 and 24 h totals and find the maximum totals during the event (Table 1). 

Additionally, we aggregate the 2-day precipitation prior to 14 July 2021 to determine antecedent precipitation. 

For all counterfactuals with eastward shifting, we detect higher antecedent and event precipitation for all 

aggregation time windows compared to the S0 scenario. The westward shifts result in a gradual decrease of all 

precipitation indicators (Table 1). The scenarios E3 and E4 stand out as they exhibit the highest precipitation 350 
values at 6 h,12 h and 24 h aggregation steps. 

Table 1. Total maximum areal precipitation for 1, 3, 12, 24 h durations and antecedent 2-day precipitation prior 

to 14 July 2021 0:00 UTC for all spatial counterfactuals and the reference scenario for the Altenahr catchment. 

Maximum values are in bold. 

Scenarios 1h 
[mm] 

3h 
[mm] 

6h 
[mm] 

12h 
[mm] 

24h 
[mm] 

Antecedent 
precipitation [mm] 

W3 8.0 23.6 44.7 70.8 72.2 15.3 
W2 8.7 25.3 49.1 78.6 80.8 15.9 
W1 9.3 27.7 52.8 86.1 89.6 16.4 
S0 10.3 29.8 56.7 92.9 97.9 16.8 
E1 11.0 31.5 60.7 98.0 105.0 17.1 
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E2 11.6 33.8 64.6 101.2 110.2 17.5 
E3 12.8 36.9 66.9 102.2 113.3 17.8 
E4 14.5 39.0 67.6 101.0 114.3 18.2 
E5 15.7 39.8 66.2 97.8 113.4 18.8 
E6 16.6 39.6 63.1 93.0 111.1 19.5 
E7 17.2 38.4 58.7 87.6 108.7 20.8 
E8 17.5 36.6 54.0 83.5 107.0 22.5 
E9 17.2 35.4 50.8 79.8 105.2 23.6 

E10 16.4 34.1 48.8 76.8 103.6 24.1 
E11 15.2 32.3 46.2 73.6 102.0 23.8 
E12 13.8 31.3 43.5 70.7 101.6 23.5 
E13 12.6 30.5 41.4 68.5 102.8 23.1 

E5N4 11.3 29.0 55.5 94.0 101.5 31.2 
E5N3 11.5 31.6 59.4 96.5 106.1 28.2 
E5N2 12.8 34.1 62.3 98.0 109.3 24.2 
E5N1 14.3 37.0 64.7 98.4 111.9 20.7 
E5S1 17.2 42.3 66.5 96.6 113.5 20.0 
E5S2 18.0 43.9 65.2 94.9 112.3 23.3 
E5S3 17.9 44.2 62.5 93.1 109.6 27.9 
E5S4 16.7 43.0 58.0 89.2 105.1 31.6 
E5S5 15.9 40.5 52.4 83.2 99.1 33.8 

 355 

4.2 Calibration and validation of the hydrological model 

The calibration results for the gauges Altenahr and Müsch over the period from 2016 to 2021 deliver wNSE 

values of 0.98 and 0.97, respectively. The validation performance at the other 5 gauges ranges with wNSE values 

between 0.35 at gauge Kreuzberg to 0.94 at gauge Bad Bodendorf. Figure 4 illustrates the model performance at 

the Altenahr gauge, including the hydrographs of the two largest floods within 2016-2021. The simulated 360 
streamflow shows a good agreement with the observations, especially for the high values including 2021 flood 

event. The peak difference with the reconstructed data is only 7.8%. Compared to the high wNSE value of 0.82 

across all gauges, the average KGE and NSE values are relatively low at 0.59 and 0.57, respectively. This poorer 

performance mainly results from the overestimation of the low flow by the model. 
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 365 

Figure 4. Simulated and observed/reconstructed discharge (Q) timeseries for the gauge Altenahr during 2016-

2021. Two insets display the hydrographs for the two largest recorded flood events in June 2016 and July 2021. 

4.3 Discharge in the counterfactual scenarios 

All spatial counterfactuals are evaluated in terms of changes in flood peak and flood event volume with respect 

to the reference scenario (S0) at 7 gauges (Fig. 5). The flood volume is computed for the event duration from 13 370 
July 00:00 to 18 July 23:00 UTC. For comparison, also the reconstructed event is plotted in the volume/peak 

change diagrams. For every sub-catchment, we find scenarios that result in both a larger peak flow and a larger 

event volume compared to the reference scenario (S0). The maximum changes are simulated at gauge Denn 

reaching nearly 160 % increase in peak flow and around 90 % increase in event volume for the E7/E8 

counterfactuals. Besides Denn, other sub-catchments located in the south-eastern part of the Ahr catchment, 375 
including Kirmutscheid and Niederadenau, exhibit a strong reaction with more than 75 % and 100 % change in 

peak flow, respectively. In these two tributaries, the counterfactuals with eastward and southward shifts caused 

the highest peaks (E5S2/E5S3). The least sensitive sub-catchment is Müsch with the maximum peak and volume 

increase of about 20%. With a westward precipitation shift, the peak flow decreases up to 30% (W3). The 

precipitation footprint in the reference scenario (S0) shows already intensive rainfall in the north-western part of 380 
the Ahr catchment (Fig. 2) and represents one of the worst scenarios for the Müsch sub-catchment when 

compared to the shifted patterns. The westward shifts (W1 – W3) result in gradual and nearly proportional 

reduction of peak and volume in all sub-catchments. The gauge Denn shows here the most sensitive response 

with the reduction of up to 60 % (Fig. 5). 

In several small sub-catchments, i.e., Denn, Niederadenau, Kirmutscheid and Kreuzberg, the counterfactuals are 385 
strongly aligned along a bisecting line. The larger sub-catchments Müsch, Altenahr and Bad Bodendorf are less 

sensitive and show a more mixed response, i.e., the points form clouds rather than a line (Fig. 5). The linear 

response is observed in the tributaries, while the mixed response is simulated for gauges at the main stream. In 

small catchments, the stronger the overlap between the precipitation footprint and the catchment area, the 

stronger the response is. In larger catchments, the inflow from different tributaries is mixed and the entire 390 
reaction is dampened. 
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Figure 5: Simulated changes of the flood peak and volume in the counterfactual scenarios as compared to 

the reference scenario (S0) at 7 gauge locations in the Ahr catchment.  

The worst counterfactuals in terms of maximum peak or volume changes are different for different sub-395 
catchments. There is no single worst-case scenario for all tributaries which causes the worst case in the main 

channel. Further, there is no single clear sequence of counterfactuals with increasing order of response 

(increasing peak and volume) valid for all tributaries that would translate into a similar sequence of 

counterfactuals for gauge Altenahr. However, in general, eastward shifts of the precipitation by about 13.5 to 

22.5 km (E3-E5) with some additional southward shifts (E5S1-E5S5) result in the highest peaks in almost all 400 
tributaries. 

Figure 6 takes a closer look at the gauge Altenahr upstream of the major town Bad Neuenahr-Ahrweiler where 

widespread inundation and impacts occurred in July 2021. The worst counterfactual in terms of flood peak 

change is E5 (eastward shift of about 22.5 km), which results in an increase of 32 % and a corresponding flood 

volume change of 26 %. Several other counterfactuals result in peak flow changes that are only a few percentage 405 
points lower (E3 (28.5 %), E5S1 (31.5 %), E5S2 (30 %)). These scenarios exhibit the highest areal precipitation 

in the Altenahr sub-catchment at various time scales (Table 1). Particularly, E3 scenario has the highest 6 and 12 

h precipitation. Many counterfactuals with eastward shifts of only a few kilometers result in peak and volume 

increases of more than 10 %. The strongest volume increase of 32% (E13) is not much larger than in the highest-

peak counterfactual E5 (28%) (Fig. 6). The E13 scenario, however, delivers a small reduction of peak flow by 410 
0.5 %.  
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Figure 6. Flood hydrographs for the simulated reference scenario (S0) and spatial counterfactuals, as well as the 

reconstructed flood hydrograph of the July 2021 flood at the gauge Altenahr. Inset displays the peak/volume 

change diagram for various scenarios. 415 

4.4. Calibration and validation of the hydrodynamic model 

The RIM2D model is manually calibrated by testing 12 different parameter sets and comparing the resulting 

water level hydrographs to the hydrogaph reconstructed at the gauge Altenahr (Fig. 7). RIM2D is driven by the 

water level hydrograph at the gauge Müsch as an upstream boundary condition. This hydrograph is derived from 

the calibrated mHM flow simulations that are converted to water levels using the rating curve at gauge Müsch. 420 
Lateral inflows from the tributaries are considered as described in Section 3.3.  

We select the calib4 parameter set (Table S1) as it provides the best match between the simulated and 

reconstructed water level hydrograph at gauge Altenahr when using mHM output as boundary conditions for the 

RIM2D model of the Müsch-Altenahr reach (Fig. 7). This parameter set is further used to simulate spatial 

counterfactual inundations. The calibrated RIM2D simulation shows higher initial water levels because of the 425 
assumed higher initial water depths and overestimates the water depths by 0.13 m, with an earlier rise of the 

flood limb compared to the reconstruction. On the contrary, the mHM hydrograph shows a stronger attenuation 

and lower peak of 0.55 m. This can in part be explained by the simple kinematic wave routing used in mHM and 

by uncertainty introduced by applying an extrapolated rating curve at gauge Altenahr to convert the mHM 

simulated flows into water levels. 430 

For the lower reach Altenahr-Sinzig a dedicated roughness calibration was performed applying a Monte-Carlo 

sensitivity analysis (Khosh Bin Ghomash et al., 2025). From this study, the best performing roughness data set 
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for simulating inundation extent, water level in the river and water depths in the floodplain was selected to 

simulate the counterfactual inundation in this reach. 

 435 

Figure 7. Water depth (h) hydrographs: reconstructed gauge record, simulated by RIM2D using the best 

roughness parameter set (calib4) and mHM S0 discharge simulation at the gauges in the reach Müsch-Altenahr, 

and the simulated discharge at Altenahr by mHM converted to the water depths hydrograph using the 

extrapolated rating curve at the gauge Altenahr. 440 

 

4.5 Inundation in the counterfactual scenarios 

We simulate inundation dynamics for all 25 spatial counterfactuals as well as for the reference scenario S0. 

Different counterfactuals result in different maximum water levels and inundation areas at different locations 

along the Ahr river. At the gauge Altenahr, for example, the maximum water level between the counterfactual 445 
scenarios simulated by RIM2D ranges between 169.20 and 172.70 m a.s.l. around 169.19 m a.s.l. corresponding 

to scenario S0 (Fig. 8). The span between the maximum water levels of the counterfactuals is 3.5 m, indicating 

how much less or more severe the flood could have been with shifting rainfall fields. In the RIM2D simulations, 

the highest water level is reached in scenario E3 and the lowest one in W3. These counterfactuals are selected for 

further detailed analysis of changes in inundation. The range of maximum water levels converted from the mHM 450 
discharge simulations is with 4.32 m somewhat larger compared to RIM2D (Fig. 8). In the mHM ensemble of 

counterfactuals, the largest peak at the gauge Altenahr is obtained in E5 and the lowest in W3. As explained 

earlier, the different routing schemes, underlying data and conversion of discharge to water levels for mHM 

influence the ordering of the counterfactual scenarios, although the differences are small, e.g., the difference 

between E3 scenario run with RIM2D routing and E5 scenario run with mHM and converted to water level 455 
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amounts 0.52 m (Fig. 8). Since we analyze relative changes between counterfactuals, this difference is not 

expected to notably affect the final results and conclusions. 

 

Figure 8. Comparison of maximum water depths (h) at gauge Altenahr simulated with RIM2D and mHM 460 
discharge concerted by the gauge rating curve. “shift0” indicates the actual flood event with no shift of the 

rainfall field. 

The strong discrepancy in lower water levels between RIM2D and the reconstructed scenario can be explained 

by assumed initial water depths in the RIM2D model, which are higher than the water levels in the Ahr before 

the rise of the flood hydrograph. This initial water depths were set that high to ensure a continuous flow in the 465 
river channel, which bed elevation is not properly represented in the unmodified 5m DEM. Nevertheless, the 

peak water levels are comparable, as the effect of the high initial water depths fades out with increasing water 

depths. In the previous study by Apel et al. (2022), the maximum water depths in the inundated floodplains 

between Altenahr and the Ahr outlet were also shown to match well with field records. The higher water depths 

at the onset of the flood event may contribute to higher celerity in the RIM2D simulations resulting in an earlier 470 
flood peak compared to the reconstructed one. 

In the following step, we analyze the resulting differences in mean and maximum water depths as well as the 

difference in flooded area between the reference scenario (S0) and the two counterfactuals W3 and E3 (Table 2, 

Fig.9-11, A1-A4). The fact that both W3 and E3 counterfactuals correspond to the same shift of the precipitation 

footprint by about 13.5 km, but in opposite directions, allows us to investigate the sensitivity of inundation 475 
characteristics to these shifts. 

Table 2. Difference in mean and maximum simulated water depth (h) and flooded area between the reference 

scenario and the spatial counterfactuals resulting in the highest (E3) and lowest (W3) maximum water depth at 
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gauge Altenahr. *Max h gives the 99.99 percentile of water depths to avoid potential biases by spurious 

maximum water depths caused by numerical instabilities and/or DEM errors. 480 

 W3 – S0 E3 – S0 

Focus area Mean h 

[m] 

Max h 

[m]* 

Flooded 

area [%] 

Mean h 

[m] 

Max h 

[m]* 

Flooded area 

[%] 

Schuld -0.82 -1.53 -10.64 0.75 1.24 6.96 

Insul -0.32 -0.90 -13.21 0.38 0.79 7.61 

Dümpelfeld -0.36 -2.18 -49.59 0.43 0.98 19.59 

Brück-Ahrbrück -0.70 -1.27 -15.61 0.79 1.06 5.54 

Kreuzberg -0.78 -1.37 -17.42 0.93 1.45 9.13 

Altenahr -1.50 -2.09 -5.68 1.25 1.75 4.24 

Mayschoß -0.10 -1.85 -32.15 0.31 0.65 6.63 

Dernau -0.59 -0.86 -8.61 0.32 0.46 1.59 

Rech -1.34 -1.64 -5.67 0.52 0.64 1.89 

Bad Neuenahr-Ahrweiler -0.48 -1.07 -11.37 0.19 0.44 3.53 

Bad Bodendorf -0.42 -0.64 -8.36 0.15 0.23 2.48 

 

The results are presented for 11 selected focus areas. For all areas, E3 leads to a consistent increase of all three 

inundation characteristics, whereas W3 results in a consistent decrease. In the E3 scenario, the mean and 

maximum water depths are 1.25 and 1.75 m higher, respectively, than in S0 in the area of Altenahr. In the 

adjacent area at Kreuzberg, these numbers reach 0.93 and 1.45 m. In these topographically constricted areas, 485 
changes in inundated areas are relatively small around 4 and 9 % (Table 2, Fig. 9).  
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Figure 9. Inundated area and maximum water depths in the focus areas of Altenahr and Kreuzberg for the 

reference scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 

The largest increase in the flooded area of nearly 20 % in E3 is detected in the village Dümpelfeld at the mouth 490 
of the Adenauer Bach tributary (Fig. A1). Here, also the maximum water depth is higher by nearly 1 m 

compared to S0. This focus area also shows the largest inundation area decrease of nearly 50 % in the W3 

scenario. The Adenauer Bach catchment has a distinct north-south orientation (Fig. 3). Hence, it becomes highly 

sensitive to the shifts of the precipitation footprint along the east-west axis. Three focus areas that were severely 

hit by the flood and experienced large damages – Schuld, Insul and Brück-Ahrbrück – also show a relatively 495 
high sensitivity of the inundation indicators to the east-west shifting (Fig. A1 and A2). Particularly at Schuld, 

with narrow, deeply incised valley, the mean and maximum water depths show strong variations between E3, S0 

and W3 (Table 2).  
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In Mayschoß, the eastward shift results in a comparatively modest increase in inundation area of about 7 % and 

an increase of mean and maximum water depths of 0.31 m and 0.65 m, respectively, compared to S0 (Table 2). 500 
However, W3 results in a dramatic relief for this focus area: the inundation extent is reduced by 32 %, since the 

settlement area in the southern part of the village is entirely spared from flooding (Fig. 10). The sensitivity of the 

inundation indicators reduces substantially downstream of Altenahr and Mayschoß in the areas of Dernau, Bad 

Neuenahr-Ahrweiler and Bad Bodendorf with the exception of Rech (Table 2, Fig. 10-11, A3-A4). 

 505 

 

Figure 10. Inundated area and maximum water depths in the focus areas of Mayschoß and Dernau for the 

reference scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 

In the downstream areas with wider floodplains at Bad Neuenahr-Ahrweiler and Bad Bodendorf the simulated 

changes in inundated areas and water depths are comparatively small between the analyzed counterfactuals. 510 
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Mean water depths differences vary between -0.48 m and 0.19 at Bad Neuenahr-Ahrweiler and -0.42 m and 0.15 

m at Bad Bodendorf. These two focus areas experienced the highest number of flood victims in the Ahr 

catchment. Although the increase in inundation areas and flood depths is not dramatic for E3, the relief for the 

comparable westward shift is stronger, but still smaller compared to other focus areas (Table 2, Fig. 11, Fig. A4). 

Here, most of the settlement areas remain exposed to flood waters. The lower sensitivity of the downstream areas 515 
can be expected, as they integrate the discharge from different tributaries and parts of the catchment. So, lesser 

precipitation input and less severe flooding in some sub-catchments is compensated by more severe flooding of 

the others. 

 

 520 

Figure 11. Inundated area and maximum water depths in the focus area of Bad Neuenahr-Ahrweiler for the 

reference scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 

4.6 Impact in counterfactual scenarios 

Table 3 shows the affected buildings in the focus areas for the W3, S0, and E3 scenarios. Affected buildings are 

determined by buildings, whose footprint plus a buffer of 2 m around the footprint have a mean inundation depth 525 
above 0.0 m. The buffer was used, because the footprints are rasterized to 5 m resolution, thus losing some 

detail, and because the footprints are excluded from the hydraulic simulations, thus always showing inundation 

depths of 0.0 m in the rasterized representation. The percentage of affected buildings in the focus areas ranges 

from 52.1 % at Bad Bodendorf up to 87.9 % at Rech (Table 3). These number increase to 54.1 % at Bad 

Bodendorf to 90.2 % at Insul in the E3 scenario. The range of the affected buildings between the scenarios 530 
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depends on the topography of the individual focus areas, but also on the different tributary discharge and 

consequent inundation. In the case of Dümpelfeld, the large difference in inundation is caused by the much 

higher discharge of the tributary brook Adenauer Bach in E3. In this case also the fire brigade station is affected, 

which was not the case during the actual event (Fig. 12). The inundation depth is moderate (around 0.2 m), but 

this could have impaired the responsiveness of this brigade. 535 

 

 

Figure 12. Maximum inundation depths in the scenario S0 (left) and E3 (right). Inundation around the fire 

brigade in Dümpelfeld is about 0.2 m in the E3 scenario. Building footprints shown are OSM footprints buffered 

with 2 m. 540 

Table 3. Number and percentage of affected buildings in the focus areas for the least (W3), reference (S0) and 

most severe (E3) counterfactual scenario. 

Focus area Buildings W3: affected  

 

S0: affected E3: affected 

 

 number number % of total number % of total number % of total 

Schuld 412 199 48.3 218 52.9 231 56.1 

Insul 338 250 74 282 83.4 305 90.2 

Dümpelfeld 150 40 26.7 91 60.7 103 68.7 

Brück-

Ahrbrück 

200 145 72.5 163 81.5 174 87 

Kreuzberg 138 86 62.3 95 68.8 103 74.6 

Altenahr 596 464 77.9 485 81.4 498 83.6 

Mayschoß 347 140 40.3 211 60.8 222 64 

Dernau 300 105 35 157 52.3 164 54.7 

Rech 662 547 82.6 582 87.9 593 89.6 
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Bad 

Neuenahr-

Ahrweiler 

6118 3703 60.5 4228 69.1 4365 71.3 

Bad 

Bodendorf 

2117 896 42.3 1103 52.1 1144 54.1 

 

 

5. Discussion 545 

The present analysis suggests that the Ahr flood catastrophe could have easily turned much worse if the 

trajectory of atmospheric moisture flow and the precipitation footprint were shifted just 10-20 km eastwards. 

This trajectory was primarily controlled by the atmospheric circulation and the position of the low-pressure 

system. We could not observe a notable effect of orography on the emergence of areas of particularly heavy 

precipitation in the Ahr catchment. Hence, the explored shift seems to be realistic and may occur in the future. 550 
The overall low probability of such an extreme event still has to be kept in mind (Kreienkamp et al., 2021, 

Vorogushyn et al., 2022). 

The hydrologic response of the sub-catchments to the imposed spatial counterfactuals is strikingly different. In 

small sub-catchments, we simulate much higher peak flows, of up to 160 % at gauge Denn, compared to the 

reference scenario S0. In larger sub-catchments, the response is weaker, but still notable. For example, at the 555 
gauge Altenahr, we simulate about 32 % higher peak discharge for an eastward shift of about 20 km. The same 

event generates more than 20 % higher flood event volume (Fig. 6). A similar maximum increase of peak flow at 

gauge Altenahr by about 30 % was found by Voit and Heistermann (2024a), who applied a much broader range 

of spatial counterfactuals. Thus, this value seems to be the maximum peak flow enhancement that can be 

achieved by shifting such an event in space. Other modifications of the observed precipitation event are possible, 560 
such as a rotation of the precipitation footprint or changes in the overall intensity or the spatio-temporal 

structure. Voit and Heistermann (2022) noted that precipitation intensities can be flood-effective at different 

spatial and temporal scales. Hence, by modifying the overall spatio-temporal structure of the precipitation an 

even stronger response cannot be ruled out. In addition, higher precipitation intensities are likely to occur in a 

warmer climate (Kreienkamp et al., 2021, Tradowski et al., 2023, Ludwig et al., 2023). Such changes in 565 
precipitation may be amplified by a non-linear runoff generation response, for example, when the prevailing 

flood generation process changes to faster overland and subsurface flow with increasing rainfall intensities 

(Rogger et al., 2012, Macdonald et al., 2024). Hence, the non-linear exacerbation of peak runoff, e.g., as 

projected by Ludwig et al. (2023) of up to 39 % at gauge Altenahr for a +2°C warmer climate, can be even 

further aggravated by an unfavorable spatial counterfactual. 570 

The hydrodynamic response to the spatial counterfactuals varies between the locations along the river. We 

observe different sensitivities of water depth and inundation extent at different locations to comparable shifts 

along the east-west axis. Small tributaries show a strong response in water depth and inundation extent at the 

confluence into the main channel. As can be expected from morphological characteristics, mean and maximum 

water depths exhibit a strong sensitivity in constricted incised valleys. In the wider floodplains of the 575 
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downstream areas at Bad Neuenahr-Ahrweiler and Bad Bodendorf, the differences in water depths between the 

counterfactuals are comparatively small. The strongest response of mean and maximum water depths is 

simulated around Altenahr. Here, shifts of the precipitation footprint in east and west direction by about 10-15 

km result in changes of mean and maximum water depths by about -1.5 – +1.25 m and -2.1 – +1.75 m, 

respectively. In the area around Altenahr, the flow from all major tributaries is concentrated in a relatively 580 
narrow valley, before the flood wave propagates further downstream and attenuates on wider floodplains at Bad 

Neuenahr-Ahrweiler and Bad Bodendorf. The significant increase of maximum water depths in the worst 

counterfactual raises the number of affected buildings and can also potentially affect critical infrastructure such 

as fire brigade hubs involved into catastrophe management. Hence, spatial counterfactuals are helpful for 

planning and securing the operation of critical services in advance of unprecedented floods.  585 

The use of the hydrologic and hydrodynamic models for the analysis of spatial counterfactuals is associated with 

uncertainties in model structure and input data and parameterization. We, however, analyze relative differences 

in flood characteristics between various scenarios. Hence, the effect of uncertainty is expected to be fairly 

limited on the final results and conclusions and we do not explicitly consider these uncertainties in the presented 

analysis. Interestingly, Voit and Heistermann (2024a) found a very similar maximum relative increase of flood 590 
peak for the Ahr flood using a different hydrological model and completely different approach to construction of 

counterfactuals. This confirms our expectation. In fact, we can view the analysis of spatial counterfactuals as 

exploration of aleatory uncertainty (natural variability) in spatial precipitation footprints. 

Here, we analyze only a limited number of spatial counterfactual scenarios, 25 in total. Precipitation fields are 

shifted in discrete steps of 0.0625° in fixed directions primarily along the west-east axis and at the fifth step 595 
eastward along the north-south axis. We selected these scenarios after visual analysis of precipitation fields 

aiming at maximizing the total precipitation input over the Ahr catchment. There is no guarantee that some other 

scenarios exist that might cause even higher peak flows and stronger inundation at specific locations. The 

number of spatial counterfactuals is virtually infinite. Our aim is however not to identify the worst-case scenario, 

but rather to explore a computationally feasible set of unprecedented events. In search for unprecedented events, 600 
Merz et al. (2024) also considered 24 spatial counterfactuals for each of the past 10 most damaging floods in 

Germany. They performed systematic shifts in 8 azimuthal directions and with much larger radii (20, 50 and 100 

km) compared to our approach. Voit and Heistermann (2024a) relaxed the spatial constraints even further, by 

shifting the past 10 most severe precipitation events to match the centroids of more than 22,000 sub-catchments 

across Germany. Theoretically, even in these two cases the existence of an uncovered worst-case counterfactual 605 
cannot be ruled out.  

Shifting past rainfall events to different area raises concerns about the plausibility of the occurrence of such 

events. This depends on the type and strength of the precipitation events as well as the moisture transport 

patterns and their interactions with orography. Recently, Voit and Heistermann (2024b) compared global and 

local spatial counterfactuals for generating synthetic floods in small basins in Germany. Global counterfactuals 610 
were based on shifting high-precipitation events across entire Germany, whereas local counterfactuals were 

constructed by shifting the events withing a 20-km buffer around a catchment of interest in Germany. As could 

be expected, global counterfactuals can produce more extreme floods than local counterfactuals, but credibility 

of such scenarios becomes questionable with increasing transposition distance. Although the question about the 

reasonable transposition distance remains open, Voit and Heistermann (2024b) demonstrated that already from 615 
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high-precipitation events within a small radius of 20 km, an alarming number of plausible flood events 

exceeding 50 and 200-year return periods can be generated for a catchment of interest. It is clear that the further 

away a precipitation event is shifted, especially into different topographic and climatic settings, the more 

questionable the plausibility of its occurrence becomes. This issue can be addressed, for example, by shifting the 

event triggering circulation pattern in a climate model and letting the event to develop under slightly different 620 
initial conditions but constrained by the actual orography. Perturbations to past events to construct “future 

weather” are typically applied to explore how the event would unfold under warmer conditions (e.g., Manola et 

al., 2018, Ludwig et al., 2023). Similar experiments can be conceived in a stationary climate, but applying spatial 

counterfactuals to circulation dynamics. This approach introduces additional uncertainties through a climate 

model and requires additional computational effort. Also, the resulting events would not be strictly spatial 625 
transposition of the past precipitation footprints, but would unfold their own spatio-temporal dynamics. Further 

relaxing meteorological constraints, stochastic generation of event sets by modifying specific characteristics of 

the past observed events, e.g., spatial extent, total rainfall volume and peak intensity, considering their marginal 

statistic can be considered following the approach by Diederen and Liu (2020).  

Our approach limits the number of spatial counterfactuals due to computational constraints and evaluation effort. 630 
We do not seek to find the worst possible spatial counterfactual, which may even be far from the probable 

maximum flood, i.e., the worst possible flood. We rather argue that even small changes in moisture flow and 

shifts of precipitation fields by a few kilometers may cause even more severe consequences than have been 

experienced. Our results should alert emergency and flood risk managers as well as the general public that the 

past catastrophe was not the worst possible flood, but could have easily turned worse and thus may occur as such 635 
in the future. 

The approach of spatial counterfactuals is charming from the perspective of flood risk communication as it can 

be easily explained and demonstrated to both flood risk professionals as well as to the general public. The 

approach is based on perturbing an actual past precipitation or flood event which is familiar to most people in the 

affected communities. Hence, people can imagine more easily the possibility of even worse catastrophe 640 
dynamics and impacts. This will hopefully increase their willingness to undertake risk reduction measures for 

unprecedented events. 

6. Conclusions 

In the presented paper, we use the approach of spatial counterfactuals to explore unprecedented floods. By 

systematically shifting in space the footprint of the precipitation event, which caused the deadly July 2021 flood 645 
in the Ahr catchment in Germany, we simulate the resulting flood peaks, inundation areas and maximum depths 

as well as exposed assets. Our findings suggest that the 2021 flood catastrophe could have been even worse if the 

atmospheric moisture trajectory hit the catchment only 15-25 km further east. In this case, we simulate peak 

flows at gauge Altenahr of about 32 % higher compared to the simulation of the actual flood. This increase in 

peak is associated with an increase in flood event volume of 26 %. In some small tributaries, increase in peak 650 
flows of up to 160 % is simulated in these counterfactuals. The resulting differences in inundation extents and 

depths vary along the valley depending on counterfactuals and topographic properties of specific areas. For 

example, in a focus area around Altenahr, the mean and maximum inundation depths increase by 1.25 and 1.75 

m, respectively, in the worst simulated scenario. We demonstrate that considerably more assets could have been 
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affected by a counterfactual flood including some critical infrastructure such as a fire brigade hub. We encourage 655 
the use of spatial counterfactuals for informing flood risk professionals as well as the general public on potential 

unprecedented events thus fostering better precaution and flood risk management in the years to come. 

Appendix A 

Table A1. Parameter sets of Manning’s roughness coefficients for different land use classes used for calibration 

of the RIM2D model. 660 

Land use 

class 

calib1 calib2 calib3 calib4 calib5 calib6 calib7 calib8 calib9 calib1

0 

calib11 calib1

2  

Forest 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.1 0.05 0.1 0.04 0.2 

Low 

vegetation 

0.045 0.045 0.035 0.035 0.035 0.035 0.05 0.05 0.03 0.025 0.025 0.05 

Water 

bodies 

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Build-up 

areas 

0.025 0.025 0.025 0.025 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 

Bare soil 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.025 0.025 0.05 

Agricultural 

land 

0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.03 0.025 0.025 0.05 

River 

channel 

0.02 0.018 0.02 0.018 0.02 0.02 0.02 0.02 0.02 0.018 0.018 0.025 
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 665 

Figure A1. Inundated area and maximum water depths the focus areas Schuld, Insul and Dümpelfeld for the 

reference scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 
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Figure A2. Inundated area and maximum water depths in the focus area Brück-Ahrbrück for the reference 675 
scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 
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 680 

Figure A3. Inundated area and maximum water depths in the focus area Rech for the reference scenario S0 as 

well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 
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 690 

 

 

Figure A4. Inundated area and maximum water depths in the focus area Bad Bodendorf for the reference 

scenario S0 as well as differences between E3 and S0 (E3-S0) and W3 and S0 (W3-S0) scenarios. 

 695 

Data and code availability. mHM model code is freely available under https://doi.org/10.5281/zenodo.8279545. 
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(Landesamt für Umwelt, Rheinland-Pfalz) (https://wasserportal.rlp-umwelt.de). Spatial counterfactual 
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