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Abstract. Landslides due to rainfall are among the most destructive natural disasters that cause property damages, 21 

huge financial losses, and human deaths in different parts of the World. To plan for mitigation and resilience, the 22 

prediction of the volume of rainfall-induced landslides is essential to understand the relationship between the volume 23 

of soil materials debris and their associated predictors. The objectives of this research are to construct a model using 24 

advanced data-driven algorithms (i.e., ordinary least squares or Linear regression (OLS), random forest (RF), support 25 

vector machine (SVM), extreme gradient boosting (EGB), generalized linear model (GLM), decision tree (DT), deep 26 

neural network (DNN), k-nearest neighbor (KNN) and Ridge regression (RR)) for the prediction of the volume of 27 

landslides due to rainfall, considering geological, geomorphological, and environmental conditions. Models were 28 

trained and tested on South Korean landslide dataset, with the EGB predictions yielding the highest coefficient of 29 

determination (R² = 0.8841) and the lowest mean absolute error (MAE = 146.6120 m³), followed by RF predictions 30 

(R² = 0.8435, MAE = 330.4876 m³) on the holdout set. The results indicated that the DNN, EGB, and RF models 31 

exhibited R2>0.8 on both the training and test sets. The difference in coefficient of determination R2 on the training 32 

and holdout set were 1.75, 7.72, and 12.17% for RF, EGB and DNN, respectively, signifying that these models could 33 

yield reliable volume estimates in adjacent areas with similar geomorphological and environmental settings. The 34 

volume of landslides was strongly influenced by slope length, maximum hourly rainfall, slope angle, aspect, and 35 

altitude. The anticipated volume of landslides can be important for land use allocation and efficient landslide risk 36 
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management. 37 
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1. Introduction 42 

Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural position and slide downward 43 

along a slope due to gravity forces. Intense or long-duration rainfall infiltrates the soil and increases the pore pressure, 44 

resulting in soil saturation that leads to slope failure. The saturated soil becomes weak and loses cohesion, and the 45 

slope fails when rainfall crosses a certain threshold (Bernardie et al., 2014; Martinović et al., 2018; Lee et al., 2021). 46 

The heavy rainfall saturates a slope and triggers a landslide due to the reduction of the soil's shear strength and the 47 

increase of pore water pressure (Tsai and Chen, 2010; Lacerda et al., 2014; Chatra et al., 2019; Chen et al., 2021; 48 

Luino et al., 2022). For example, steep slopes with loose soils and even moderate rainfall can lead to the displacement 49 

of an enormous quantity of soil mass. On the contrary, in slopes with more stable, cohesive soils, the surface failure 50 

might be smaller (Tsai and Chen, 2010). The rainfall quantity and duration influence the volume of the landslides; the 51 

higher the intensity and the longer the duration of rainfall, the larger the resulting surface failure (Chang and Chiang, 52 

2009; Bernardie et al., 2014; Chen et al., 2017). The landslide occurrences can also be influenced by human activities 53 

that weaken the slope, such as excavation at the slope toe and loading caused by construction and land use such as 54 

agriculture, mining etc. (Rosi et al., 2016). The rapid urbanization activities in mountainous regions affect the 55 

topography through hill cutting, deforestation and water drainage (Rahman et al., 2017); these activities disturb the 56 

slope structure and change the water flow, which exacerbates the effect of landslides in regions where human 57 

engineering activities are mostly located (Holcombe et al., 2016; Chen et al., 2019). Therefore, to mitigate landslide-58 

induced risks in the runout regions, estimation of the volume of landslides due to rainfall (VLDR) plays a crucial role.  59 

The quantification of the VLDR is essential for effective risk management (Tacconi Stefanelli et al., 2020), 60 

emergency response, engineering design (Cheung, 2021), economic assessment and environmental protection 61 

(Alcántara-Ayala and Sassa, 2023). With the estimates of VLDR, the morphologist can update hazard maps (Van 62 

Westen, 2000)  to reflect the scale of potential mass movement in various regions to obtain regions with similar 63 

likelihood of landslides of similar soil mass to highlight risk zone levels, i.e., low, moderate and high. These 64 

classifications help engineers to apply appropriate slope stabilization techniques depending on the level of risk ( Dahal 65 

and Dahal, 2017). Additionally, enhancing the precision of VLDR estimations and improving the predictive 66 

capabilities is essential for understanding and monitoring landscape evolution. Montgomery (2009) emphasized that 67 

the volume of landslides is a key factor in determining the extent of downstream damage, particularly for large debris 68 

flows or rock avalanches, which can drastically alter the landscape and affect surrounding ecosystems and 69 

infrastructure. Similarly, Korup (2004) further explored the long-term geomorphological effects of large-volume 70 

landslides, highlighting their importance in reshaping mountainous terrains and influencing sediment transport, which 71 

is critical for understanding both immediate and future landscape changes. However, the existing landslide 72 
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susceptibility models mostly used for the identification of regions susceptible to landslides (i.e., landslide zonation) 73 

(Kim et al., 2014; Gutierrez-Martin, 2020; Chen et al., 2021; Li et al., 2022), which are essential in emergency 74 

management because they provide a general overview of zones with a higher probability of landslide occurrence 75 

without emphasizing on the determination of the approximate value of the volume of failing mass in relation to 76 

excessive rainfall events. 77 

Numerous researchers used landslide inventory, remote sensing data and numerical techniques to establish 78 

the relationship between landslide geometry and the influencing factors to determine the landslide volume 79 

quantitatively. For example, Saito et al. (2014) studied the relationship between rainfall-triggered landslides to test 80 

whether the volume of landslides across Japan that occurred between 2001 and 2011 can be directly predicted from 81 

rainfall metrics. The findings revealed that larger landslides occurred when rainfall exceeded certain thresholds, but 82 

there were significant discrepancies between peaks of rainfall metrics and maximum landslide volumes, and the total 83 

rainfall was the suitable predictor of landslides. Dai and Lee (2001) established the frequency-volume relation for 84 

landslides in Hong Kong and noticed that the relation for shallow landslides above 4m3 followed the power law. The 85 

12-hour rolling rainfall contributed most to the prediction of the volume of landslides. Jaboyedoff et al. (2012) 86 

contributed by demonstrating the value of remote sensing technologies such as Light Detection and Ranging (LiDAR) 87 

in conjunction with field data to improve the accuracy of volume estimates and capture the geomorphological changes 88 

associated with landslides. Ju et al. (2023) constructed an area-volume power law model for the estimation of the 89 

volume of landslides using high-resolution LiDAR data collected between 2010 and 2020 in Hong Kong. The aim 90 

was to estimate accurately the volume of landslides on small-scale landslides. The reliance on localized datasets limits 91 

the model's applicability in regions with different geological settings, and the model does not consider all variabilities 92 

of landslide characteristics. Razakova et al. (2020) calculated landslide volume using remote sensing data to assess 93 

the efficiency of aerial photographs in environmental impact assessment and ground-based measurement. The study 94 

did not consider the effect of vegetation and topography and only focused on a single landslide case, which may be a 95 

source of bias due to differences in soil composition and environmental factors. Hovius et al. (1997) analyzed multiple 96 

sets of aerial photos and frequency-magnitude relations for landslides in New Zealand. The finding pinpointed that 97 

the landslides frequency-magnitude followed power law and infrequent large magnitude contributed to the landscape 98 

change. The study highlighted the importance of soil composition in landslide size, but the reliance on aerial photos, 99 

which may be  inaccurate in dense forest areas, and the omission of climatic factors limit the generality of the findings. 100 

Guzzetti et al. (2008) applied statistical methods on regional landslide inventories and antecedent rainfall data ranging 101 

between 10 min to 35 days. The findings revealed that the slope angle and soil type significantly influence landslide 102 

volume estimates, and the rainfall intensity is more important than duration. Chatra et al. (2019) applied numerical 103 

methods to study the effect of rainfall duration and intensity on the generation of pore pressure in the soil; the finding 104 

revealed a higher instability in loose soil compared to medium soil slopes. Huang et al. (2020) introduced a hybrid 105 

machine-learning model combining support vector regression (SVR) with a genetic algorithm to estimate debris-flow 106 

volumes. The model was tested on real-world case studies, showing improved accuracy in volume predictions 107 

compared to traditional methods. However, it was noticed that the study  relied on a limited dataset, which may reduce 108 

the model's generalizability to other regions of different geomorphology and environmental settings. Shirzadi et al. 109 
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(2017) compared the effectiveness of statistical and machine-learning models in simulating landslide volumes-areal 110 

relations, demonstrating that machine-learning techniques outperform traditional statistical methods in terms of 111 

accuracy. The study did not consider the climatic and geomorphic factors such as rainfall, vegetation, soil type, etc., 112 

triggering and influencing factors for the landslide occurrence. It was noted that existing models only treated the 113 

interaction of soil and rainfall without considering the environmental factors, human activity, and non-linear behavior 114 

of the triggering and influencing factors. 115 

In the present study, the volume of landslides due to rainfall is predicted using OLS, RF, SVM, EGB, GLM, 116 

DT, DNN, KNN and RR algorithms, considering the details of triggering factors (i.e., rainfall) and predisposing factors 117 

(i.e., geomorphological, soil and environmental). Here, we aim to construct a data-driven algorithm that combines 118 

input parameters for physical-based and empirical models and incorporates more complex non-linear features of input 119 

variables to predict the occurrence of associated events more accurately. The main assumption behind the data-driven 120 

algorithm is that the considered feature input of the model produces a similar volume of landslides due to rainfall and 121 

follows the same pattern at a particular region with the same features under the same quantity of rainfall. Here, we 122 

examine different machine learning (ML) algorithms and compare their performance using the coefficient of 123 

determinations (R2), mean square errors (MAE), Root mean square error (RMSE), Mean absolute percentage error 124 

(MAPE), and symmetric mean absolute percentage errors (SMAPE) of the predicted volume of landslides. The focus 125 

is to optimize the predictions of the volume of landslides due to rainfall, taking into account triggering and influencing 126 

factors with higher accuracy.  127 

 128 

2. Data and Study Region 129 

2.1. Study Region 130 

The region for testing the model is South Korea, characterized by mountainous (63% of total land) relief, especially 131 

in the eastern part of the country (Lee et al., 2022). South Korea is located on the southern part of the Korean Peninsula, 132 

bordered by the Yellow Sea to the west coast and the East Sea (Sea of Japan) to the East. According to the Korean 133 

Meteorological Administration (https://www.kma.go.kr/), the country has a temperate climate characterized by four 134 

distinct seasons: hot and humid summers, cold winters, and springs and falls with moderate temperatures. The annual 135 

rainfall varies between 1000 mm to 1400 mm and 1800 mm for the central region and southern region, respectively 136 

(Jung et al., 2017; Alcantara and Ahn, 2020). During the summer, heavy rainfall from June to September leads to 137 

significant surface runoff, increases landslide risk, and causes approximately 95% of all landslides each year (Lee et 138 

al., 2020; Park and Lee, 2021). In addition, the landslides may be aggravated by typhoons, which mostly occur in 139 

August and September, and it is anticipated that frequency will increase due to climate change (Kim and Park, 2021). 140 

The rainfall trend analysis from 1971 to 2100 predicted an increase in rainfall of 271.23mm, which indicates the 141 

growing risk of landslides associated with climate change (Lee, 2016). Temperature variations are influenced by its 142 

geographical location; the average summer temperatures vary between 25 and 30°C, while winter temperatures can 143 

drop to -10°C in some parts of the country (https://web.kma.go.kr/). The South Korean geologically is mainly 144 

composed of granitic and metamorphic rocks, such as gneiss, schist, and granite, which influence the stability of the 145 

landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, river valleys, and coastal 146 
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plains, with the Taebaek Mountains running along the eastern edge (Kim et al., 2020). The influence of rainfall, 147 

environmental, geomorphology, and geological factors increase the vulnerability to landslides across the country, 148 

especially in the northeastern mountainous region, as depicted in Figure 1. The predominant soil types in South Korea 149 

include clay, sandy, and loamy soils, each with different characteristics affecting water infiltration, retention and 150 

erosion (Kang et al., 2022; Lee et al., 2023). Clay soils, being more stable, can become highly saturated, increasing 151 

landslide risk during heavy rains. On the other hand, sandy soils are loose and more prone to shallow landslides during 152 

light rainfall. Regions with steep topography and poorly consolidated soil (loose) are mostly at risk, especially after 153 

prolonged rainfalls (Kim et al., 2015). 154 

The combination of heavy summer rainfall, geological composition, and geomorphological factors makes 155 

South Korea particularly vulnerable to shallow landslides. Thus, continuous monitoring and research are vital to 156 

understanding the complex interactions between climate, geology, soil types, and landslide occurrences in this region. 157 

Understanding the collective effects of meteorological, environmental, geological stability, and geomorphological 158 

features is crucial for developing effective disaster management strategies and enhancing public safety in landslide-159 

prone areas. As climate change continues to impact rainfall patterns, South Korea faces ongoing challenges in 160 

mitigating landslide risks and protecting vulnerable communities. 161 
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 162 

Figure 1: (a) Spatial distribution of landslides in South Korea, (b) Temporal variation of rainfall, i.e., A: Maximum hourly 163 

rainfall, B: Four weeks rainfall, C: Three hours rainfall, D: Three days rainfall and E: Two weeks rainfall, (c) 164 

Cumulative frequency distribution of the volume of landslides, and (d) Box plot of the volume of landslides. 165 

(The elevation data presented in Fig. 1a is sourced SRTM DEM, downloaded from 166 

https://earthexplorer.usgs.gov/). 167 

 168 

2.2 Data 169 

The landslide inventory dataset contains 455 landslide record information from 2011 to 2012, collected from different 170 

locations in South Korea through field survey, and the vegetation and forest fire  features were obtained from Korean 171 

Forest Services database. The combined dataset tabulates information on landslide geometry, such as runout length, 172 

width, depth, and volume of the affected area, along with geomorphological composition, vegetation, and antecedent 173 

rainfall prior to landslide events. The details regarding landslide predisposing and triggering factors are summarized 174 

in Table 1.   175 
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The majority of landslides in this region were shallow, translational slope failures (Kim et al., 2001). The 176 

occurred landslides had a volume varying between 1.5m3 to 12,663m3 and predominantly occurred in the northeastern 177 

and southeastern region (Figs.1a,c-d). The landslides that occurred exhibited a hollowed morphology and a rightward 178 

skew in the distribution of their volumes with 2570.7m3 as 95th quantile, with the largest volume 12,663m3, and the 179 

aggregate mass of landslide due to rainfall was 276,986.62m3. The estimation of the volume of removed material by 180 

landslides is important as it helps to assess risks the estimated damage can cause down at the toe of the failed slope, 181 

such as blocking transportation network, burying crops or farmland, the damage-built environment near landslide risks 182 

area, and post-disaster recovery planning (Evans et al., 2006; Rotaru et al., 2007; Intrieri et al., 2019).  183 

 184 

Table 1: Landslide influencing and triggering factors. 185 

Group Features Feature Relevance References 

V
eg

et
at

io
n

 

Fire history 

The burning of the vegetation intensifies the mass 

movement of soil near the uncovered burned stem of 

trees and free movement on uncovered soil due to post-

fire rainfall and storms. The sliding may also be due to 

loss of vegetation , altered soil property and structure. 

These lead to soil degradation and higher infiltration, 

which increase the pore pressure, and change in 

hydrology by concentrating water flow in places that 

exacerbate landslides. 

Highland and 

Bobrowsky, 2008; 

Stoof et al., 2012; 

Hyde et al., 2016; 

Culler et al., 2021  

Age of tree 

Mature forests have more resistance to shallow 

landslides due to highly developed roots, which 

improve soil cohesion and leaves that prevent direct 

contact of raindrops with the soil surface. 

Sato et al., 2023; Lann 

et al., 2024 

Forest density 

The presence of forest reduces the likelihood of 

landslides about three times compared to grassland. 

Grassland has been revealed to be three times more 

vulnerable to shallow landslides than broadleaf, 

coniferous, and secondary forests. 

Greenwood et al., 

2004; Turner et al., 

2010; Scheidl et al., 

2020; Asada and 

Minagawa, 2023; Lann 

et al., 2024 

Timber diameter 

(m) 

Tree spacing and size were used to investigate the 

effect of root and tree in shallow landslide control. 

High root density generally enhances slope stability, 

and specific tree placement and root sizes between 5 to 

20 mm effectively prevent landslides. 

Wang et al., 2016; 

Cohen and Schwarz, 

2017  

G
eo

m
o

rp
h

o
lo

g
y

 

Drainage 

The drainage significantly affects slope stability and 

promotes efficient control of rainfall's influence on 

groundwater fluctuation. The presence of drainage 

increases the threshold of landslides due to rainfall. 

Korup et al., 2007; Sun 

et al., 2010; Yan et al., 

2019; Wei et al., 2019   

Slope angle (°) 

The steeper slopes have a lower presence of landslides 

due to the low transportable materials. Slopes between 

20-40 degrees are most vulnerable to greater landslides 

as rainfall intensity and duration increase. Generally, 

the average angle of the terrain at the landslide location 

provides valuable insight into the region's overall 

Donnarumma et al., 

2013; Duc, 2013; Qiu 

et al., 2016  
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Group Features Feature Relevance References 

steepness and geomorphic characteristics, which are 

crucial factors for landslide susceptibility and risk 

modeling. 

Slope aspect 

The effect of rainfall on slope differs by slope angle 

and slope aspect, which leads to unevenly distributed 

landslides. 

Panday and Dong, 

2021; Cellek, 2021 

Slope length (m) 

The volume increases as the slope length increases. A 

complex interplay exists between rainfall, length of 

slope and slope angle in the occurrence of landslides. 

Turner et al., 2010 

Soil depth (m) 

Soil properties, depth, and texture have significant 

differences in infiltration rates, which have different 

influences on the occurrence of landslides. 

Kitutu et al., 2009; 

McKenna et al., 2012 

Soil type 

Soil types, namely, Sandy loam, silt loam and loam, 

with their coefficient of permeability 1.7, 1.65 and 1.5, 

respectively, retain water differently, leading to 

different saturation times. The soil with higher 

permeability tends to drain water more efficiently, 

making it less prone to saturation. In contrast, the soil 

with lower permeability, the pore pressure may rapidly 

increase leading to shallow landslide initiation during 

intense rainfall events.   

Chen et al., 2015; Liu 

et al., 2021a  

L
o

ca
ti

o
n
 

Altitude 

Regional variability of elevation and mountain 

steepness affect the quantity of rainfall and associated 

landslides. 

Um et al., 2010; Hyun 

et al, 2010; Yoon and  

Bae, 2013; Park, 2015  

 

Maximum hourly 

rainfall 

The rainfall infiltrates the slope and increases pore 

water pressure, which reduces soil shear strength and 

leads to soil saturation, that causes surface failure. 

Wieczorek, 1987; Dai 

and Lee, 2001;  

Smith et al., 2023  

R
ai

n
fa

ll
 

Continuous rainfall 
Sudden intense rainfall concentrated in short periods is 

responsible for shallow landslides and debris flow. 

Zhang et al., 2019 

Three hours rainfall  

Three days rainfall 

The antecedent rainfalls increase moisture in the soil 

and weaken soil cohesion.   

Bernardie et al., 2014; 

Chen et al., 2015; 

Gariano et al., 2017; 

Zhang et al., 2019; Ran 

et al., 2022  

Two weeks rainfall 

Four weeks rainfall 

 186 

Location parameters such as altitude, latitude and longitude are essential elements that determine the 187 

microclimate of a given region, influencing rainfall patterns (Hyun et al., 2010; Yoon and Bae, 2013; Park, 2015). The 188 

northeastern region is characterized by high-elevation terrain, such as the Taebaek and Sobaek ranges, which dry air 189 

and lead to orographic precipitation (Yun et al., 2009). The windward mountain versants receive a substantial amount 190 

of rainfall, which can increase the likelihood of landslides (Jin et al., 2022). This variation of rainfall with respect to 191 

the direction highlights the importance of including slope aspect variables in landslide studies (Kunz and Kottmeier, 192 

2006). Figure 2(a) depicts the relationship between the slope aspect and the volume of landslides and slope aspect, 193 

altitude and fire history and shows that larger volumes were localized in regions that faced forest fire and altitudes 194 
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between 500 and 1000m. Additionally, the topographical features such as slope length and slope angle affect the size 195 

of the landslide (Panday and Dong, 2021), slope failure due to over-saturation from groundwater and rainfall 196 

infiltration that destabilize the slope (Kafle et al., 2022). Furthermore, slope length, slope angle and slope aspect play 197 

an important role in the determination of the volume of geological material uprooted by landslides (Zaruba and Mencl, 198 

2014; Khan et al., 2021). The slope stability depends on soil composition properties, including soil permeability 199 

indices that affect water infiltration and saturation level (Chen et al., 2015). In the study regions, three main soil types, 200 

namely, sandy loam, loam, and silt loam, were observed, and their coefficient of permeability is 1.7, 1.65 and 1.5, 201 

respectively (Lee et al., 2013). Moreover, to reduce infiltration, the drainage network channels rainwater, drains the 202 

soil, and reduces saturation, which minimizes the likelihood of landslide occurrence due to groundwater discharge and 203 

surface runoff (Hovius et al., 1997; Wei et al., 2019). Furthermore, the vegetation protects the topsoil from the direct 204 

impact of raindrops hitting the ground, which causes erosion due to the force of gravity and reduces infiltration 205 

(Omwega, 1989; Keefer, 2000). The absence of vegetation allows rainwater to seep away fine topsoil, causing shallow 206 

landslides (Gonzalez-Ollauri and Mickovski, 2017). On the contrary, vegetation improves soil cohesion and prevents 207 

potential shallow landslides due to soil-root interaction (Gong et al., 2021; Phillips et al., 2021). The density of 208 

vegetation (forest) and leafage type (broad, pines or mixture) directly affects the quantity of raindrops intercepted and 209 

prevented from directly hitting the soil, which emphasizes the contributions of vegetation in the landslides mitigation. 210 

Further, the occurrence of forest fires can contribute to the occurrence of landslides due to the burning of vegetation 211 

covering the area, changing soil properties and increasing soil pH (Lee et al., 2013). 212 

The rainfall, a triggering factor of landslides, is the immediate cause of slope instability and failure due to 213 

infiltration that leads to saturation resulting from increased pore water pressure that reduces soil shear strength (Yune 214 

et al., 2010; Khan et al., 2012; Kim et al., 2021; Lee et al., 2021). The antecedent rainfall increases the moisture in the 215 

soil, which accelerates the soil saturation; the cumulative effect is essential to understand the saturation levels (Ran et 216 

al., 2022). In this study, rainfall variables are grouped based on time, namely, continuous rainfall, which is the 217 

accumulative value of rainfall on the day of a landslide from rainfall start hour to the landslide event, maximum hourly 218 

rainfall, rainfall during the fixed period such as three hours, one day, three days, two weeks etc. (Fig. 1b). The 219 

histograms for rainfall considered in this study are depicted in Figure 2(b-g). The descriptive statistics for all 220 

continuous variables are illustrated in Table 2.  221 
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 222 

Figure 2: (a) The scatter plot showing the variation of landslide volumes with respect to slope aspect, fire history and 223 

altitude, and (b-g) Histograms of rainfall distribution. 224 

 225 

Table 2: Summary statistics for continuous variables.  226 

Variables Units N Min Mean Median Max Std dev 

Max Hourly rain  mm 455 0 48 48 78 20 

Continuous rainfall mm 455 0 285 327 550 106 

Three hours rainfall  mm 455 0 88 80 171 60 

Twelve Hours rainfall mm 455 0 150 99 447 95 

One day rainfall mm 455 0 202 162 538 112 

Three days rain mm 455 0 280 284 550 86 

Seven days rain mm 455 0.5 323 330 634 88 

Two weeks rain mm 455 0.5 385 400 663 90 

Three weeks rain mm 455 86 504 533 914 115 
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Variables Units N Min Mean Median Max Std dev 

Four weeks rain mm 455 108 587 561 1135 160 

Soil depth m 455 0.2 0.6 0.75 0.75 0.19 

Soil type  - 455 1.5 1.6 1.5 1.7 0.087 

Timber diameter m 455 0.15 0.27 0.23 0.35 0.086 

Age of tree  Years 455 10 34 35 60 14 

Slope length m 455 1.8 21 13 180 23 

Slope angle Degree (o) 455 10 34 34 65 7.9 

Altitude  m 455 9 391 272 1324 273 

 227 

3. Methods 228 

In this paper, we consider nine data-driven models, namely OLS, RF, SVM, EGB, GLM, DT, DNN, KNN and RR, to 229 

predict the volume of landslides due to rainfall. The model is tested on the South Korean landslides inventories and 230 

predisposing factors coupled with triggering factors, i.e., rainfall data. The detailed workflow is summarized in Figure 231 

3. The steps for construction of these models can be briefly summarized as follows: a) the dataset for landslide 232 

inventories is cleaned and combined with rainfall dataset, b) the collinearity analysis is performed using variance 233 

inflation factor, c) continuous feature are scaled (Z-score) (Bonamutial and Prasetyo, 2023) to facilitate algorithms to 234 

converge fast, d) the dataset is split into training and test set, e) all models are tested on the same training set, and the 235 

model evaluation on the test set using mean absolute error (MAE), coefficient of determination (R2), root mean square 236 

error (RMSE), symmetric mean absolute percentage error (SMAPE) and mean absolute percentage error (MAPE) for 237 

the comparison of actual and predicted volume by each model, f) variable importance is calculated for the optimal 238 

model, and g) the distance correlation is calculated for each continuous feature, and Kruskal-Wallis and Dunn test are 239 

conducted to examine the similarity of the effect of each category on the landslide volume.  240 

 241 

Figure 3: Workflow for the prediction of the volume of landslides due to rainfall. 242 
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 243 

3.1 Model Construction 244 

In the present investigation, we aimed to predict landslide volume using models that minimize error with 245 

interpretability and scalability. Since one model can not have all properties simultaneously, we selected some widely 246 

used models due to their inherent interpretability and scalability properties. The OLS, GLM, and DT were widely used 247 

for their high interpretability, which helps to understand the influence of individual features on predictions (Gelman 248 

and Hill, 2007; Breiman, 2017). On the other hand, the EGB, RF, SVM, RR, and KNN were used due to their robust 249 

performance in capturing complex patterns in data, which is essential for accurate predictions of landslide volumes 250 

(Liaw and Wiener, 2002; Hastie, 2009; Chen et al., 2022). Additionally, considering that the model will be used on a 251 

regional scale, which will require big data, the EGB, RF, and DNN are designed to efficiently handle large datasets, 252 

making them suitable for the regional scale analysis. These last models can be scaled to incorporate more data from 253 

different geographical areas without significant adjustments, enhancing their applicability in future research 254 

(Krizhevsky et al., 2012). Accordingly, nine data-driven methods were selected and tested on a Korean dataset to 255 

predict VLDR.  256 

The first considered method is OLS, which is applied to estimate parameters of multilinear regression that 257 

yield the minimum residual sum of squares errors from the data (Kotsakis, 2023) under assumptions of no correlation 258 

in independent variables and error term, constant variance in error terms, non-linear collinearity of predictors, and 259 

normal distribution of error terms. The RF-regression is a supervised data-driven technique based on ensemble 260 

learning, which constructs many decision trees during the training time of a model by combining multiple decision 261 

trees to produce an improved overall result of the model outcome. The RF-regression is more efficient in the analysis 262 

of multidimensional datasets (Borup et al., 2023). RF is an effective predictive model due to non-overfitting 263 

characteristics based on the law of large numbers (Breiman, 2001). The DT regression is a predictive modeling 264 

technique in the form of a flowchart-like tree structure that includes all possible results, output, predictor costs, and 265 

utility. The DT simplifies the decision-making due to its algorithm that mimics human brain decision-making patterns 266 

(Rathore and Kumar, 2016). The KNN technique draws an imaginary boundary in which prediction outcomes are 267 

allocated as the average of k-nearest point predictors and averaging their output variable (response). The KNN 268 

calculates Euclidian distances to identify the likeness between datapoints, and then it groups points that have smaller 269 

distances between them (Kramer and Kramer, 2013). The RR is an improved form of ordinary least squares, which 270 

serves to respond to cases where collinearity is found in predictor variables. The estimated coefficients of ridge are 271 

biased estimators of true coefficients and are generated after adding a penalty on the OLS model. The RR has always 272 

lower variances compared to OLS (Saleh et al., 2019). The advantage of the GLM over OLS is that the dependent 273 

variable need not follow the normal distribution. The GLM is composed by random and systematic components and 274 

the link function that links the two. In this study, the GLM with Gaussian link function was applied. GLM is fitted 275 

using maximum likelihood estimation (Dobson and Barnett, 2018). The DNN is among data-driven models that 276 

revolutionized different fields; the DNN learns via multi-processing layers and identifies intricate patterns in the data 277 

to predict the outcome (LeCun et al., 2015). Here, the backpropagation algorithm was used to predict the estimated 278 

outcome. The advantage of DNN is that it can discover the complex structures in the data using a back propagation 279 
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algorithm capable of changing the internal parameter (weight update). The SVM is popular for balanced predictive 280 

performance which makes it capable to train model on small sample size (Pisner and Schnyer, 2020). Subsequently, 281 

SVM has been applied in many different landslide studies (Pham et al., 2018; Miao et al., 2018). SVM methods 282 

identify the optimal hyperplane in multidimensional space that separates different groups in the output values. The 283 

EGB is the most powerful and leading supervised machine learning method in solving regression problems. It can 284 

perform parallel processing on Windows and Linux (Chen et al., 2022). The gradient boosting trains of differentiable 285 

loss function, and the model fits when the gradient is minimized. In this paper, both traditional statistical predictive 286 

models and ML models were used. The firsts are known for high clarity and explainability, and the second is famous 287 

for handling non-linearity in features. In some cases, the performance of advanced data-driven algorithms is almost 288 

similar (Chowdhury et al., 2023).  289 

 290 

3.2 Feature Selection and Data Splitting 291 

The variable selection procedure was based on previous literature and applied in the model using generalized 292 

variance inflation factor (GVIF) (O’Brien, 2007) to eliminate collinear variables. The variable with GVIF<10 was 293 

considered non-colinear and used in the model. Figure 4 depicts retained features and corresponding GVIF values. 294 

The retained features have GVIF less than 10 (O’brien, 2007). Accordingly, all depicted variables were considered for 295 

the model training. Further, to train the model, the datasets were split randomly, with 70% of the data for the training 296 

set and 30% for testing (Nguyen et al., 2021). The 10-fold cross-validation was performed to obtain an optimal model. 297 

The training and test set was scaled (Z-score or variance stability scaling) to solve convergence issues that are 298 

associated with running the model without feature scaling (Singh and Singh, 2022). To run the model on the data using 299 

driven methods that accept numerical features only, the test and training set was one-hot-encoded to create a feature 300 

matrix (Seger, 2018). 301 
 302 

 303 
Figure 4: Generalized Variance Inflation Factor (GVIF) bar plot for features. 304 
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3.3 Model Evaluation Metrics 305 

The model performance evaluation is a process of quantifying the difference between the observed value not 306 

used in the modeling process and the predicted value by the model. Different metrics are applied depending on the 307 

type of task, whether it is a classification or a regression problem. Subsequently, the widely used evaluation metrics 308 

for regression models, namely, R2, MAE, RMSE, MAPE and SMAPE, were utilized to evaluate the model 309 

performances. The metric formulae and evaluation criteria are summarized in Table 3.  310 

 311 

Table 3: Model evaluation metrics.  312 

Metrics Evaluation References 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

• Measures the square root of the average squared 

differences between predicted and actual values. 

• Lower values indicate better model performance. 

Hyndman and 

Koehler, 2006 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
• The average of the absolute differences between 

predicted and actual values. 

• Lower values indicate better model performance. 

Willmott and 

Matsuura, 2005 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑖=1

 
• Measures the accuracy of a model as a percentage, 

which can be more interpretable. 

• Lower values indicate better model performance. 

Armstrong, 2001 

 

 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

|𝑦𝑖| − |𝑦̂𝑖|

𝑛

𝑖=1

 

• Unlike MAPE, which can be skewed by very small 

actual values, SMAPE accounts for both the actual 

and predicted values, making it symmetric. 

• SMAPE is expressed as a percentage 

• Mitigates the impact of small actual values on the 

error metric, providing a more balanced assessment. 

• Lower values indicate better model performance. 

Hyndman and 

Koehler, 2006 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
• Represents the proportion of variance in the 

dependent variable that can be explained by the 

independent variables. 

• Values closer to 1 indicate a better fit 

Darlington, 1990; 

 Chicco et al., 2021 

*𝒚𝒊 𝒂𝒏𝒅 𝒚̂𝒊  representing the actual and predicted value and, 𝒚̅ 𝒂𝒏𝒅 𝒏 standing for the mean of actual value and number of 313 
observations in the dataset, respectively. 314 
 315 

4. Results 316 

This section details how all analyses and model development were performed in R using various libraries. 317 

The DNN regression model was constructed using dnn() function from the cito library (Amesoeder et al., 2023), with 318 

two hidden layers of (50, 50) nodes. The model was trained on 1500L epochs, learning rate (lr = 0.01), and loss = 319 

"mae". The DT regression model was constructed with tree() function from the tree library, with the recursive-partition 320 

method. The RR model was constructed using glmnet() from the glmnet package (Friedman et al., 2010), with ridge 321 

penalty (alpha=0). The optimal lambda was obtained by performing 10-fold cross-validation. The EGB model was 322 

built using xgboost() function in xgboost package (Chen et al., 2022). The optimal model was obtained at 524th 323 

boosting iteration with max depth =5 and other parameters set to default. The GLM regression model was constructed 324 
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using glm() function (R core Team, 2022) with family Gaussian and log link to constrain the model of predicting 325 

positive outcomes. The KNN regression was constructed using knnreg() function from the caret package (Kuhn, 2022), 326 

with number of neighbors, k=17. The OLS model was constructed lm() from the stats package (R core Team, 2022). 327 

The RF model was run using randomForest() from the randomforest package (Liaw and  Wiener, 2002) with default 328 

parameters and the optimal model was reached at 256th iteration. The SVM regression model with linear kernel was 329 

built using e1071 package (Meyer et al., 2021) and other parameters set to default. 330 

The predictive performance of all tested models on the holdout dataset is depicted by the scatterplot (Fig. 5) 331 

of actual volume as recorded in the test set and predicted outcome values of each model. The red line represents the 332 

perfect prediction. The scatter plot of actual and predicted values of tested models shows that OLS performed least 333 

compared to other models with R2=0.2744, that is, 27% of variances in the model were explained by predictors. The 334 

second least performing was the RR with R2= 0.3034, which is 3.6% improvement compared to OLS. Among all 335 

models, three out of nine, namely, OLS, SVM, and RR, performed below 50%; however, these models predicted well 336 

small values of volume (below 2000m3). The MAE of these three models was higher than the remaining six models, 337 

namely DNN, DT, GLM, KNN, RF, and EGB. Among these lasts, the most performing was EGB with R2= 0.88 of 338 

variance explained by predictors and MAE=146.6 m3. The evaluation metrics for the training and tested models are 339 

summarized in Table 4. Considering the R2, the three models, namely EGB, RF, and DNN, had a value of R2 above 340 

80% on the holdout set. 341 
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 342 

Figure 5: Scatterplot of actual and predicted values for the nine tested models. 343 

 344 

Regarding the prediction on the training set, the GLM had an R2 of 83%. Nevertheless, the prediction on the 345 

holdout set was 51.9%; this large variation in variance explained by predictors indicates that the GLM model did not 346 

catch all non-linear patterns in the holdout set. Notably, the prediction difference in R2 on both training and test for 347 

the random forest exhibited a very small difference compared to EGB and DNN, that is, 1.75% compared to 12.17% 348 

and 7.72% for DNN and EGB, respectively. Despite the stable prediction of RF, the performance in terms of SMAPE, 349 

the DNN was the second lowest symmetric mean absolute percentage error, 43.83m3 and 39.79 m3 on training and test 350 

sets, respectively. According to Chicco et al. (2021), the R2 is more informative in regression modeling; thus, RF had 351 

better predictions than the DNN. 352 

 353 

 354 

 355 
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Table 4: Summary of prediction metrics for tested models on the training and test set. 356 

Metrics  Models 

    DNN DT EGB GLM KNN OLS RF RR SVM 

R2 
Train 0.9309 0.4514 0.9613 0.8380 0.3470 0.3775 0.8610 0.3382 0.5510 

Test 0.8092 0.5822 0.8841 0.5190 0.5587 0.2744 0.8435 0.3037 0.4970 

MAE 
Train 132.7429 407.0814 75.1250 308.9700 410.2945 502.0053 236.9516 470.1633 276.2000 

Test 209.8063 435.5836 146.6120 510.6015 443.2222 614.3769 330.4876 536.0343 376.6252 

RMSE 
Train 348.6190 940.4850 113.4940 570.0070 1027.3730 1001.7620 574.9720 1042.9110 916.5471 

Test 646.5438 1047.4880 501.8960 1055.9190 1115.5270 1234.1220 737.0857 1237.9420 1176.9410 

MAPE 
Train 0.5240 0.7930 0.1540 76.3530 0.6280 5.2310 0.3810 1.5330 1.1588 

Test 0.5623 0.8892 0.3132 1819.2220 0.6623 4.1277 0.4939 5.8428 1.0421 

SMAPE 
Train 43.8375 79.8680 13.1780 150.4262 67.4715 103.0555 52.3359 93.4002 67.3221 

Test 39.7998 81.4539 22.7237 152.4991 73.6498 106.9756 63.7582 93.9244 76.9794 

 357 

To dive deep into the prediction performance of the EGB model, we analyzed variables importance in the 358 

prediction of the volume. It was observed that slope length was the most contributing predictor in the performance of 359 

the EGB model, followed by maximum hourly rainfall and slope aspect. The altitude, three hours rainfall, slope angle 360 

and age of timber contributed moderately to the prediction of the outcome volumes with gain above 0.01 and less than 361 

0.2. The antecedent rainfall from three days and above and continuous rainfall had a minor contribution, with a gain 362 

of less than 0.01 for each. The presence of rainwater drainage channels had a moderate contribution, with a gain close 363 

to 0.01. On the other hand, the contribution of soil depth and forest density in the models was insignificant and far 364 

below 0.01. Though Figure 2(a) depicted the association between larger volumes and fire history, the variable 365 

importance indicates that the relation was not significant. Even though some variables had minor contributions, 366 

depending on the case, the contribution of those variables may also increase depending on other regional settings. 367 

Therefore, all variables with GVIF below 10 were kept in the model. Figure 6 illustrates the variables importance for 368 

the EGB model. The vertical red line splits lanslides prediction features into two groups, the first containing features 369 

that contributed a gain above 0.01 and others with minor contributions.  370 
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 371 

Figure 6: Variable importance for the EGB model.  372 

 373 

The variable importance plot depicts the overall contribution of a given feature; however, it does not provide 374 

detailed information. To get more insight into the relationship between the volume of landslides and predictors, 375 

statistical tests for normality, namely, Shapiro-Wilk’s test, and Dunn’s test were conducted. The Shapiro-Wilk’s test 376 

(Dudley, 2023) results revealed that the distribution of volume was non-normal (W = 0.40642, p-value < 0.001). 377 

Noting that the volume distribution was non-normal, we opted for the non-parametric tests, which do not rely on 378 

normality to conduct the distance correlation (Székely et al., 2007) test (dcor) for continuous independent features. 379 

Figure 7 illustrates that the slope length exhibited a higher value (dcor=0.56) followed by continuous rainfall altitude 380 

and three hours rainfall and kept decreasing up to timber diameter with a distance correlation of 0.08. Overall, the 381 

distance correlation between the volume of landslides shows a moderate strength of association between continuous 382 

predictors. 383 

 384 
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 385 

Figure 7: Distance correlation plot for the volume and continuous features. 386 

 387 

Furthermore, to test for categorical features, Kruskal-Wallis test (McKight and Najab, 2010) was used to 388 

check whether the volume of the landslide was different in each category and Dunn’s tests (Dinno, 2015) were applied 389 

to examine which categories had similar means of the volume of landslides due to rainfall in different categories. The 390 

H0 (null hypothesis) was that the mean volume of landslides in different categories is the same, and the H1 (alternative 391 

hypothesis) was that the means of landsides are different in some categories. For the slope aspect, the second most 392 

significant predictor for the EGB model, the results of Kruskal-Wallis test (chi-squared = 20.889, df = 7, p-value = 393 

0.003938) showed that there is a significant difference in median of volume in some categories of slope aspects. To 394 

know which classes of slope aspects had significantly different mean volumes, the Dunn’s test results at 95% 395 

confidence interval, pairs (East-South west, East-South East, East-South, East-North West and North West-South East) 396 

had significantly different means of landslides’ volume (with p-value <0.05). Figure 8 depicts that the southwest and 397 

southeast aspects had a higher frequency of landslides.  398 

 399 

Figure 8: The distribution of the volume of landslides due to rainfall with respect to the slope aspect. 400 
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 401 

The Kruskal-Wallis test for the difference in mean of drainage classes showed the result was: chi-squared = 402 

15.792, df = 2, p-value = 0.000372, which shows that the means of volume per class were different. This was clarified 403 

by Dunn’s test results, p-values were less than 0.05 in all pairwise mean difference comparisons. The results of these 404 

tests highlighted that drainage has a remarkable influence on the occurrence of rainfall-induced landslides in the 405 

Korean Peninsula. 406 

 407 

5. Discussion  408 

Numerical models have traditionally been employed due to their foundation in physical principles such as slope 409 

stability and hydrological dynamics (Glade et al., 2005). These models are valuable for understanding the underlying 410 

mechanisms of landslide processes but often face limitations when applied to regions with complex or heterogeneous 411 

terrain, as they require detailed, high-quality input data that may not always be available (Caine, 1980). In the same 412 

way, statistical models, which use historical rainfall and landslide data to establish correlations, can offer useful 413 

predictions of VLDR in regions with extensive historical records (Chung and Fabbri, 2003). However, these models 414 

may struggle to account for local variations in topography or rapidly changing weather patterns, limiting their general 415 

applicability. Additionally, ML techniques have shown significant promise in improving predictive accuracy at the 416 

regional level due to the capability of processing large, diverse datasets and capturing complex, non-linear 417 

relationships that traditional models might fail to capture (Pourghasemi and Rahmati, 2018). Further, ML models can 418 

adapt to regional variations and continuously improve as new data is introduced, offering a more flexible and dynamic 419 

approach to predict VLDR on a regional scale (Liu et al., 2021b). Subsequently, the aim of this study was to construct 420 

a data-driven algorithm that accurately predicts the VLDR. The result of nine different tested algorithms revealed a 421 

tremendous difference between classical regression models (OLS, RR, and GLM) and other data-driven machine 422 

learning models. In this study, apart from SVM regression, DT and KNN, other machine learning models (DNN, DT, 423 

RF, and EGB) exhibited high prediction capability with R2 above 50% (Fig. 5). The DNN, EGB, and RF models 424 

achieved R2>0.8 on both training and test set with accuracy reduced R2 by 1.75, 7.72, and 12.17% for RF, EGB and 425 

DNN respectively, on the holdout set, indicating that the model could yield reliable volume estimates in adjacent areas 426 

with similar geological and environmental conditions. The random forest model performed well in predicting smaller 427 

volume; however, as the volume increased, the model underpredicted volume values. The DNN model performed 428 

quite well with low MAE compared to random forest; however, the model did not perform well on moderate volume 429 

values, resulting in reduced R2. The EGB model tested on South Korean landslide inventory coupled with rainfall data 430 

at the time of landslide events and antecedent rainfall within one month of the event exhibited more accurate 431 

predictions compared to other constructed algorithms. The difference in performance may be due to the internal 432 

structure of each algorithm; the RF builds multiple decision trees and averages predictions to improve accuracy 433 

(Breiman, 2001), while the EGB builds sequential trees in a recursive order where the new built tree improves error 434 

occurred while building the previous decision tree and optimizes the loss function through a gradient descent (Chen 435 

et al., 2022).  436 

The slope aspect played an important role in the prediction of the volume, and the landslide mostly occurred 437 
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in locations oriented toward south-southwest and southeast. That may be due to the direction taken by typhoons, which 438 

hit the southwest versants of mountains upon landfall on the Korean peninsula toward the North East Pacific (Lee et 439 

al., 2013; Ha, 2022). The findings of this research are congruent with those of Lee et al. (2013), who also highlighted 440 

that the mountain versant oriented to strong wind direction may face more landslides. The study also highlighted that 441 

a moderate rainwater drainage channel plays an important role in the prevention of landslides due to its stabilizing 442 

effect. The landslide location and pattern follow the rainfall climate scenario, which highlighted a higher intensity of 443 

rainfall in the northeastern region of South Korea (Lee, 2016). In addition, the findings of this study are congruent 444 

with Zhang et al. (2019) observations that highlighted the low influence of soil type in landslide modeling and the 445 

maximum rainfall and cumulative three hours of rainfall were the most contributing rainfall, which indicated that these 446 

shallow landslides may have been triggered by sudden rainfall concentrated in few hours before the occurrence of the 447 

event. The occurrence of landslides triggered by rainfall is a complex phenomenon that involves many interrelated 448 

environmental settings, human activity, geological conditions and climatic conditions. Moreover, the occurrence of 449 

typhoons is known to aggravate the landslides impacts on communities (Chang et al., 2008); incorporating typhoon 450 

variables in future studies to customize for regional settings may improve the accuracy of the model. The advantage 451 

of his research is that the constructed model has high predictive accuracy and can handle the non-linearity of 452 

predisposing factors. The model came to fill the gap in a few literatures related to the prediction of the volume of 453 

landslides using data-driven techniques. This model can serve as an effective tool for policy-makers to incorporate 454 

landslide volume risks into policies aimed at protecting infrastructure and residents dwelling in landslides high risks 455 

zones. 456 

To understand the applicability of the developed models, the trained model was tested using unknown data 457 

(test data), with volume predictions generated solely based on the predictor variables; actual volume values were 458 

utilized only for evaluating model prediction accuracy. The outcome exhibited that the difference in R2 on the training 459 

and holdout set of 7.72% for the optimal model (i.e., EGB) highlights that the model can be applied to another region 460 

of a similar setting. It was noted that without proper model calibration with the independent data set, it's difficult to 461 

determine whether these discrepancies in performance are due to model limitations or data differences in different 462 

regions (Huang et al., 2020). Therefore, future research will focus on developing an independent database containing 463 

recent landslide geometry data from various regions of the Korean Peninsula to enhance model accuracy, along with 464 

calibrating region-specific parameters to ensure the model’s transferability to other regions. 465 

The major limitation of this study is that the analysis is solely focused on shallow-seated landslides, 466 

specifically translational slope failures with volumes below 13,000m³. Thus, the analysis may not fully capture the 467 

variability in landslide characteristics across different geomorphological and geological contexts. Deep-seated 468 

landslides, for instance, often exhibit distinct failure mechanisms, material compositions, and depositional patterns 469 

that influence their volumetric characteristics, which were not considered in this investigation. Similarly, debris flows, 470 

known for their unique channelization and entrainment behaviors, were not included, potentially limiting the 471 

applicability of the optimized models to other landslide types. Further, this study was also performed using point-472 

based landslide inventory data, which may not capture all variability of influencing factors and their exact state. The 473 

incorporation of high-resolution data from remote sensing and other sources may also improve the efficiency of the 474 
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predictions. These limitations may impact the broader applicability of the proposed model; however, future studies 475 

will aim to address this by conducting separate analyses for deep-seated landslides and debris flows, allowing for a 476 

more comprehensive understanding of landslide volume predictions across diverse landslide types and 477 

geomorphological settings. 478 

 479 

6. Conclusions 480 

In this paper, the aim was to construct a data-driven model that predicts the volume of landslides due to rainfall. To 481 

this, nine different classical regression models and machine learning algorithms were tested on South Korean landslide 482 

data set containing features of landslides that occurred between 2011 and 2012. Among the tested models, the EGB 483 

model produced the most accurate prediction. This is proven by the evaluation of the difference between actual and 484 

predicted values, such as R2= 88.41% and MAE=146.6120m3 on the holdout set. The analysis of feature variables in 485 

the contribution to the prediction of the model revealed that the slope length was the most influencing predictor. The 486 

EGB model can be a promising tool for the prediction of the volume of landslides due to its high predictive 487 

performance. The model can be customized in different environmental settings. The model can be applied to estimate 488 

the expected volume of landslides based on forecasted rainfall once the model is well-adjusted to fit the 489 

geomorphological and environmental settings of the region of interest after re-training on the regional historical data 490 

to include regional variability. Therefore, this model can be a good tool for planning for resilience and infrastructure 491 

pre-construction risk assessment to ensure the new infrastructure is placed in stable regions free from severe landslides. 492 
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