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Abstract 8 

Landslides due to rainfall are among the most destructive natural disasters that cause property 9 

damages, huge financial losses, and human deaths in different parts of the World. To plan for 10 

mitigation and resilience, the prediction of the volume of rainfall-induced landslides is essential to 11 

understand the relationship between the volume of soil materials debris and their associated 12 

predictors. Objectives of this research are to construct a model by utilizing advanced data-driven 13 

algorithms (i.e., ordinary least square or Linear regression (OLS), random forest (RF), support 14 

vector machine (SVM), extreme gradient boosting (EGB), generalized linear model (GLM), 15 

decision tree (DT), deep neural network (DNN), k-nearest neighbor (KNN) and Ridge regression 16 

(RR)) for the prediction of the volume of landslides due to rainfall considering geological, 17 

geomorphological, and environmental conditions. Models were trained and tested on the Korean 18 

landslide dataset to obtain the most efficient predictions. The EGB predictions exhibited optimal 19 

predictions with the highest coefficient of determination (R2=0.8841) and lowest mean absolute 20 

error (MAE=146.6120 m3), followed by RF (R2=0.8435, MAE=330.4876 m3) for the holdout set. 21 

The results indicated that the DNN, EGB, and RF models exhibited R2>0.8 on both the training 22 

and test sets. The difference in coefficient of determination R2 on the training and holdout set were 23 

1.75, 7.72, and 12.17% for RF, EGB and DNN, respectively, signifying that the model could yield 24 

reliable volume estimates in adjacent areas with similar geomorphological and environmental 25 

settings. The volume of landslides was strongly influenced by slope length, maximum hourly 26 

rainfall, slope angle, aspect, and altitude. The anticipated volume of landslides can be important 27 

for land use allocation and efficient landslide risk management. 28 
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1. Introduction 33 

Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural position and 34 

slide downward along a slope due to gravity forces. Intense or long-duration rainfall infiltrates the 35 

soil and increases the pore pressure, resulting in soil saturation that leads to slope failure. The 36 

saturated soil becomes weak and loses cohesion, and the slope fails when rainfall crosses a certain 37 

threshold (Bernardie et al., 2014; Martinović et al., 2018; Lee et al., 2021). The heavy rainfall 38 

saturates a slope and triggers a landslide due to the reduction of the soil's shear strength and the 39 

increase of pore water pressure (Tsai and Chen, 2010; Lacerda et al., 2014; Chatra et al., 2019; 40 

Chen et al., 2021; Luino et al., 2022). For example, steep slopes with loose soils and even moderate 41 

rainfall can lead to the displacement of an enormous quantity of soil mass. On the contrary, 42 

in slopes with more stable, cohesive soils, the surface failure might be smaller (Tsai and Chen, 43 

2010). The rainfall quantity and duration influence the volume of the landslides; the higher the 44 

intensity and the longer the duration of rainfall, the larger the resulting surface failure (Chang and 45 

Chiang, 2009; Bernardie et al., 2014; Chen et al., 2017). The landslide occurrences can also be 46 

influenced by human activities that weaken the slope, such as excavation at the slope toe and 47 

loading caused by construction and land use such as agriculture, mining etc. (Rosi et al., 2016). 48 

The rapid urbanization activities in mountainous regions affect the topography through hill cutting, 49 

deforestation and water drainage (Rahman et al., 2017); these activities disturb the slope structure 50 

and change the water flow, which exacerbates the effect of landslides in regions where human 51 

engineering activities are mostly located (Holcombe et al., 2016; Chen et al., 2019). Therefore, to 52 

mitigate landslide-induced risks in the runout regions, estimation of the volume of landslides due 53 

to rainfall (VLDR) plays a crucial role.  54 

The quantification of the VLDR is essential for effective risk management (Tacconi 55 

Stefanelli et al., 2020), emergency response, engineering design (Cheung, 2021), economic 56 

assessment and environmental protection (Alcántara-Ayala and Sassa, 2023). With the estimates 57 

of VLDR, the morphologist can update hazard maps (Van Westen, 2000)  to reflect the scale of 58 

potential mass movement in various regions to obtain regions with similar likelihood of landslides 59 

of similar soil mass to highlight risk zone levels, i.e., low, moderate and high. These classifications 60 

help engineers to apply appropriate slope stabilization techniques depending on the level of risk ( 61 
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Dahal and Dahal, 2017). Additionally, enhancing the precision of VLDR estimations and 62 

improving the predictive capabilities is essential for understanding and monitoring landscape 63 

evolution. Montgomery (2009) emphasized that the volume of landslides is a key factor in 64 

determining the extent of downstream damage, particularly for large debris flows or rock 65 

avalanches, which can drastically alter the landscape and affect surrounding ecosystems and 66 

infrastructure. Similarly, Korup (2004) further explored the long-term geomorphological effects 67 

of large-volume landslides, highlighting their importance in reshaping mountainous terrains and 68 

influencing sediment transport, which is critical for understanding both immediate and future 69 

landscape changes. However, the existing landslide susceptibility models mostly used for the 70 

identification of regions susceptible to landslides (i.e., landslide zonation) (Kim et al., 2014; 71 

Gutierrez-Martin, 2020; Chen et al., 2021; Li et al., 2022), which are essential in emergency 72 

management because they provide a general overview of zones with a higher probability of 73 

landslide occurrence; however, they do not emphasize the determination of the approximate value 74 

of the volume of failing mass in relation to excessive rainfall events. 75 

Numerous researchers used landslide inventory, remote sensing data and numerical 76 

techniques to establish the relationship between landslide geometry and the influencing factors to 77 

determine the landslide volume quantitatively. For example, Saito et al. (2014) studied the 78 

relationship between rainfall-triggered landslides to test whether the volume of landslides across 79 

Japan that occurred between 2001 and 2011 can be directly predicted from rainfall metrics. The 80 

findings revealed that larger landslides occurred when rainfall exceeded certain thresholds, but 81 

there were significant discrepancies between peaks of rainfall metrics and maximum landslide 82 

volumes, and the total rainfall was the suitable predictor of landslides. Dai and Lee (2001) 83 

established the frequency-volume relation for landslides in Hong Kong and noticed that the 84 

relation for shallow landslides above 4m3 followed the power law. The 12-hour rolling rainfall 85 

contributed most to the prediction of the volume of landslides. Jaboyedoff et al. (2012) contributed 86 

by demonstrating the value of remote sensing technologies such as Light Detection and Ranging 87 

(LiDAR) in conjunction with field data to improve the accuracy of volume estimates and capture 88 

the geomorphological changes associated with landslides. Ju et al. (2023) constructed an area-89 

volume power law model for the estimation of the volume of landslides using high-resolution 90 

LiDAR data collected between 2010 and 2020 in Hong Kong. The aim was to estimate accurately 91 

the volume of landslides on small-scale landslides. The reliance on localized datasets limits the 92 
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model's applicability in regions with different geological settings, and the model does not consider 93 

all variabilities of landslide characteristics. Razakova et al. (2020) calculated landslide volume 94 

using remote sensing data to assess the efficiency of aerial photographs in environmental impact 95 

assessment and ground-based measurement. The study did not consider the effect of vegetation 96 

and topography and only focused on a single landslide case, which may be a source of bias due to 97 

differences in soil composition and environmental factors. Hovius et al. (1997) analyzed multiple 98 

sets of aerial photos and frequency-magnitude relations for landslides in New Zealand. The finding 99 

pinpointed that the landslides frequency-magnitude followed power law and infrequent large 100 

magnitude contributed to the landscape change. The study also noticed the importance of soil 101 

composition in the size of the landslides. This work had a limitation due to the reliance on aerial 102 

photos only, which cannot provide accurate measurement in regions of dense forest, and the 103 

climatic conditions, which are landslide triggering factors, were not considered, and this may affect 104 

the generality of the findings. Guzzetti et al. (2008) applied statistical methods on regional 105 

landslide inventories and antecedent rainfall data ranging between 10 min to 35 days. The findings 106 

revealed that the slope angle and soil type significantly influence landslide volume estimates, and 107 

the rainfall intensity is more important than duration. Chatra et al. (2019) applied numerical 108 

methods to study the effect of rainfall duration and intensity on the generation of pore pressure in 109 

the soil; the finding revealed a higher instability in loose soil compared to medium soil slopes. 110 

Huang et al. (2020) introduced a hybrid machine-learning model combining support vector 111 

regression (SVR) with a genetic algorithm to estimate debris-flow volumes. The model was tested 112 

on real-world case studies, showing improved accuracy in volume predictions compared to 113 

traditional methods. However, a notable weakness of the study is its reliance on a limited dataset, 114 

which may reduce the model's generalizability to environmental contexts. Shirzadi et al. (2017) 115 

compared the effectiveness of statistical and machine-learning models in simulating landslide 116 

volumes-areal relations, demonstrating that machine-learning techniques outperform traditional 117 

statistical methods in terms of accuracy. This method did not consider the climatic and geomorphic 118 

factors such as rainfall, vegetation, soil type, etc., triggering and influencing factors for the 119 

landslide occurrence. It was noted that existing models only treated the interaction of soil and 120 

rainfall without considering the environmental factors, human activity, and non-linear behavior of 121 

the triggering and influencing factors. 122 

In the present study, the volume of landslides due to rainfall is predicted using OLS, RF, 123 
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SVM, EGB, GLM, DT, DNN, KNN and RR algorithms, considering the details of triggering 124 

factors (i.e., rainfall) and predisposing factors (i.e., geomorphological, soil and environmental). 125 

Here, we aim to construct a data-driven algorithm that combines input parameters for physical-126 

based and empirical models and incorporates more complex non-linear features of input variables 127 

to predict the occurrence of associated events more accurately. The main assumption behind the 128 

data-driven algorithm is that the considered feature input of the model produces a similar volume 129 

of landslides due to rainfall and follows the same pattern at a particular region with the same 130 

features under the same quantity of rainfall. Here, we examine different machine learning (ML) 131 

algorithms and compare their performance using the coefficient of determinations (R2), mean 132 

square errors (MAE), Root mean square error (RMSE), Mean absolute percentage error (MAPE), 133 

and symmetric mean absolute percentage errors (SMAPE) of the predicted volume of landslides. 134 

The focus is to optimize the predictions of the volume of landslides due to rainfall, taking into 135 

account triggering and influencing factors with higher accuracy.  136 

 137 

2. Data and Study Region 138 

2.1. Study Region 139 

The region for testing the model is South Korea, characterized by mountainous (63% of total land) 140 

relief, especially in the eastern part of the country (Lee et al., 2022). South Korea is located on the 141 

southern part of the Korean Peninsula, bordered by the Yellow Sea to the west coast and the East 142 

Sea (Sea of Japan) to the East. According to the Korean Meteorological Administration 143 

(https://www.kma.go.kr/), the country has a temperate climate characterized by four distinct 144 

seasons: hot and humid summers, cold winters, and springs and falls with moderate temperatures. 145 

The annual rainfall varies between 1000 mm to 1400 mm and 1800 mm for the central region and 146 

southern region, respectively (Jung et al., 2017; Alcantara and Ahn, 2020). During the summer, 147 

heavy rainfall from June to September leads to significant surface runoff, increases landslide risk, 148 

and causes approximately 95% of all landslides each year (Lee et al., 2020; Park and Lee, 2021). 149 

In addition, the landslides may be aggravated by typhoons, which mostly occur in August and 150 

September, and it is anticipated that frequency will increase due to climate change (Kim and Park, 151 

2021). The rainfall trend analysis from 1971 to 2100 predicted an increase in rainfall of 271.23mm, 152 

which indicates the growing risk of landslides associated with climate change (Lee, 2016). 153 

Temperature variations are influenced by its geographical location; the average summer 154 
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temperatures vary between 25 and 30°C, while winter temperatures can drop to -10°C in some 155 

parts of the country (https://web.kma.go.kr/). The South Korean geologically is mainly composed 156 

of granitic and metamorphic rocks, such as gneiss, schist, and granite, which influence the stability 157 

of the landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, 158 

river valleys, and coastal plains, with the Taebaek Mountains running along the eastern edge (Kim 159 

et al., 2020). In addition, the influence of rainfall, environmental, geomorphology, and geological 160 

factors increase the vulnerability to landslides across the country, especially in the northeastern 161 

mountainous region, as depicted in Figure 1. The predominant soil types in South Korea include 162 

clay, sandy, and loamy soils, each with different characteristics affecting water infiltration, 163 

retention and erosion (Kang et al., 2022; Lee et al., 2023). Clay soils, being more stable, can 164 

become highly saturated, increasing landslide risk during heavy rains. On the other hand, sandy 165 

soils are more prone to shallow landslides due to fast saturation, leading to instability. Regions 166 

with steep topography and poorly consolidated soil (loose) are mostly at risk, especially after 167 

prolonged rainfalls (Kim et al., 2015). 168 

The combination of heavy summer rainfall, geological composition, and geomorphological 169 

factors makes South Korea particularly vulnerable to shallow landslides. Thus, continuous 170 

monitoring and research are vital to understanding the complex interactions between climate, 171 

geology, soil types, and landslide occurrences in this region. Understanding the collective effects 172 

of meteorological, environmental, geological stability, and geomorphological features is crucial 173 

for developing effective disaster management strategies and enhancing public safety in landslide-174 

prone areas. As climate change continues to impact rainfall patterns, South Korea faces ongoing 175 

challenges in mitigating landslide risks and protecting vulnerable communities. 176 
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 177 

Figure 1. (a) Spatial distribution of landslides in South Korea, (b) Temporal variation of rainfall, 178 

i.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D: 179 

Three days rainfall and E: Two weeks rainfall, (c) Cumulative frequency distribution of 180 

the volume of landslides, and (d) Box plot of the volume of landslides. 181 

 182 

2.2 Data 183 

The landslide inventory dataset contains 455 landslide record information from 2011 to 2012, 184 

collected from different locations in South Korea by Korean Forest Services. This dataset tabulates 185 

information on landslide geometry, such as runout length, width, depth, and volume of the affected 186 

area, along with geomorphological composition, vegetation, and antecedent rainfall prior to 187 

landslide events. The details regarding landslide predisposing and triggering factors are 188 
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summarized in Table 1.   189 

The majority of landslides in this region were shallow, translational slope failures (Kim et 190 

al., 2001). The occurred landslides had a volume varying between 1.5m3 to 12,663m3 and 191 

predominantly occurred in the northeastern and southeastern region (Figs.1a,c-d). The occurred 192 

landslides were hallowed and skewed to the right with 2570.7m3 as 95th quantile, largest volume 193 

was 12,663m3, and the aggregate mass of landslide due to rainfall was 276,986.62m3. The 194 

estimation of the volume of removed material by landslides is important as it helps to assess risks 195 

the estimated damage can cause down at the toe of the failed slope, such as blocking transportation 196 

network, burying crops or farmland, the damage-built environment near landslide risks area, and 197 

post-disaster recovery planning (Evans et al., 2007; Rotaru et al., 2007; Intrieri et al., 2019).  198 

 199 

Table 1. Landslide influencing and triggering factors. 200 

Group Features Feature Relevance References 

V
eg

et
at

io
n

 

Fire history 

The burning of the vegetation intensifies the 

mass movement of soil near the uncovered 

burned stem of trees and free movement on 

uncovered soil due to post-fire rainfall and 

storms. The sliding may also be due to loss 

of vegetation and altered soil property and 

structure, which lead to soil degradation and 

infiltration, which increase pore pressure, 

and change in hydrology by concentrating 

water flow in places that exacerbate 

landslides. 

Highland and 

Bobrowsky, 2008; 

Stoof et al., 2012; 

Hyde et al., 2016; 

Culler et al., 2021  

Age of tree 

Mature forests have more resistance to 

shallow landslides due to highly developed 

roots, which improve soil cohesion and 

leaves that prevent direct contact of raindrops 

with the soil surface. 

Sato et al., 2023; 

Lann et al., 2024 

Forest density 

The presence of forest reduces the likelihood 

of landslides about three times compared to 

grassland. Grassland has been revealed to be 

three times more vulnerable to shallow 

landslides than broadleaf, coniferous, and 

secondary forests. 

Greenwood et al., 

2004; Turner et al., 

2010; Scheidl et 

al., 2020; Asada 

and Minagawa, 

2023; Lann et al., 

2024 
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Group Features Feature Relevance References 

Timber diameter 

(m) 

Tree spacing and size were used to 

investigate the effect of root and tree in 

shallow landslide control. High root density 

generally enhances slope stability, and 

specific tree placement and root sizes 

between 5 to 20 mm effectively prevent 

landslides. 

Wang et al., 2016; 

Cohen and 

Schwarz, 2017  

G
eo

m
o
rp

h
o
lo

g
y

 

Drainage 

The drainage significantly affects slope 

stability and promotes efficient control of 

rainfall's influence on groundwater 

fluctuation. The presence of drainage 

increases the threshold of landslides due to 

rainfall. 

Korup et al., 2007; 

Sun et al., 2010; 

Yan et al., 2019; 

Wei et al., 2019   

Slope angle (°) 

The steeper slopes have a lower presence of 

landslides due to the low transportable 

materials. Slopes between 20-40 degrees are 

most vulnerable to greater landslides as 

rainfall intensity and duration increase. 

Generally, the average angle of the terrain at 

the landslide location provides valuable 

insight into the region's overall steepness and 

geomorphic characteristics, which are 

crucial factors influencing landslide 

susceptibility and risk modeling. 

Donnarumma et 

al., 2013; Duc, 

2013; Qiu et al., 

2016  

Slope aspect 

The effect of rainfall on slope differs by 

slope angle and slope aspect, which leads to 

unevenly distributed landslides. 

Panday and Dong, 

2021; Cellek, 2021 

Slope length 

(m) 

The volume increases as the slope length 

increases. A complex interplay exists 

between rainfall, length of slope and slope 

angle in the occurrence of landslides. 

Turner et al., 2010 

Soil depth (m) 

Soil properties, depth, and texture have 

significant differences in infiltration rates, 

which have different influences on the 

occurrence of landslides. 

Kitutu et al., 2009; 

McKenna et al., 

2012 

Soil type 

Soil types, namely, Sandy loam, silt loam and 

loam, with their coefficient of permeability 

1.7, 1.65 and 1.5, respectively, retain water 

differently, leading to different saturation 

Chen et al., 2015a; 

Liu et al., 2021a  
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Group Features Feature Relevance References 

times. The soil with higher permeability 

tends to drain water more efficiently, making 

it less prone to saturation. In contrast, the soil 

with lower permeability, the pore pressure 

rapidly increases, which leads to shallow 

landslide initiation during intense rainfall 

events.   

L
o
ca

ti
o
n

 

Altitude 

Regional variability of elevation and 

mountain steepness affect the quantity of 

rainfall and associated landslides. 

Um et al., 2010; 

Hyun et al, 2010; 

Yoon and  Bae, 

2013; Park, 2015  

 

Maximum 

hourly rainfall 

The rainfall infiltrates the slope and 

increases pore water pressure, which reduces 

soil shear strength and leads to soil 

saturation, that causes surface failure. 

Wieczorek, 1987; 

Dai and Lee, 2001;  

Smith et al., 2023  

R
ai

n
fa

ll
 

Continuous 

rainfall 
Sudden intense rainfall concentrated in short 

periods is responsible for shallow landslides 

and debris flow. 

Zhang et al., 2019 

Three hours 

rainfall 
 

Three days 

rainfall 

The antecedent rainfalls increase moisture 

in the soil and weaken soil cohesion.   

Bernardie et al., 

2014; Chen et al., 

2015a; Gariano et 

al., 2017; Zhang et 

al., 2019; Ran et 

al., 2022  

Two weeks 

rainfall 

Four weeks 

rainfall 

 201 

Location parameters such as altitude, latitude and longitude are essential elements that 202 

determine the microclimate of a given region, influencing rainfall patterns (Hyun et al., 2010; Yoon 203 

and Bae, 2013; Park, 2015). The northeastern region is characterized by high-elevation terrain, 204 

such as the Taebaek and Sobaek ranges, which dry air and lead to orographic precipitation (Yun et 205 

al., 2009). The windward mountain versants receive a substantial amount of rainfall, which can 206 

increase the likelihood of landslides (Jin et al., 2022). This variation of rainfall with respect to the 207 

direction highlights the importance of including slope aspect variables in landslide studies (Kunz 208 

and Kottmeier, 2006). Figure 2(a) depicts the relationship between the slope aspect and the volume 209 

of landslides and slope aspect, altitude and fire history and shows that larger volumes were 210 

localized in regions that faced forest fire and altitudes between 500 and 1000m. Additionally, the 211 
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topographical features such as slope length and slope angle affect the size of the landslide (Panday 212 

and Dong, 2021), slope failure due to over-saturation from groundwater and rainfall infiltration 213 

that destabilize the slope (Kafle et al., 2022). Furthermore, slope length, slope angle and slope 214 

aspect play an important role in the determination of the volume of geological material uprooted 215 

by landslides (Zaruba and Mencl, 2014; Khan et al., 2021). The slope stability depends on soil 216 

composition properties, including soil permeability indices that affect water infiltration and 217 

saturation level (Chen et al., 2015a). In the study regions, three main soil types, namely, sandy 218 

loam, loam, and silt loam, were observed, and their coefficient of permeability is 1.7, 1.65 and 1.5, 219 

respectively (Lee et al., 2013). Moreover, to reduce the infiltration drainage network that 220 

channeling rainwater terrain drains soil and reduces the saturation, which minimizes the likelihood 221 

of landslide occurrence as a result of groundwater discharge and rainfall water flow (Hovius et al., 222 

1997; Wei et al., 2019). Furthermore, the vegetation protects the topsoil from the direct impact of 223 

raindrops hitting the ground, which causes erosion due to the force of gravity and reduces 224 

infiltration (Omwega, 1989; Keefer, 2000). The absence of vegetation allows rainwater to seep 225 

away fine topsoil, causing shallow landslides (Gonzalez-Ollauri and Mickovski, 2017). On the 226 

contrary, vegetation improves soil cohesion and prevents potential shallow landslides due to soil-227 

root interaction (Gong et al., 2021; Phillips et al., 2021). The density of vegetation (forest) and 228 

leafage type (broad, pines or mixture) directly affects the quantity of raindrops intercepted and 229 

prevented from directly hitting the soil, which emphasizes the contributions of vegetation in the 230 

landslides mitigation. Further, the occurrence of forest fires can contribute to the occurrence of 231 

landslides due to the burning of vegetation covering the area, changing soil properties and 232 

increasing soil pH (Lee et al., 2013). 233 

The rainfall, a triggering factor of landslides, is the immediate cause of slope instability 234 

and failure due to infiltration that leads to saturation resulting from increased pore water pressure 235 

that reduces soil shear strength (Yune et al., 2010; Khan et al., 2012; Kim et al., 2021; Lee et al., 236 

2021). The antecedent rainfall increases the moisture in the soil, which accelerates the soil 237 

saturation; the cumulative effect is essential to understand the saturation levels (Ran et al., 2022). 238 

In this study, rainfall variables are grouped based on time, namely, continuous rainfall, which is 239 

the accumulative value of rainfall on the day of a landslide from rainfall start hour to the landslide 240 

event, maximum hourly rainfall, rainfall during the fixed period such as three hours, one day, three 241 

days, two weeks etc. (Fig. 1b). The histograms for rainfall considered in this study are depicted in 242 
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Figure 2(b-g). The descriptive statistics for all continuous variables are illustrated in Table 2.  243 

 244 

Figure 2. (a) The scatter plot showing the variation of landslide volumes with respect to slope 245 

aspect, fire history and altitude, and (b-g) Histograms of rainfall distribution. 246 

 247 

Table 2. Summary statistics for continuous variables.  248 

Variables Units N Min Mean Median Max Std dev 

Max Hourly rain  mm 455 0 48 48 78 20 

Continuous rainfall mm 455 0 285 327 550 106 

Three hours rainfall  mm 455 0 88 80 171 60 

Twelve Hours rainfall mm 455 0 150 99 447 95 

One day rainfall mm 455 0 202 162 538 112 
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Variables Units N Min Mean Median Max Std dev 

Three days rain mm 455 0 280 284 550 86 

Seven days rain mm 455 0.5 323 330 634 88 

Two weeks rain mm 455 0.5 385 400 663 90 

Three weeks rain mm 455 86 504 533 914 115 

Four weeks rain mm 455 108 587 561 1135 160 

Soil depth m 455 0.2 0.6 0.75 0.75 0.19 

Soil type  - 455 1.5 1.6 1.5 1.7 0.087 

Timber diameter m 455 0.15 0.27 0.23 0.35 0.086 

Age of tree  Years 455 10 34 35 60 14 

Slope length m 455 1.8 21 13 180 23 

Slope angle Degree (o) 455 10 34 34 65 7.9 

Altitude  m 455 9 391 272 1324 273 

 249 

3. Methods 250 

In this paper, we consider nine data-driven models, namely OLS, RF, SVM, EGB, GLM, DT, 251 

DNN, KNN and RR, to predict the volume of landslides due to rainfall. The model is tested on the 252 

South Korean landslides inventories and predisposing factors coupled with triggering factors, i.e., 253 

rainfall data. The detailed workflow is summarized in Figure 3. The steps for construction of these 254 

models can be briefly summarized as follows:  a) the dataset for landslide inventories is cleaned 255 

and combined with rainfall dataset, b) the collinearity analysis is made using variance inflation 256 

factor, c) continuous feature are scaled (Z-score) (Bonamutial and Prasetyo, 2023) to facilitate 257 

algorithms to converge fast, d) the dataset is split into training and test set, e) all models are tested 258 

on the same training set, and the model evaluation on the test set using mean absolute error (MAE), 259 

coefficient of determination (R2), root mean square error (RMSE), symmetric mean absolute 260 

percentage error (SMAPE) and mean absolute percentage error (MAPE) for the comparison of 261 

actual and predicted volume by each model, f) variable importance is calculated for the optimal 262 

model, and g) the distance correlation is calculated for each continuous feature, and Kruskal-Wallis 263 

and Dunn test are conducted to examine the similarity of the effect of each category on the 264 

landslide volume.  265 

  266 
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 267 

Figure 3. Workflow for the prediction of the volume of landslides due to rainfall. 268 

 269 

3.1 Model Construction 270 

In the present investigation, we aimed to predict landslide volume using models that minimize 271 

error with interpretability and scalability. Since one model can not have all properties 272 

simultaneously, we selected some widely used models due to their inherent interpretability and 273 

scalability properties. The OLS, GLM, and DT were widely used for their high interpretability, 274 

which helps to understand the influence of individual features on predictions (Gelman, 2007; 275 

Breiman, 2017). On the other hand, the EGB, RF, SVM, RR, and KNN were used due to their 276 

robust performance in capturing complex patterns in data, which is essential for accurate 277 

predictions of landslide volumes (Liaw and Wiener, 2002; Hastie, 2009; Chen and Guestrin, 2016). 278 

Additionally, considering that the model will be used on a regional scale, which will require big 279 

data, the EGB, RF, and DNN are designed to efficiently handle large datasets, making them 280 

suitable for the regional scale analysis. These last models can be scaled to incorporate more data 281 

from different geographical areas without significant adjustments, enhancing their applicability in 282 

future research (Krizhevsky et al., 2012). Accordingly, nine data-driven methods were selected and 283 

tested on a Korean dataset to predict VLDR.  284 

The first considered method is OLS, which is applied to estimate parameters of multilinear 285 

regression that yield the minimum residual sum of squares errors from the data (Kotsakis, 2023) 286 

under assumptions of no correlation in independent variables and error term, constant variance in 287 
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error terms, non-linear collinearity of predictors, and normal distribution of error terms. The RF-288 

regression is a supervised data-driven technique based on ensemble learning, which constructs 289 

many decision trees during the training time of a model by combining multiple decision trees to 290 

produce an improved overall result of the model outcome. The RF-regression is more efficient in 291 

the analysis of multidimensional datasets (Borup et al., 2023). RF is an effective predictive model 292 

due to non-overfitting characteristics based on the law of large numbers (Breiman, 2001). The DT 293 

regression is a predictive modeling technique in the form of a flowchart-like tree structure that 294 

includes all possible results, output, predictor costs, and utility. The DT simplifies the decision-295 

making due to its algorithm that mimics human brain decision-making patterns (Rathore and 296 

Kumar, 2016). The KNN technique draws an imaginary boundary in which prediction outcomes 297 

are allocated as the average of k-nearest point predictors and averaging their output variable 298 

(response). The KNN calculates Euclidian distances to identify the likeness between datapoints, 299 

and then it groups points that have smaller distances between them (Kramer and Kramer, 2013). 300 

The RR is an improved form of ordinary least squares, which serves to respond to cases where 301 

collinearity is found in predictor variables. The estimated coefficients of ridge are biased 302 

estimators of true coefficients and are generated after adding a penalty on the OLS model. The RR 303 

has always lower variances compared to OLS (Saleh et al., 2019). The advantage of the GLM over 304 

OLS is that the dependent variable need not follow the normal distribution. The GLM is composed 305 

by random and systematic components and the link function that links the two. In this study, the 306 

GLM with Gaussian link function was applied. GLM is fitted using maximum likelihood 307 

estimation (Dobson and Barnett, 2018). The DNN is among data-driven models that revolutionized 308 

different fields; the DNN learns via multi-processing layers and identifies intricate patterns in the 309 

data to predict the outcome (LeCun et al., 2015). Here, the backpropagation algorithm was used to 310 

predict the estimated outcome. The advantage of DNN is that it can discover the complex structures 311 

in the data using a back propagation algorithm capable of changing the internal parameter (weight 312 

update). The SVM is popular for balanced predictive performance which makes it capable to train 313 

model on small sample size (Pisner and Schnyer, 2020). Subsequently, SVM has been applied in 314 

many different landslide studies (Pham et al., 2018; Miao et al., 2018). SVM methods identify the 315 

optimal hyperplane in multidimensional space that separates different groups in the output values. 316 

The EGB is the most powerful and leading supervised machine learning method in solving 317 

regression problems. It can perform parallel processing on Windows and Linux (Chen et al., 318 
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2015b). The gradient boosting trains of differentiable loss function, and the model fits when the 319 

gradient is minimized. In this paper, both traditional statistical predictive models and ML models 320 

were used. The firsts are known for high clarity and explainability, and the second is famous for 321 

handling non-linearity in features. In some cases, the performance of advanced data-driven 322 

algorithms is almost similar (Chowdhury et al., 2023).  323 

 324 

3.2 Feature Selection and Data Splitting 325 

The variable selection procedure was based on previous literature and applied in the model 326 

using generalized variance inflation factor (GVIF) (O’Brien, 2007) to eliminate collinear variables. 327 

The variable with GVIF<10 was considered non-colinear and used in the model. Figure 4 depicts 328 

retained features and corresponding GVIF values. The retained features have GVIF less than 10 329 

(O’brien, 2007). Accordingly, all depicted variables were considered for the model training. 330 

Further, to train the model, the datasets were split randomly, with 70% of the data for the training 331 

set and 30% for testing (Nguyen et al., 2021). The 10-fold cross-validation was performed to obtain 332 

an optimal model. The training and test set was scaled (Z-score or variance stability scaling) to 333 

solve convergence issues that are associated with running the model without feature scaling (Singh 334 

and Singh, 2022). To run the model on the data using driven methods that accept numerical features 335 

only, the test and training set was one-hot-encoded to create a feature matrix (Seger, 2018). 336 

 337 

 338 
 339 

Figure 4. Generalized Variance Inflation Factor (GVIF) bar plot for features. 340 
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3.3 Model Evaluation Metrics 341 

The model performance evaluation is a process of quantifying the difference between the 342 

observed value not used in the modeling process and the predicted value by the model. Different 343 

metrics are applied depending on the type of task, whether it is a classification or a regression 344 

problem. Subsequently, the widely used evaluation metrics for regression models, namely, R2, 345 

MAE, RMSE, MAPE and SMAPE, were utilized to evaluate the model performances. The metric 346 

formulae and evaluation criteria are summarized in Table 3.  347 

 348 

Table 3. Model evaluation metrics.  349 

Metrics Evaluation References 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

• Measures the square root of the average 

squared differences between predicted and 

actual values. 

• Lower values indicate better model 

performance. 

Hyndman and 

Koehler, 2006 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 
• The average of the absolute differences 

between predicted and actual values. 

• Lower values indicate better model 

performance. 

Willmott and 

Matsuura, 2005 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

 
• Measures the accuracy of a model as a 

percentage, which can be more 

interpretable. 

• Lower values indicate better model 

performance. 

Armstrong, 

2001 

 

 

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑖 − �̂�𝑖|

|𝑦𝑖| − |�̂�𝑖|

𝑛

𝑖=1

 

• Unlike MAPE, which can be skewed by 

very small actual values, SMAPE accounts 

for both the actual and predicted values, 

making it symmetric. 

• SMAPE is expressed as a percentage 

• Mitigates the impact of small actual values 

on the error metric, providing a more 

balanced assessment. 

• Lower values indicate better model 

performance. 

Hyndman and 

Koehler, 2006 
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Metrics Evaluation References 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
• Represents the proportion of variance in the 

dependent variable that can be explained by 

the independent variables. 

• Values closer to 1 indicate a better fit 

Darlington, 

1990; 

 Chicco et al., 

2021 

*𝑦𝑖  𝑎𝑛𝑑 �̂�𝑖  representing the actual and predicted value and, �̅� 𝑎𝑛𝑑 𝑛 standing for the mean of actual value and number 350 
of observations in the dataset, respectively. 351 
 352 

4. Results 353 

The model was developed in R with different libraries, as discussed below. The DNN 354 

regression model was constructed using dnn() function from the cito library (Amesoeder et al., 355 

2023), with two hidden layers of (50, 50) nodes. The model was trained on 1500L epochs, learning 356 

rate (lr = 0.01), and loss = "mae". The DT regression model was constructed with tree() function 357 

from the tree library, with the recursive-partition method. The RR model was constructed using 358 

glmnet() from the glmnet package (Friedman et al., 2010), with ridge penalty (alpha=0). The 359 

optimal lambda was obtained by performing 10-fold cross-validation. The EGB model was built 360 

using xgboost() function in xgboost package (Chen et al., 2022). The optimal model was obtained 361 

at 524th boosting iteration with max depth =5 and other parameters set to default. The GLM 362 

regression model was constructed using glm() function (R core Team, 2022) with family Gaussian 363 

and log link to constrain the model of predicting positive outcomes. The KNN regression was 364 

constructed using knnreg() function from the caret package (Kuhn, 2022), with number of 365 

neighbors, k=17. The OLS model was constructed lm() from the stats package (R core Team, 366 

2022). The RF model was run using randomForest() from the randomforest package (Liaw and  367 

Wiener, 2002) with default parameters and the optimal model was reached at 256th iteration. The 368 

SVM regression model with linear kernel was built using e1071 package (Meyer et al., 2021) and 369 

other parameters set to default. 370 

The predictive performance of all tested models on the holdout dataset is depicted by the 371 

scatterplot (Fig. 5) of actual volume as recorded in the test set and predicted outcome values of 372 

each model. The red line represents the perfect prediction. The scatter plot of actual and predicted 373 

values of tested models shows that OLS performed least compared to other models with 374 

R2=0.2744, that is, 27% of variances in the model were explained by predictors. The second least 375 

performing was the RR with R2= 0.3034, which is 3.6% improvement compared to OLS. Among 376 

all models, three out of nine, namely, OLS, SVM, and RR, performed below 50%; however, these 377 
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models predicted well small values of volume (below 2000m3). The MAE of these three models 378 

was higher than the remaining six models, namely DNN, DT, GLM, KNN, RF, and EGB. Among 379 

these lasts, the most performing was EGB with R2= 0.88 of variance explained by predictors and 380 

MAE=146.6 m3. The evaluation metrics for the training and tested models are summarized in Table 381 

4. Considering the R2, the three models, namely EGB, RF, and DNN, had a value of R2 above 80% 382 

on the holdout set. 383 

 384 

Figure 5. Scatterplot of actual and predicted values for the nine tested models. 385 

 386 

Regarding the prediction on the training set, the GLM had an R2 of 83%. Nevertheless, the 387 

prediction on the holdout set was 51.9%; this large variation in variance explained by predictors 388 

indicates that the GLM model did not catch all non-linear patterns in the holdout set. Notably, the 389 

prediction difference in R2 on both training and test for the random forest exhibited a very small 390 
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difference compared to EGB and DNN, that is, 1.75% compared to 12.17% and 7.72% for DNN 391 

and EGB, respectively. Despite the stable prediction of RF, the performance in terms of SMAPE, 392 

the DNN was the second lowest symmetric mean absolute percentage error, 43.83m3 and 39.79 m3 393 

on training and test sets, respectively. According to Chicco et al. (2021), the R2 is more informative 394 

in regression modeling; thus, RF had better predictions than the DNN. 395 

 396 

Table 4. Summary of prediction metrics for tested models on the training and test set. 397 

Metrics  Models 

    DNN DT EGB GLM KNN OLS RF RR SVM 

R2 
Train 0.9309 0.4514 0.9613 0.8380 0.3470 0.3775 0.8610 0.3382 0.5510 

Test 0.8092 0.5822 0.8841 0.5190 0.5587 0.2744 0.8435 0.3037 0.4970 

MAE 
Train 132.7429 407.0814 75.1250 308.9700 410.2945 502.0053 236.9516 470.1633 276.2000 

Test 209.8063 435.5836 146.6120 510.6015 443.2222 614.3769 330.4876 536.0343 376.6252 

RMSE 
Train 348.6190 940.4850 113.4940 570.0070 1027.3730 1001.7620 574.9720 1042.9110 916.5471 

Test 646.5438 1047.4880 501.8960 1055.9190 1115.5270 1234.1220 737.0857 1237.9420 1176.9410 

MAPE 
Train 0.5240 0.7930 0.1540 76.3530 0.6280 5.2310 0.3810 1.5330 1.1588 

Test 0.5623 0.8892 0.3132 1819.2220 0.6623 4.1277 0.4939 5.8428 1.0421 

SMAPE 
Train 43.8375 79.8680 13.1780 150.4262 67.4715 103.0555 52.3359 93.4002 67.3221 

Test 39.7998 81.4539 22.7237 152.4991 73.6498 106.9756 63.7582 93.9244 76.9794 

 398 

To dive deep into the prediction performance of the EGB model, we analyzed variables 399 

importance in the prediction of the volume. It was observed that slope length was the most 400 

contributing predictor in the performance of the EGB model, followed by maximum hourly rainfall 401 

and slope aspect. The altitude, three hours rainfall, slope angle and age of timber contributed 402 

moderately to the prediction of the outcome volumes with gain above 0.01 and less than 0.2. The 403 

antecedent rainfall from three days and above and continuous rainfall had a minor contribution, 404 

with a gain of less than 0.01 for each. The presence of rainwater drainage channels had a moderate 405 

contribution, with a gain close to 0.01. On the other hand, the contribution of soil depth and forest 406 

density in the models was insignificant and far below 0.01. Though Figure 2(a) depicted the 407 

association between larger volumes and fire history, the variable importance indicates that the 408 

relation was not significant. Even though some variables had minor contributions, depending on 409 

the case, the contribution of those variables may also increase depending on other regional settings. 410 

Therefore, all variables with GVIF below 10 were kept in the model. Figure 6 illustrates the 411 

variables importance for the EGB model. The vertical red line split the variables into two groups, 412 



21 
 

the first containing variables that contributed a gain above 0.01 and others with minor 413 

contributions.  414 

 415 

Figure 6. Variable importance for the EGB model.  416 

 417 

The variable importance plot depicts the overall contribution of a given variable; however, 418 

it does not provide detailed information. To get more insight into the relationship between the 419 

volume of landslides and predictors, statistical tests for normality, namely, Shapiro-Wilk’s test, 420 

and Dunn’s test were conducted. The Shapiro-Wilk’s test (Dudley, 2023) results revealed that the 421 

distribution of volume was non-normal (W = 0.40642, p-value < 0.001). Noting that the volume 422 

distribution was non-normal, we opted for the non-parametric tests, which do not rely on normality 423 

to conduct the distance correlation (Székely et al., 2007) test (dcor) for continuous independent 424 

features. Figure 7 illustrates that the slope length exhibited a higher value (dcor=0.56) followed 425 

by continuous rainfall altitude and three hours rainfall and kept decreasing up to timber diameter 426 

with a distance correlation of 0.08. Overall, the distance correlation between the volume of 427 

landslides shows a moderate strength of association between continuous predictors. 428 

 429 
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 430 

Figure 7. Distance correlation plot for the volume and continuous features. 431 

 432 

Furthermore, to test for categorical features, Kruskal-Wallis test (McKight and Najab, 433 

2010) was used to check whether the volume of the landslide was different in each category and 434 

Dunn’s tests (Dinno, 2015) were applied to examine which categories had similar means of the 435 

volume of landslides due to rainfall in different categories. The H0 (null hypothesis) was that the 436 

mean volume of landslides in different categories is the same, and the H1 (alternative hypothesis) 437 

was that the means of landsides are different in some categories. For the slope aspect, the second 438 

most significant predictor for the EGB model, the results of Kruskal-Wallis test (chi-squared = 439 

20.889, df = 7, p-value = 0.003938) showed that there is a significant difference in median of 440 

volume in some categories of slope aspects. To know which classes of slope aspects had 441 

significantly different mean volumes, the Dunn’s test results at 95% confidence interval, pairs 442 

(East-South west, East-South East, East-South, East-North West and North West-South East) had 443 

significantly different means of landslides’ volume (with p-value <0.05). Figure 8 depicts that the 444 

southwest and southeast aspects had a higher frequency of landslides.  445 
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 446 

Figure 8. The distribution of the volume of landslides due to rainfall with respect to the slope 447 

aspect. 448 

 449 

The Kruskal-Wallis test for the difference in mean of drainage classes showed the result 450 

was: chi-squared = 15.792, df = 2, p-value = 0.000372, which shows that the means of volume per 451 

class were different. This was clarified by Dunn’s test results, p-values were less than 0.05 in all 452 

pairwise mean difference comparisons. The results of these tests highlighted that drainage has a 453 

remarkable influence on the occurrence of rainfall-induced landslides in the Korean Peninsula. 454 

 455 

5. Discussion  456 

Numerical models have traditionally been employed due to their foundation in physical principles 457 

such as slope stability and hydrological dynamics (Glade et al., 2005). These models are valuable 458 

for understanding the underlying mechanisms of landslide processes but often face limitations 459 

when applied to regions with complex or heterogeneous terrain, as they require detailed, high-460 

quality input data that may not always be available (Caine, 1980). In the same way, statistical 461 

models, which use historical rainfall and landslide data to establish correlations, can offer useful 462 

predictions of VLDR in regions with extensive historical records (Chung and Fabbri, 2003). 463 

However, these models may struggle to account for local variations in topography or rapidly 464 

changing weather patterns, limiting their general applicability. Additionally, ML techniques have 465 

shown significant promise in improving predictive accuracy at the regional level due to the 466 

capability of processing large, diverse datasets and capturing complex, non-linear relationships 467 



24 
 

that traditional models might fail to capture (Pourghasemi and Rahmati, 2018). Further, ML 468 

models can adapt to regional variations and continuously improve as new data is introduced, 469 

offering a more flexible and dynamic approach to predict VLDR on a regional scale (Liu et al., 470 

2021b). Subsequently, the aim of this study was to construct a data-driven algorithm that accurately 471 

predicts the VLDR. The result of nine different tested algorithms revealed a tremendous difference 472 

between classical regression models (OLS, RR, and GLM) and other data-driven machine learning 473 

models. In this study, apart from SVM regression, DT and KNN, other machine learning models 474 

(DNN, DT, RF, and EGB) exhibited high prediction capability with R2 above 50% (Fig. 5). The 475 

DNN, EGB, and RF models achieved R2>0.8 on both training and test set with accuracy reduced 476 

R2 by 1.75, 7.72, and 12.17% for RF, EGB and DNN respectively, on the holdout set, indicating 477 

that the model could yield reliable volume estimates in adjacent areas with similar geological and 478 

environmental conditions. The random forest model performed well in predicting smaller volume; 479 

however, as the volume increased, the model underpredicted volume values. The DNN model 480 

performed quite well with low MAE compared to random forest; however, the model did not 481 

perform well on moderate volume values, resulting in reduced R2. The EGB model tested on South 482 

Korean landslide inventory coupled with rainfall data at the time of landslide events and antecedent 483 

rainfall within one month of the event exhibited more accurate predictions compared to other 484 

constructed algorithms. The difference in performance may be due to the internal structure of each 485 

algorithm; the RF builds multiple decision trees and averages predictions to improve accuracy 486 

(Breiman, 2001), while the EGB builds sequential trees in a recursive order where the new built 487 

tree improves error occurred while building the previous decision tree and optimizes the loss 488 

function through a gradient descent (Chen and Guestrin, 2016).  489 

The slope aspect played an important role in the prediction of the volume, and the landslide 490 

mostly occurred in locations oriented toward south-southwest and southeast. That may be due to 491 

the direction taken by typhoons, which hit the southwest versants of mountains upon landfall on 492 

the Korean peninsula toward the North East Pacific (Lee et al., 2013; Ha, 2022). The findings of 493 

this research are congruent with those of Lee et al. (2013), who also highlighted that the mountain 494 

versant oriented to strong wind direction may face more landslides. The study also highlighted that 495 

a moderate rainwater drainage channel plays an important role in the prevention of landslides due 496 

to its stabilizing effect. The landslide location and pattern follow the rainfall climate scenario, 497 

which highlighted a higher intensity of rainfall in the northeastern region of South Korea (Lee, 498 
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2016). In addition, the findings of this study are congruent with Zhang et al. (2019) observations 499 

that highlighted the low influence of soil type in landslide modeling and the maximum rainfall and 500 

cumulative three hours of rainfall were the most contributing rainfall, which indicated that these 501 

shallow landslides may have been triggered by sudden rainfall concentrated in few hours before 502 

the occurrence of the event. The occurrence of landslides triggered by rainfall is a complex 503 

phenomenon that involves many interrelated environmental settings, human activity, geological 504 

conditions and climatic conditions. Moreover, the occurrence of typhoons is known to aggravate 505 

the landslides impacts on communities (Chang et al., 2008); incorporating typhoon variables in 506 

future studies to customize for regional settings may improve the accuracy of the model. The 507 

advantage of his research is that the constructed model has high predictive accuracy and can handle 508 

the non-linearity of predisposing factors. The model came to fill the gap in a few literatures related 509 

to the prediction of the volume of landslides using data-driven techniques. This model can be a 510 

good tool to help policy-makers integrate the landslides volume risks in policy to protect 511 

infrastructure and inhabitants dwelling near the foot of mountains with high risks of being buried 512 

by geological materials resulting from landslides. 513 

  To understand the applicability of the developed models, the trained model was tested 514 

using unknown data (test data), with volume predictions generated solely based on the predictor 515 

variables; actual volume values were utilized only for evaluating model prediction accuracy. The 516 

outcome exhibited that the difference in R2 on the training and holdout set of 7.72% for the optimal 517 

model (i.e., EGB) highlights that the model can be applied to another region of a similar setting. It 518 

was noted that without proper model calibration with the independent data set, it's difficult to 519 

determine whether these discrepancies in performance are due to model limitations or data 520 

differences in different regions (Huang et al., 2020). Therefore, in future work, we plan to develop 521 

an independent database based on collecting the extensive recent landslide geometry at different 522 

parts of the Korean Peninsula to improve the models further by calibrating region-specific 523 

parameters to ensure the transferability of the model to other regions.  524 

The major limitation of this study is that the analysis is solely focused on shallow-seated 525 

landslides, specifically translational slope failures with volumes below 13,000m³. Thus, the 526 

analysis may not fully capture the variability in landslide characteristics across different 527 

geomorphological and geological contexts. Deep-seated landslides, for instance, often exhibit 528 

distinct failure mechanisms, material compositions, and depositional patterns that influence their 529 
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volumetric characteristics, which were not considered in this investigation. Similarly, debris flows, 530 

known for their unique channelization and entrainment behaviors, were not included, potentially 531 

limiting the applicability of the optimized models to other landslide types. Further, this study was 532 

also performed using point-based landslide inventory data, which may not capture all variability 533 

of influencing factors and their exact state. The incorporation of high-resolution data from remote 534 

sensing and other sources may also improve the efficiency of the predictions. These limitations 535 

may impact the broader applicability of the proposed model; however, future studies will aim to 536 

address this by conducting separate analyses for deep-seated landslides and debris flows, allowing 537 

for a more comprehensive understanding of landslide volume predictions across diverse landslide 538 

types and geomorphological settings. 539 

 540 

6. Conclusions 541 

In this paper, the aim was to construct a data-driven model that predicts the volume of landslides 542 

due to rainfall. To this, nine different classical regression models and machine learning algorithms 543 

were tested on South Korean landslide data set containing features of landslides that occurred 544 

between 2011 and 2012. Among the tested models, the EGB model produced the most accurate 545 

prediction. This is proven by the evaluation of the difference between actual and predicted values, 546 

such as R2= 88.41% and MAE=146.6120m3 on the holdout set. The analysis of feature variables 547 

in the contribution to the prediction of the model revealed that the slope length was the most 548 

influencing predictor. The EGB model can be a promising tool for the prediction of the volume of 549 

landslides due to its high predictive performance. The model can be customized in different 550 

environmental settings. The model can be applied to estimate the expected volume of landslides 551 

based on forecasted rainfall once the model is well-adjusted to fit the geomorphological and 552 

environmental settings of the region of interest after re-training on the regional historical data to 553 

include regional variability. Therefore, this model can be a good tool for planning for resilience 554 

and infrastructure pre-construction risk assessment to ensure the new infrastructure is placed in 555 

stable regions free from severe landslides. 556 

 557 
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