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Prediction of volume of shallow landslides due to rainfall using data-driven models
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Abstract, “

Landslides due to rainfall are among the most destructive natural disasters that cause property

damages, huge financial losses, and human deaths in different parts of the World. To plan for
mitigation and resilience, the prediction of the volume of rainfall-induced landslides is essential to
understand the relationship between the volume of soil materials debris and their associated
predictors. Objectives of this research are to construct a model by utilizing advanced data-driven
algorithms (i.e., ordinary least square or Linear regression (OLS), random forest (RF), support
vector machine (SVM), extreme gradient boosting (EGB), generalized linear model (GLM),
decision tree (DT), and deep neural network (DNN), K-nearest neighbor (KNN) and Ridge
regression (RR)) for the prediction of the volume of landslides due to rainfall considering

geological, geomorphological, and environmental conditions. Models were tested on the Korean

landslide dataset to ebserveobtain, the best-performingmodel,and-ameongtested-alsorithms;the

most efficient predictions. The extreme gradient boosting ranked-high—withpredictions exhibited,
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the highest, coefficient of determination (R?=0.858841) and lowest mean absolute error
(MAE=150-42141°):146.6120 m?). followed by random forest (R>=0.8435, MAE=330.4876 m?).

The volume of landslides was strongly influenced by slope length, drainage statusmaximum hourly
rainfall, slope angle, aspect, and age-eftreesaltitude, The anticipated volume of landslidelandslides

can be important for land use allocation and efficient landslide risk management.

Keywords: Data-driven models, volume of landslidelandslides, prediction models, rainfall, South

Korea,
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1. Introduction, -

Landslides due to rainfall isare phenomena that dislocate, a phenomenon—in—which—a—given

volamemass of soil disleeates—from its eriginal-high-teleowerpoint-altitudenatural position and
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slide downward along a slope due to gravity forces-alongaslopefragilized-by. Intense or long- UAS A5 =2 RO HS, o2 A A2
AEoz2 ZHGIK| U
duration rainfall thatinfiltrates the soil and increases the pore pressure, resulting in soil saturation [ MA K| HSH 2T A HAE |
that leads to slope failure. The saturated soil becomes weak and loses cohesion, and the slope fails [klél X|HEh 28 M- BHAE q
when rainfall crosses a certain threshold (Bernardie et al., 2014; Martinovic¢ et al., 2018; Lee et al., [*1'4 Xge: 35 M HAE 1
. . . MA X|HE 28 A EHAE 1
2021). This ey auses-enormous-environmental degradation, B =
: (MM RIEE: 2B M A |
damage,—and—easualties;,—whieh—isThe heavy rainfall saturates a slope and triggers, a
"""" (MA XIHE: 2B 4 HAs
hindraneelandslide due, to secio-economieaspeetthe reduction of the soil's shear strength and the [ MA X|H3h 32 A EHAE
increase, of the—community{(Vanpore water pressure (Luino et al..2022; Chen, et al., 2021; ; [kiél X|&sH 28 A EBAE 1
Adedntara-Ayala; 202+ Chatra et al., 2019; Lacerda et al., 2014; Tsai and Chen, 2010). For example, [*15! g 2 M HAE
. . . . Al X{&F. =210 AH. HIA
steep slopes with loose soils and even moderate rainfall can lead to the displacement of [M HAEE: 33 N HEE
. . . . o (MY RIgE: 2B M HAE |
an enormous quantity of soil mass. On the contrary, in slopes with more stable, cohesive soils, the
surface failure might be smaller (Tsai and Chen, 2010). The rainfall quantity and duration influence [ MM x| gE: 25 M EHAE

the volume of the landslides; the higher the intensity and the longer the duration of rainfall, the
larger the resulting velume-oflandslidessurface failure (Chen et al., 2017; Bernardie et al., 2014;

Chang and Chiang, 2009). The landslide eeeurreneeoccurrences, can also be influenced by human

activities that fragilizeweaken, the slope, such as excavation at the slope toe and loading caused by

construction and land use such as agriculture, mining etc. (Rosi et al., 2016). Fherefore; The rapid

urbanization activities affect the topography through hill cutting, deforestation and water drainage

(Rahman et al., 2017); these activities disturb the slope structure and change the water flow, which
exacerbates the effect of landslides in regions where human engineering activities are mostly
located (Holcombe et al., 2016; Islam et al., 2017; Chen et al., 2019).

To estimate the volume of the soil mass displaceable subsequent to intensive rainfall, is

essential to set appropriate mitigation strategies to reduce environmental degradation,

infrastructure damage, casualties. and to establish post-disaster resilience policies to restore the

socio-economic aspect of communities (Van et al., 2021; Alcantara-Ayala, 2021). This

quantification of the volume of landslides due to rainfall (VLDR) is essential for effective risk
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management (Tacconi Stefanelli et al., 2020), emergency response, engineering design (Cheung,

2021), economic assessment and environmental protection (Alcantara-Ayala and Sassa, 2023).

Firstly, to manage landslide risk effectively, the quantification of VLDR can be useful for updating

hazard maps to reflect the scale of potential landslides in various regions to facilitate the

identification of high-risk zones for monitoring and intervention. In addition, to develop mitigation

strategies, such as land stabilization measures and land use planning, planners might put in place

strict construction regulations in particular regions that are susceptible to landslides (Mateos et al.,

2020). The accurate measurements of VLDR can be used to promote public awareness for safety

measures and preparedness (Yang and Adler, 2008). Secondly, estimating precise VLDR is crucial

for structural engineers to design a structure that can withstand extreme landslide events. Knowing

the exact volume of displaceable material, an engineer can set robust stabilization solutions to

prevent future occurrences (Dai and Lee, 2001). Moreover, the VLDR can help design the drainage
system to manage water flow by controlling groundwater and surface runoff to mitigate landslide

risks (Dikshit et al., 2019; Kim et al., 2014). Furthermore, to prepare for emergence responses such

as resource allocation, evacuation planning, and search and rescue operations, accurate VLDR

estimation is necessary to ensure efficient implementation (Fan et al., 2019). To allocate resources

effectively, the volume data is needed to determine the expected number of personnel for

Amatya, 2016; Yang and Adler.

evacuation, materials sufficient for cleaning up and recove

2008; Spiker and Gori, 2003). Further, to establish environmental protection measures such as

ecosystem impacts, preservation of soil and water quality, and habitat restoration, the estimates of

VLDR are essential (Pradhan et al., 2022; Li et al., 2022a; Barik et al., 2017).

To mitigate the economic impacts of landslides, the values of VLDR can be a basis for«—

estimation of property damages, which is critical for settling insurance claims and assessment of

financial impacts on communities and government to facilitate efficient budgeting for repairing
damaged infrastructure and restoration of affected parts (Klimes et al., 2017; Dai et al., 2002). The
prediction of the VLDR can assist in long-term economic planning for landslide risk by creating

disaster preparedness and recovery funds (Winter and Bromhead, 2012). The accurate estimation

of the VLDR, is an important key for designing strategies for resilience and planning for the

protection of the inhabitants of a particular region with certain landslide risks subjected to a
predicted quantity of rainfall (Conte et al., 2022). Consequently, for the safety of communities, the
effieient-selection of infrastructure construction gites must be done in places wheretandslides
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cannot-bury-buildingswith low landslide risks, (Fan et al., 2017). Further, for the protection of

crops, the farmland location, and other land use activities, accurate landslide prediction taking into
account real root causes through the analysis of triggering and influencing factors, is crucial to

achieve a durable landslide safety management system (Paudel et al., 2003; Lee, 2009; Fan et al.,

2017 Chen et al..,2019; Dai et al., 2019; Alcantara-Ayala, 2021).

—The prediction of VLDR has gained the

interest of many researchers to understand the mechanism and interaction between triggering and

aggravating factors. Saito et al. (2014) studied the relationship between rainfall-triggered

landslides to test whether the volume of landslides across Japan that occurred between 2001 and

2011 can be directly predicted from rainfall metrics. The findings revealed that larger landslides
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occurred when rainfall exceeded certain thresholds, but there were significant discrepancies

between peaks of rainfall metrics and maximum landslide volumes, and the total rainfall was the

suitable predictor of landslides. Dai and Lee (2001) established the frequency-volume relation for

landslides in Hong Kong and noticed that the relation for shallow landslides above 4m? followed

the power law. The 12-hour rolling rainfall contributed most to the prediction of the volume of

landslides. Ju et al. (2023) constructed an area-volume power law model for the estimation of the

volume of landslides using high-resolution LiDAR data collected between 2010 and 2020 in Hong

Kong. The aim was to estimate accurately the volume of landslides on small-scale landslides. The

reliance on localized datasets limits the model's applicability in regions with different geological

settings. and the model does not consider all variabilities of landslide characteristics. Razakova et

al. (2020) calculated landslide volume using remote sensed data with the aim of assessing the

efficiency of aerial photographs in environmental impact assessment and ground-based

measurement. The study did not take into account the effect of vegetation and topography and only

focused on a single landslide case, which may be a source of bias due to differences in soil

composition and environmental factors. Hovius et al. (1997) analyzed multiple sets of aerial photos

and frequency-magnitude relations for landslides in New Zealand. The finding pinpointed that the

landslides frequency-magnitude followed power law and infrequent large magnitude contributed

to the landscape change. The study also noticed the importance of soil composition in the size of

the landslides. This work had a limitation due to the reliance on aerial photos only, which cannot

provide accurate measurement in regions of dense forest, and the climatic conditions, which are

landslide triggering factors, were not considered, and this may affect the generality of the findings.

Guzzetti et al. (2008) applied statistical methods on regional landslide inventories and antecedent

rainfall data ranging between 10 min to 35 days. The findings revealed that the slope angle and

soil type significantly influence landslide volume estimates, and the rainfall intensity is more
important than duration. Chatra et al., 2019) applied numerical methods to study the effect of

rainfall duration and intensity on the generation of pore pressure in the soil; the finding revealed a

higher instability in loose soil compared to medium soil slopes. The work only treated the

interaction of soil and rainfall without considering the environmental factors and human activity,

which might also influence mass failure. Recently, the application of GIS technologies has been

increasing in the identification of regions susceptible to landslides (landslide zonation) (Chen et

al., 2021; Gutierrez-Martin, 2020; Li et al., 2022b). These methods are essential in emergency
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management because they provide a general overview of zones with a higher probability of

landslide occurrence; however, they do not put emphasis on the determination of the approximate

value of the volume of failing mass in relation to excessive rainfall events.

In the present study, the volume of landslides due to rainfall is predicted using OLS, RF,
SVM, EGB, GLM, DT, DNN, KNN and RR algorithms, considering the details of triggering
factors (i.e., rainfall) and predisposing factors (i.e., —geelogical;,—geomorphological, soil and

RS el

environmental).

In—this—stady_Here, we aim to construct a data-driven algorithm that combines input«
parameters for physical-based and empirical models and ineerperateincorporates more complex
non-linear features of input variables to predict the occurrence of associated events more
accurately. The main assumption behind the data-driven algorithm is that the considered feature
input of the model produces a similar volume of landslides due to rainfall and follows the same
pattern at a particular region with the same features under the same quantity of rainfall. Here, we

examine different machine learning algorithms and compare their performance using the

coefficient of determinations R* and-mean-square-errorsMAE) resultins from-the-application-of

fegieﬂa-l—se&i-ngs(Rz) and mean square errors (MAE), Root mean square error (RMSE), Mean

absolute percentage error (MAPE) and symmetric mean absolute percentage errors of the predicted

volume of landslides. The focus is to optimize the predictions of the volume of landslides due to

rainfall, taking into account triggering and influencing factors with higher accuracy,

2. Data and Study areaRegion, -«
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2.1. Study Region

The region for testing the model is South Korea, characterized by mountainous (63% of total land)-

relief, especially in the eastern part of the country (Lee et al., 2021)-The-2022). South Korea is
located on the southern part of the Korean peninstlaPeninsula, bordered by the Yellow Sea to the

west coast and the East Sea (Sea of Japan) to the East. According to the Korean Meteorological

Administration (2020), the country has a temperate, climate eemprises—eold—and—dry

wanterscharacterized by four distinct seasons: hot and humid summers-, cold winters, and springs

and falls with moderate temperatures. The annual rainfall ranges between 1000 mm to 1400mm

and 1800mm for the central region and southern region, respectively (Jung et al., 2017; Alcantara
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and Ahn, 2020), During the summer-seasesn, heavy rainfall from June to September leads to

X

significant surface runoff, increases landslide risk, and causes approximately 95% of all landslides

g

X

g

due-torainfalleach year (Lee et al., 2020; Park and Lee, 2021). In addition, the landslides may be

X

xgg:

aggravated by typhoons, which mostly occur in August and September, and it is anticipated that
frequency will increase due to climate change- (Kim and Park, 2021), The annualrainfall ranees

X

X|"gh

X

NESE-H

X

X|"g

X

between1000smmtrend analysis from 1971 to 1400mm-and1800mm-for2100 predicted the eentral

geelogyincrease in rainfall of 271.23mm, which indicates the Kereanpeninsulais-growing risk of

NESE-H

x

k)

x

k)

landslides associated with climate change (Lee, 2016). Temperature variations are influenced by

its geographical location, the average summer temperatures range between 25 and 30°C. while

winter temperatures can drop to -10°C in some parts of the country (Korea Meteorological

Administration, 2020). The South Korean geologically is mainly composed of granitic and

L [ B o
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g

metamorphic (45%);-igneous{306%)rocks, such as gneiss, schist, and 25%efsedimentaryroecks

kLS

Lee-and-Winter;granite, which influence the stability of the landscape (Jung et al., 2024). The

g

xgg:

geomorphology is characterized by rugged mountains, river valleys, and coastal plains, with the

Tacback Mountains running along the eastern edge (Kim et al., 2020). In addition=2849

Subseguently, the influence of rainfall, environmental, geomorphology, and geological factors

g

frequently-generatedincrease the vulnerability to, landslides across the country, especially in the

X" g

X d g

northeastern mountainous region, as depicted in Figure-+—TFhe-distribution-ofrainfall and velume

g

is-summarized-inFig 1.

g

IETELE:

U]
it

U]
it

U]
it

L]
1=

L]
1=

L]
1=

L]
1=

L]
1=

L]
1=

L]
1=

L]

O T T T
it

o]
it

o JC U

mup
Uk
1=

U]
it

ny |

U]
it

mp
o]
it

LT}
1=

LT}
1=

Tk
1=

LUla]

up | R | g
1=

o]
1=

O JC L



205
206
207
208
209
210
211
212
213
214
215

126°0'E 127°0'E 128°0'E 129°0'E 130°0'E
I I I I 1

(a) (b) s _| °
2 -
- H
H
Z
;8- -l
8 8 . g T 5
- o —
H
. 2 B
& . & ©
o | = L
T T T T T
- A B C D E
& z (©
~ 13
© ~ (=]
L =
P
m 3T o
- 5§ ©
£ =1
o g o
= & o
z »
c =
21 m g 2 <
8 > 8 § o
=
E o [
3 © 0 4000 8000 12000
5
Volume (m’)
o 4
S HTT T T T
3
5] z 0 4000 8000 12000
in {54 3
8 2 Volume (m®)
y @ o
) - Altitude (m) 8 _ [5)
ki o [J1101-191 ] )
5 ) [=11.001-1,100 _
e ® <5000 o~
o ® 500.1-10000 M 800.1- 1,000 s
% E o
z ® I 600.1 - 800 = < 9 o
5 | ® 1000.1 - 2000.0 Z = g
3 - . . S A I 400.1-600 |-€ g
g 3 5 =l o
o S 8
3000.1 - 5000.0 > 8
[ 100.1 - 150 S
¢ @,sm [15001-100 =
Leiu’ w [_Jo-50 =
a—— 0 20 0 &0 80 120
< | O o —
T T T T T
126°0'E 127°0°E 128°0°E 129°0°E 130°0'E

The predominant soil types in South Korea include clay, sandy. and loamy soils, each with

different characteristics affecting water infiltration, retention and erosion (Kang et al., 2022; Lee

et al., 2023). Clay soils, being more stable, can become highly saturated, increasing landslide risk

during heavy rains. On the other hand, sandy soils are more prone to shallow landslides due to fast

saturation, leading to instability. Regions with steep topography and poorly consolidated soil

loose) are mostly at risk, especially after prolonged rainfalls (Kim et al., 2015).

Coastal areas are exposed to sea-level rise and coastal erosion, which can further

complicate the landscape and increase landslide susceptibility. The combination of heavy summer

rainfall, geological composition, and geomorphological factors makes South Korea particularly

vulnerable to shallow landslides. Thus, continuous monitoring and research are vital to understand

the complex interactions between climate, geology, soil types, and landslide occurrences in this
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region (Park, 2022). Understanding the combination of environmental, geological stability, and

eomorphological features is crucial for developing effective disaster management strategies and

enhancing public safety in landslide-prone areas. As climate change continues to impact rainfall

patterns, South Korea faces ongoing challenges in mitigating landslide risks and protecting

vulnerable communities.

126°0'E 127°0'E 128°0'E 129°0'E 130°0'E
1 | I 1 L

o
@) N b g |
A = =
= H
E - H
g z = 8 4 2
& |- € T © -
3 8 = | 8 =
© o '
@ = :
w o ' '
. 8 T _;‘ -+
o | = L
T T T T T
= A B C D E
s | g€ (C)
5 m 2 o
> © > =
A -
=< - ©
m
- m e ‘
° > So
= ge
2l e z L
o o o X
© ® & > o
=
3N ] T T T
g =] 0 4000 8000 12000
Volume (m”)
Siey
S T T T T T 7
&
5. 2 0 4000 8000 12000
B B Volume (m®)
& d
» Altitude (m) S _| o
Voluroe (i) [11.101-191 «q o
[ 1,001-1,100
a ® <5000 o~ i
b @ 5001-10000 M 800.1- 1,000 ”E &
z g % il o
5 | P @ 1000.1-20000 I 600.1 - 800 z S 8 n
3 - B B 400.1-600 |-© g o
. 2000.1-30000 [ 2001 - 400 3 5 = 8
.30001.50000 [ 150.1- 200 2 g
[ 100.1- 150 3
<
J O “s000 [J5001-100
& w [Jo-50 mn
— 0 20 0 40 80 120
O -  ——

T T T T T
126°0'E 127°0'E 128°0'E 129°0'E 130°0'E

Figure 1. (a) Spatial distribution of landslides in South Korea, (b) temporal variation of rainfall,«

i.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D:
Three days rainfall and E: Two weeks rainfall, (c) cumulative frequency distribution of

volume of landslides and (d) box plot of volume of landslides.
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Variables
(Landslide characteristics)
I

1 1
Target _./Model Construction\
; Predictor selection
Age of timber Antecedent
£ Rainfall (VIF <10)
Drainage | Fourweeks | | Volume (m3)

Training (70%) and

Max Hourly |

!
|
Erosion Occurrence |

I
i
|
|
I Forest density
I
|

— test set 30%
Fire history Three days
Kunand Lest
Algorithms:
Forest leafage | Two weeks | DNN, DT, EGB,
GLM, KNN, OLS,
Slope angle |—+ RF, RR, SVM
Slope aspect Multicollinearity !
Model Evaluation:

Variance Inflation Factor T
(VIF)

Metrics ( RZ ,MAE)

!

Identification of most
efficient model

Soil type

-

|

|
| |
| Slope length |
| Soil depth |
| |
I |

Timber Diameter

The landslide inventory dataset contains 456455 landslide record information from 2011 to 2012, [klél X|MEh 28 M- BHAE q
which—was-collected from different locations in South Korea by Korean Forest Services. This (MY RS 3B A HAE
. . . . [Hq | &SH 22 A BHAE 1
dataset tabulates information on landslide leeationolame;stopegeometry, such as runout length, :
[ MA T 2E M A
seil-type-drainage situation,fire-history,andwidth, depth, and volume of the affected area, along —
(MA XIHE: 2B A4 HAE
with geomorphological composition, vegetation-featuressuch-as-age,-diameterof timber,leafage; [*1‘5! X3 3B A SAE |
and-forest-density:, and antecedent rainfall prior to landslide events. The details regarding landslide
predisposing and triggering factors are summarized in Table 1.
The majority of landslides in this region were shallow, translational slope failures (Kim+ MA Q8. S0jMT|: K = 127 cm, 2| Ng| o &
. . . CHol HE HX|, 2% Bz B0 U3 S
and Chae, 2009: Kim et al., 2001). The occurred landslides had a volume varying between 1.5m?
to 12,663m> and predominantly occurred in the northeastern and southeastern region (Fig.la.c &
d), The ex (MA TR 2B M HAE

o U L
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occurred, landslides -were hallowed and skewed to the right wit ./m” as
by d, landslides and-its-depth- hallowed and skewed to the right with 2570.7m> as 95%

quantile, largest volume was 12,663m’>, and the aggregate mass of landslide due to rainfall was

Rk

276.986.62m*, The estimation of the yolume of flewn-awayremoved, material by landslides is

x

X "g

x

X "g

important as it helphelps, to assess risks the estimated damage can cause down at the valley-at-the

bettemtoc, of the failed slope, such as blocking transportation network, burying crops or farmland,

x

X" g

(Evans et al., 2007; Rotaru et al., 2007; Intrieri et al., 2019).

X

NESE-H

lannin

X

NESE-H

x

Table 1. Landslide influencing and triggering factors,

NESE-H

X

kLS

X

NESE-H

X

kLS

Group Features Description Reference
o falling . . e, . ;

X

g

X

ks

Fire history

The burning of the vegetation intensifies the
mass movement of soil near the uncovered
burned stem of trees and free movement on
uncovered soil due to post-fire rainfall and
storms. The sliding may also be due to loss of
vegetation, altered soil property and structure,
which lead to soil degradation and infiltration
which increase pore pressure, and change in
hydrology by concentrating water flow in
places that exacerbate landslides.

Highland and
Bobrowsky, 2008;
Culler et al., 2021;

Hyde et al., 2016;
Stoof et al., 2012
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Age of tree

Mature forests have more resistance to shallow
landslides due to highly developed roots,
which improve soil cohesion and leaves that

Vegetation

prevent direct contact of raindrops with the
soil surface.

Sato et al., 2023;
Lann et al., 2024

Forest density

The presence of forest reduces the likelihood

Lann et al., 2024;

of landslides about three times compared to

Greenwood et al.,

grassland. Grassland has been revealed to be

2004; Turner et al.,

three times more vulnerable to shallow

2010; Scheidl et

landslides than broadleaf and, coniferous and

al., 2020; Asada et

in secondary forests.

al., 2023

Timber diameter

Tree spacing and size had been used to
investigate the effect of root and tree in

(m)

shallow landslide control. The high root
density generally enhances slope stability,

Cohen and
Schwarz., 2017;
Wang et al., 2016
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and specific tree placement and root sizes
between 5 to 20 mm are effective in landslide

prevention.

The drainage has a significant effect on the
slope stability and promotes the efficient

Yan et al., 2019;

control of the influence of rainfall on the

Sun etal., 2010 ;

Drainage ground water fluctuation. The presence of Weietal., 2019 ;
drainage increases the threshold of landslides Korup et al., 2007
due to rainfall.

The steeper slopes have lower presence of
landslide due to low transportable materials.
Slopes between 20-40 degrees are most
yulner_able to qreatt_ar Ia_ndslldes as _rainfall Duc. 2013 - Oiu et

Slope anale mten_sny and duration increase. Here,_ we —’—‘Lal. 2016 -

_Lg_de oo considered Fhe averaqg angle of the terral_n at Donnarumma et

(degree) the landslide location, which provides W

valuable insight into the region's overall
steepness and geomorphic characteristics,
which are crucial factors influencing landslide
susceptibility and risk modeling.

Slope aspect

The effect of rainfall on slope differs by slope
angle and slope aspect which lead to

unevenly distributed occurrence of landslides.

Panday and Dong
2021; Cellek, 2021

The volume increases as the slope length

Slope length increases. There exists a complex interplay
; Turner et al., 2010
(m) between rainfall, length of slope and slope
angle on the occurrence of landslides.
Soil properties, depth, and texture have .
. p D ; . . ; Kitutu et al., 2009;
. significant differences in infiltration rates,
Soil depth (m) ; - B McKenna et al.
which have different influences on the
. 2012
§ occurrence of landslides. -
E Higher rainfall _intensity affects the
& . occurrence  of  landslides  differently .
) Soil type - B - ) “ Liuetal., 2021
g particularly in certain soil types that have
8 shorter saturation and failure times.
. . . Hyun et al, 2010
Regional variability of elevation and
= . - B Yoon and Bae
2 Altitude mountain steepness affect the quantity of
§ rainfall and associated landslides 2013; Fark, 2013
9 ] Um etal., 2010
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The rainfall infiltrates the slope and increases
pore water pressure that reduces soil shear
strength, which leads to soil saturation that
causes surface failure.

Wieczorek, 1987;
Smith et al., 2023;
Dai and Lee, 2001;
Smith et al., 2023

Maximum
hourly rainfall

Continuous . . .
T Sudden intense rainfall concentrated in short Zhang et al., 2019
rainfall - ; ; :
——————— periods of time is responsible for shallow
Three hours . B
.. landslide and debris flow.
__ rainfall
g Three days Ran et al., 2022
E?:s rainfall Zhang et al., 2019;
Two weeks The antecedent rainfalls increase moisture in  Bernardie et al.,
rainfall the soil and weaken soil cohesion. 2014; Chen et al.
Four weeks 2015a; Gariano et
rainfall al., 2017

Location parameters such as altitude, latitude and longitude are essential elements that«——

determine the microclimate of a given region, influencing rainfall patterns (Hyun et al., 2010; Yoon

and Bae, 2013; Park, 2015). The northeastern region is characterized by high-elevation terrain

such as Taebaek, and Sobaek ranges, which dry air and lead to orographic precipitation (Yun et al.,

2009). The windward mountain versants receive a substantial amount of rainfall, which can

increase the likelihood of landslides (Jin et al., 2022). This variation of rainfall with respect to the

direction highlights the importance of including slope aspect variables in landslide studies (Kunz
and Kottmeier, 2006). Figure 2(g) depicts the relationship between the slope aspect and the volume

of landslides and slope aspect, altitude and fire history and shows that larger volumes were

localized in regions that faced forest fire and altitudes between 500 and 1000m. Additionally, the

topographical features such as slope length and slope angle affect the size of the landslide (Panday

and Dong, 2021), slope failure due to over-saturation from groundwater and rainfall infiltration

that destabilize the slope (Kafle et al., 2022). Furthermore, slope length, slope angle and slope

aspect play an important role in the determination of the volume of geological material uprooted

by landslides (Zaruba and Mencl, 2014; Khan et al., 2021). The slope stability depends on thesoil

composition, properties-ef-compesing—material-which-have-different, including soil permeability

index-which-indicatesindices that affect water infiltration eapabilityand saturation level (Chen et

al., 26452015a). From surveyed regions, three main soil types, namely, sandy loam, loam, and silt

loam, were observed, and their coefficient of permeability is 1.7, 1.65 and 1.5, respectively (Lee
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et al., 2013}~ were-used-asnumerical predictor-variables—tn-additien;). Moreover, to reduce, the [k]é,l g 2E M HAE
infiltration drainage network that channeling rainwater in-hills-terrain drains soil and reduces the [klél K| HEh 28 M HAE 1
saturation, which minimizes the likelihood of landslide occurrence as a result of groundwater [A‘IN Xgeh 28 M HAE
. . . . | MAKBE: 2B M HAE
discharge and rainfall water flow (Hovius et al.,3998 1997; Wei et al., 2019). Furthermore, the = -
, , _ (MM XIHE: 2B 4 HAE
(MA X 2B A A
ecppmpeeedthe o bine o bbbl T o cesion coscmrolects the topsoll—aessent: [A'Ié.' Xgeh 35 M HAE
drying-and from, the direct hit-ef rain-drops-which-automatically-dig-heles-enimpact of raindrops {klé,l X|HEh 28 M HAE 1
hitting the ground, which causes erosion, due to the force of gravity aeting—en—theraindrop [A-Ié,l X|Heh 28 M "HAE
combined-with-theseil-permeabilityand reduces infiltration (Omwega, 1989; Keefer, 2000). The [*"4 XNyE: =L M HAEN
. . . . . N [H*' K| &g 22 A EHIAE
absence of vegetation allows rainwater to seep away fine topsoil, causing shallow landslides — = A —
(MA XIHE: 2B 4 gas
(Gonzalez-Ollauri and Mickovski, 2017). Fhus;—plantingOn the contrary, vegetation is [

MA X EEh 25 M HAE
recommended-as-a-better practice-to-improveimproves, soil cohesion and preventprevents, potential [ MA| |8 22 AL B AE
shallow landslides due to soil--root interaction (Gong et al., 26472021; Phillips et al., 2021). The [Mq K| HEh 28 M HAE 1
density of vegetation (forest) and leafage type (broad, pines or mixture) determinedirectly affects, [*1’4 e 2= M HAE
the quanti - ~ ; g di L whi (MA RmE: 22 4 gae

quantity of raindrop intercepted and prevented from directly hitting eireethy-the soil, which
. . o . o Vo (MA R 2B A A
emphasizes the vegetation’s landslides mitigation role. Therainfall-a-triggering factorFurther, the
(MY RIEE: 2B M A |
occurrence of forest fires can contribute to the occurrence, of landslides which-consists-of rainfall [ MA X|HBE 2B A AE q
(MA RHE: 22 4 gae
(Mo RIEE: 28 M A |
Yuneincreasing soil pH (Leg et al., 2013) 2040-Kkh. = = K = . i - [Hé'l XBeh 2 M HAE
o . : L[ MA e 2B eas
(MAl XEe: 22 A gae
The rainfall, a triggering factor of landslides, is the immediate cause of slope instability [ MA R|HBL 2T AL SAE 1
and failure due to infiltration that leads to saturation resulting from increased pore water pressure [ MA| K-S 2L A HAE {
that reduces soil shear strength (Yune et al., 2010; Khan et al., 2012; Kim et al., 2021; Lee et al., [A‘IN X@eh 25 M HAE
2021). The antecedent rainfall increases the moisture in the soil, which accelerates the soil [kw K@ 3L M HAE
. . . . . MA X ™S 28 M BHAE | ZZAN|(ZTYA
saturation; the cumulative effect is essential to understand the saturation levels (Ran et al.,2022). [ 14 X 22 g20=8
_ 4 _ _ _ _ o (MM XIHE: 2B 4 HAE
In this study. rainfall variables are grouped based on time, namely, continuous rainfall, which is [ Mo RMeh 2B M HAE 1 mEAoj@HA

the accumulative value of rainfall on the day of a landslide from rainfall start hour to the landslide

event, maximum hourly rainfall, rainfall during the fixed period such as three hours, one day, three
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320 days, two weeks etc (Fig. 1b). The histograms for rainfall considered in this study are depicted in

321  Figure 2(a-f), and the descriptive statistics for all continuous variables are in Table 2.
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324  Figure 2. (a-f) Histograms of rainfall data, and (g) the scatter plot showing the variation of landslide

325 volumes with respect to slope aspect, fire history and altitude.
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Slope-length-(m)  steeperslopeshave lower presepeccof
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Table 2: Summary statistics continuous variables.
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VariableVariables, units N Min Mean ax <« [k]é{ XM 28 2, 2B M HAE q
n o (MRS 2B AN, 2B A HAE |
VelumeSlope 45045 21168 126631 1237428 =
im, 158 599.5921 SECETIE
length, 5 13 80, 237 [ MM T 2B A, 2B M HAE
Degree \ [*‘lél XHeh 25 M HAE
Slope angle @ 455 10 34 34 65 7.9 (M xBE: 2B M Eas
. MA X 28 M EAE
Altitude m 455 9 391 272 1324 273 [ — =
— — (MM XIHE: 2B A HAE
. (MM XIHE: 2B A HAE
(MM XIHE: 2B A HAE
3.2 Method Methods, (MM XIHE: 2B A HAE
i ider ni - (MM RIS 2B M A |
In this paper, we consider nine data-driven models, namely OLS, RF, SVM, EGB, GLM, DT, DNN,
(MM RIEE: 2B M A |
KNN and RR to predict the volume of landslides due to rainfall. The model is tested on the South \
' M XEE: 25 R/, 7I2YE Qs 25 M HAE
Korean landslides inventories and predisposing factors coupled with triggering factors, i.e., rainfall 1
data. The detailed workflow is summarized in Figure fthis-study-nine-data-drivenmetheds-were :‘lé! NEE: 2L 7, 71222 28, 25 W H2E
elected-and-tested-on-atcoreand T et [A‘I’—klxl’gﬁhﬁg&.‘:‘z—*‘éE‘l

methed—3. The steps for construction of these models can be briefly summarized as follows: a)
the dataset for landslide inventories is cleaned and combined with rainfall dataset, b) the

collinearity analysis is made using variance inflation factor, ¢) continuous feature are scaled (Z-

score) (Bonamutial and Prasetyo, 2023) to facilitate algorithms to converge fast, d) the dataset is

split into training and test set, €) all models are tested on the same training set, and the model

evaluation on the test set using mean absolute error (MAE), coefficient of determination (R?), root

mean square error (RMSE), symmetric mean absolute percentage error (SMAPE) and mean

absolute percentage error (MAPE) for the comparison of actual and predicted volume by each

model variable importance is calculated for most performing model, and the distance

correlation is calculated for each continuous feature, and Kruskal-Wallis and Dunn test are

conducted to examine the similarity of the effect of each category on the landslide volume.
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Figure 3. Workflow for the prediction of the volume of landslides due to rainfall.

3.1 Model Construction

In the present investigation, we aimed at predicting the volume of landslides using models that

minimize error with interpretability and scalability. Since one model can not have all properties at
the same time, we decided to select some of the models with those properties. The OLS, GLM,

and DT were widely used for their high interpretability, which helps to understand the influence
of individual features on predictions (Gelman, 2007; Breiman, 2017). On the other hand, the EGB,

RF, SVM, RR, and KNN were used due to their robust performance in capturing complex patterns

in data, which is essential for accurate predictions of landslide volumes (Chen and Guestrin, 2016;

Liaw and Wiener, 2002; Hastie, 2009). Additionally, considering that the model will be used on a

regional scale, which will require big data, the EGB, RF, and DNN are designed to efficiently

handle large datasets, making them suitable for the regional scale analysis. These last models can

be scaled to incorporate more data from different geographical areas without significant
adjustments, enhancing their applicability in future research (Krizhevsky et al., 2012). Accordingly:.

nine data-driven methods were selected and tested on a Korean dataset to predict VLDR.

The first considered method is OLS, which is applied to estimate parameters of multilinear-

regression that yield the minimum residual sum of squares errors from the data (Dismuke and

Lindrooth, 2006) under assumptions of no correlation in independent variables and in error term,
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constant variance in error terms, non-linear collinearity of predictors, and normal distribution of
error terms. The RF-regression is a supervised data-driven technique based on the-ensemble

learning, which eenstraetconstructs many decision trees during_the, training time of a model by

combining multiple decision trees to produce an improved overall result of the model outcome.

The RF-regression is more efficient in the analysis of multidimensional datasetdatasets (Borup et

al., 2023). RF is an effective predictive model due to non-overfitting characteristics based on the
law of large numbers (Breiman, 2001). The decision tree (DT) regression is a predictive modeling

technique in athe form of a flowchart-like tree structure efthat includes all possible results, output,

predictor costs, and utility. The DT simplifies the decision-making due to its algorithm that mimic
human brain decision—-making patterns (Rathore and Kumar, 2016). The KNN technique draws an
imaginary boundary in which prediction outcomes are allocated as the average of k--nearest point
predictors and averaging their output variable (response). The KNN calculates Euclidian distances
to identify likeness between datapoints and then it groups points that have smaller distances
between them (Kramer and Kramer, 2013). The RR is an improved form of ordinary least square,

which serves to respond to the-easecases where the collinearity is found in predictor variables. The

estimated coefficients of ridge are biased estimators of true coefficients and are generated after
adding a penalty on the OLS model. The RR has always lower variances compared to OLS (Saleh
et al., 2019). The advantage of the GLM over OLS is that the dependent variable need not follow
the normal distribution. The GLM is composed by random and systematic components, and the
link function that links the two. In this study, the GLM with Gaussian link function was applied.
GLM are fitted using maximum likelihood estimation (Dobson and Barnett, 2018). The DNN are
among data-driven models that revolutionized different fields; the DNN learns via multi-
processing layers and identifies intricate patterns in the data to predict the outcome (LeCun et al.,
2015). Here, the backpropagation algorithm was used to predict the estimated outcome. The
advantage of DNN is to discover the complex structures in the data using a back propagation
algorithm with the capability to change the internal parameter (weight update). The SVM is
popular for balanced predictive performance which makes it capable to train model on small
sample size; (Pisner and Schnyer, 2020). SVM has been applied in many different landslide studies
(Pham et al., 2018; Miao et al., 2018). SVM methods identify the optimal hyperplane in mualt-
dimenstonalmultidimensional, space that separates different groups in the output values. The EGB

is the most powerful and leading supervised machine learning method in solving regression

22

o A L (N N/ U, W

(M RIEE: 2B M AE
(MM RIS 2B M aE
(MM RIS 2B M AE
(MA RHE: 22 4 gae
[ MA RIS 2B M A
[ MA RIS 2T M AE 1
(MM RIS 2B M AE
(MM RIHE: 2B M AE
(MA RHE: 22 4 gae
[ MA RIS 2B M AE
[ MA RIS 2T M AE
(M R 2B M AE
(MM RIS 2B M aE
(MM RIS 2B M aE
(MM RIFE: 2B M HAE
(M RIS 2B M aE




420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

problems. It can perform parallel processing on windewsWindows, and Linux (Chen et al.,

20152015b). The gradient boosting trains of differentiable loss function, and the model fits when

the gradient is minimized. In this paper, both traditional statistical predictive models and machine

learning models were used. The firsts are known for high clarity and explain-abilityexplainability,

and the second is famous for handling non-linearity in features. In some cases, the performance of

advanced data-driven algorithms is almost similar (Chowdhury; et al., 2023).

3.2 Feature selection and data splitting

The variable selection procedure was carried out based on previous literature and applied

in the model using generalized variance inflation factor (GVIF) (O’Brien, 2007) to eliminate

collinear variables. The variable with GVIF<10 was considered non-colinear and used in the model.

Figure 4 depicts retained features and corresponding GVIF values. The retained features have

GVIF less than 10 (O’brien, 2007). Accordingly, all depicted variables were considered for the

model training. Further, to train the model. the datasets were split randomly, with 70% of the data
for the training set and 30% for testing (Nguyen et al., 2021). The 10-fold cross-validation was

performed to obtain an optimal model.

The training and test set was scaled (Z-score or variance stability scaling) to solve

convergence issues that are associated with running the model without feature scaling (Singh and

Singh, 2022). To run the model on the data using driven methods that accept numerical features
only, the test and training set was one-hot-encoded to create a feature matrix (Seger, 2018).
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Figure 4. Generalized Variance Inflation Factor (GVIF) bar plot for features.

3.3 Model evaluation metrics

The model performance evaluation is a process of quantifying the difference between the

observed value not used in the modeling process and the predicted value by the model. Different

metrics are applied depending on the type of task, whether it is a classification or a regression

problem. Subsequently, the widely used evaluation metrics for regression models, namely, R?,

MAE, RMSE. MAPE and SMAPE, were utilized to evaluate the model performances. The metric

formulae and evaluation criteria are summarized in Table 3.

Table 3. Model evaluation metrics.

Metrics Evaluation Reference
n e Measures the square root of the average Hyndman and
RMSE = lz(yi — 92 squared differences between predicted and ~ Koehler, 2006.
N actual values.
o | ower values indicate better model
performance.
1< e The average of the absolute differences Willmott and
MAE = ;Zl%‘ — il between predicted and actual values. Matsuura, 2005
=1 o L ower values indicate better model

performance.
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n
100 i — Vi

MAPE=—Z|yl Vi
L = AR

e Measures the accuracy of a model as a

percentage, which can be more

interpretable.
e |ower values indicate better model

performance.

Armstrong
2001

SMAPE
n A~
_ 100 lyi — Vil

n

&yl = [il

e Unlike MAPE, which can be skewed by

Hyndman and

very small actual values, SMAPE accounts

Koehler, 2006

for both the actual and predicted values,
making it symmetric.

o SMAPE is expressed as a percentage

o Mitigates the impact of small actual values
on the error metric, providing a more
balanced assessment.

o Lower values indicate better model

performance.

R?=1

X - 9)?

Z‘{L:l(yl' - }7)2

e Represents the proportion of variance in the

Darlington,

dependent variable that can be explained by

1990;

the independent variables.
e Values closer to 1 indicate a better fit

Chicco et al.
2021

*y; and y;_representing the actual and predicted value and, y and n _standing for the mean of actual value and number

of observations in the dataset, respectively.

<

4. Results
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Maximum Houry rain [RIRN Al 43F. 230 AH. Ef|
Fourweets an [N (M R 28 M e
Forestcensity SN (M4 X3 28 M gAE
Fire history [ MA X[ 22 A B
Erosion status _ { 1_| |§> == !
— ] %Aw AEE: 28 M HAE
Age of timber R MA X g 25 M HAE 1
U N (M4 X3 28 M gAE
VIF Values [A‘Ié.' Xgeh 2E M HAE
‘ L : (M RIEE: 2B M A |
(M RIS 2B M A |
The model was developed in R with different libraries, as discussed below. The DNN [Hé.' Xgeh 22 M HAE
. . . . . Al 43Sk =220 AH. El
regression model was constructed using dnn() function from the cito library (Amesoeder et al., [M HABE: 2 N HAE T
. . . | (MM e 2B A
2023), with threetwo, hidden layers of (50,56; 50) nodes. MedelThe model was trained on/

o - (MM XIHE: 2B 4 HAE
208L1500L, epochs, learning rate (Ir=0.+01), and loss = "mae". The decision tree regression model | [ A X|HE: 2B A sAs
was constructed with tree() function from the tree library, with the recursive-partition method. The | { MA K-S 2L A HAE |
ridge regression model was constructed using glmnet() function from glmnet libraryJerome [*15.' Xgeh 2E M HAE
(Friedman_ et al., 2010). theThe optimal lambda was obtained by performing 10-fold cross- | {Mé" e 2= 0 !

o o . MA R 2B A HAE
validation. The EGB model was built using xgboost() function in xgboost packagagespackage, % :_: :‘: : == _'H ::
MA RFEE 2B A HAE
(Chen et al., 2022). The optimal model was obtained at 357524 boosting iteration with almax [ MA X3k 2B A HAE |
depth = 5 and other, parameters set to default. The GLM regression model was constructed using [ MAl X|REH 2L 7|SUE, 28 A HAE 1
glm() functionf_ (R core Team, 2022) with family gaussianGaussian, and identitylog link:_to | [Hé.' XEeh 25 M EAE
constrain the model of predicting positive outcomes, The KNN regression was constructed using [*1M e 2 A HAE
: , , (MA XIHE: 2B 4 gAE
knnreg() function from the caret package (Kuhn, 2022;-), with number of neighbors, f=7-17. The g
: N (MA XIHE: 2B A gAE
OLS model was constructed Im() from the stats package (R core Team, 2022). The RF model was [*1 A KHE 2B AL HAE |
run using randomForest() from the randomforest package (Liaw and Wiener, 20025;), with default { MA] XM 28 A EHAE
parameters and the optimal model was reached at 63*256" iteration. The ridge regression model [Mé.l X|Heh 28 M "HAE
was constructed using glmnet() from the glmnet package (JeremeFriedman, et al., 20122010), with {*15-' NP2 M HAE
(MM RIFE: 2B M HAE |
(MY RIgE: 2B M YA |
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ridge penalty (alpha=0). The SVM regression model with linear kernel was built using e1071
package (Meyer et al., 2021) and other parameters set to default.
The predictive performance of all tested models was-summarizedin-on the holdout dataset

is depicted by the scatterplot (Fig. 45) of actual volume as recorded in the test set and predicted

outcome values of each model, The red line represents the perfect prediction. The scatter plot of
actual and predicted values of tested models shows that OLS performed least compared to other

models with R?=0.272744, that is, 2729% of varianeevariances in the model eeuld—bewere

x
1=

R
1=

1=

—
X

x
=

—

x

explained by predieter—ariables-predictors, The second least performing was GEMthe RR with

k)

x

k)

R2=0.29-that3034, which, is 23.6% improvement compared to OLS. Among all modelsiwe, three,

x

k)

out of nine, namely, OLS;: KNN-GEM, SVM, and RR, performed below 50%; however, these

models predicted well small values of volume (below 2000m?). The MAE of these fivethree,
models was higher than the remaining feursix, models, namely DNN, DT, GLM, KNN, RF, DNN

X

X8

X

X

X

and EGB. Among these lasts, the most performing was EGB with R?=.8588,of variance explained \‘

X

by predictors and MAE=245146,6 m>. The summary-ofcoefficients-of determinationevaluation ‘\

X

X

metrics for the training and mean-abselate-errorsfor-tested models are summarized in Table 3-4.
Considering the R2, the three models, namely EGB, RF, and DNN, had a value of R above 80% |

on the holdout set,
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Figure 45, Scatterplot of actual and predicted values for nine tested models. <

<

Regarding the prediction on the training set, the GLM had an R? of 83%. Nevertheless, the

prediction on the holdout set was 51.9%: this large variation in variance explained by predictors

indicates that the GLM model did not catch all non-linear patterns in the holdout set. It is

noteworthy that the prediction difference in R? on both training and test for the random forest
exhibited a very small difference compared to EGB and DNN, that is, 1.75% compared to 12.17%

and 7.72% for DNN and EGB, respectively. Despite the stable prediction of RF, the performance

in terms of SMAPE, the DNN was the second lowest symmetric mean absolute percentage error.

43.83m" and 39.79 m?® on training and test sets, respectively. According to Chicco et al. (2021), the

R? is more informative in regression modeling; thus, RF had better predictions than the DNN.
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Table 34, Summary of R2-and-MAEprediction metrics, for tested models_on the training and test MAl X [—j
sek (M4 918 = 2713
e (MA XIBE: 23 8 pt, 2B A HAE 1
rics Models
e (MM 9l8: E 2H1E
: NN DT EGB GLM KNN oLs RF RR SVM
dolg L S yuna
R2 Train 0750193 0600345 0.854506  0.293183  0.399834 0270737  0.800386  0.306133  0.382 < S -
Train r——— ; 8 5 1 8 S [ MA TS 22 Calibri, 8 pt, 2B A &
Test 08092 05822  0.8841 0.5190 0.5587 0.2744 0.8435 . \ [ MA| X3k 2B pt, BB Al HAE
MA 28657 4484605 2451605 613534 4833066 6153747 3664148 5434567 453.3241 27620 | P e—
E  62Train, 1327429,  407.0814,  275.1250,  308.970Q  410.2945  502.0053  236.9516  470.1633 0o || [*‘I’—“.' A E LA 12
Test 209.8063 4355836 1466120 5106015 4432222 6143769 3304876  536.0343 376‘§§ " s A
qy  Train 3086190 9404850 1134940 5700070 10273730 10017620 5749720 1loa29m0 1051 ) (M& %13 28 8pt, 2B M HAE T
SE 5.9 Al ole. Jlof = 7t 1=
£ Test 646.5438  1047.4880 5018960 10559190 11155270 1234.1220  737.0857  1237.9420 Lfl'g “ {k‘ 4 QIS 7h2d, E 4A1F
MA  Train 0.5240 07930 01540  76.3530 0.6280 5.2310 0.3810 15330 11588 || {*14 Xge: 25:8pt, 2E M HAE 1
PE  Test 05623 08892 03132 18192220 0.6623 41277 0.4939 58428 1.0421 [kié‘I X|%eh 288 pt, 28 M HAE 1
su Train 438375  79.8680 131780 1504262 674715 1030555 523359  93.4002 67'321 [*‘Ié.' RME: 2T g pt, 2B Al HAE |
E Test 307998 814539 227237 1524991 736498 1069756 637582 93924 o9 | [MA,I XM 2T 8 pt, BB A HAE |
. < (MM TEE: 2B 8pt, 2B M HAE
, , o . (MM R 2B 8 pt 2B M HAE
To dive deep into the prediction performance of the EGB model, we analyzed variables 1 { MA| X HE: 2B g pt, IB A HAE |
importance in the prediction of the volume. It was observed that the-slope length was the most | | [Mé.' X3 28 8pt, 2B A HAE |
contributing predictor in the performance of the EGB model, followed by the-maximum hourly || | [ MA X|EE: 2E:8pt, 2T M HAE
{1
. . . | Al Ole. Q&= X It 1=
rainfall and slope aspect. The altitude, three hours rainfall, slope angle and ageof || [H 4 US: B% E AAE
0
. ) ) . . . L. L1 B A1A| OIQ: g I7_|-71: 1%
drainageranked-the-third-mest-contributertimber contributed moderately, in the prediction of the — == —
I et g
volume-of rainfall-dueoutcome volumes with gain above 0.01 and less than 0.2. the antecedent | | [ MA X 28 g pt, 2B AL HAE | J
rainfall from three days and above and continuous rainfall had a minor contribution, with a gain \ \ 4 { M4l 9l8: Jt20, = 7tH: 12 ]
of less than 0.01 for each. The presence of rainwater drainage channels had a moderate contribution, ||| { MA X|HE: 2E:8pt, 22 M HAE 1 }
. . . .. . i Al 4. =10 =10 AH. H
with a gain close to landslides—In—addition—ase—of timber{age0.01. On the other hand, the [*1- X@e: 3T:8pt, 2 M HAE T J
o . . N Ll I M RRE: 23 8 pt, 28 M HAE J
contribution, of #reessoil depth and forest density in the models was insignificant and far below \ [ 14 Xe: 38 8pt 28 - 5
WL (MM R 238 pt, 2B A HAE 1 )
0.01. Though Figure 2(g) depicted the association between larger volumes and fire history, the ‘[Mé.' AHE: 2B g pr, 2B M, HAs ¢ J
variable importance indicates, that were-plantedthe relation was not significant. Even though some [ MA K|S 2B 8 pt, 2B A HAE J
iables had mi tributi d di th i i A xme 2o om oM EAE
variables had minor contributions, depending on the | M4 R|Heh 288 pt, 2B Al HAE 1
hourly—rainfall havecase, the contribution of those variables may, also shewn—a—significant [*15-' Xgeh: 25:8pt, 2 M HAE J
G . . . . . . [ Ml x=s 2= om A EHAE J
skt e dete e e e Pl o e B e Sincrenne deponding [1_' I8 22:8pt, 22 4 2 !
(MAl XEe: 22 A gas )
on other regional settings. Therefore, all variables with Generalized variance inflation factors N %S ﬁ
below 10 were kept in the model. Figure 6, illustrates atist-ofindependent—variablesthathada AL XIRE
14 x| g
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significantimpaetin-the predietion-of the-velumethe variables importance for the EGB model. The

vertical red line split the variables into two groups, the first containing variables that contributed

a gain above 0.01 and others with minor contributions,
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Figure 56, Variable importance for the EGB model.

The variable importance plot depicts the overall contribution of a given variable; however,
it does not provide detailed information. To get more insight into the relationship between the

volume of landslides and predictors, statistical tests for normality, namely, Shapiro-Wilk’s test,
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Kruskal-Walis—test—and Dunn’s test were conducted. The Shapiro-Wilk’s test (Dudley, 2023)
results revealed that the distribution of volume was non-normal (W = 0.40642, p-value < 0.001).
Noting that the volume distribution was non-normal, we opted for the non-parametric tests,*
which do not rely on normality to conduct the distance correlation (Székely et al., 2007) test (dcor)
for continuous independent features. Figure 67, illustrates that the slope length exhibited a higher
value (dcor=0.5156) followed by continuous rainfall features—This—highlights—therele—of
eurrentaltitude and antecedentthree hours rainfall as-trigseringfaetorinand kept decreasing up to

timber diameter with a distance correlation of 0.08. Overall, the distance correlation between the

predietion-ofyolume of landslides_shows a moderate strength of association between continuous

predictors,

Timber diameter @
Slope angle 4 .
Three days rain 4 L]
Soil depth 4 L]
Soil type 4 .
Age of timber .
Two weeks rain 4 .

Maximum hourly rain - L]

Continuous features

Four weeks rain 4 L
Three hours rain 4 L]

Slope length .

0.1 0.2 03 0.4 05
Distance correlation

Timber diameter .
Three days rain .
Slope angle .
Soil type .
Soil depih .
Age of timber .
Two weeks rain .

Four weeks rain .

Continuous features

Maximum hourly rain .
Three hours rain .
Altitude .

Continuous rainfall .

Slope length .

0.1 02 03 04 05
Distance correlation

32

(MM T 3T M HAE
(M4 T 3T M HAE
(MM RIS 2B M aE
(Ml 9lg: SOIMT: /2 127 cm
(MM RIS 2B M AE
(MM RIFE: 2B M HAE
(MY RIgE: 2B M HAE |
(Mo RHE: 2B A gas
(MY RIgE: 2B M HAE |
(MY RIgE: 3B M HAE |
(MM RIHE: 2B M HAE
(M4 RHE: 2B 4 HAE |
(M4 XIWE: 2T A HAE
(MA XIHE: 2B 4 gAs

o A A ) UL




552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

567
568
569
570

571
572
573

Figure 67, Distance correlation plot for the volume and continuous features.

Furthermore, to test for categorical features, Kruskal-Wallis test (McKight and Najab, 2010)
was used to check whether the volume of the Jandslide was different in each category and Dunn’s
tests (Dinno, 2015) were applied to examine which categories had similar means of the volume of
landslides due to rainfall in different categories. The Ho (null hypothesis) was that the mean volume
of landslides in different categories is the same, and the H; (alternative hypothesis) was that the
means of landsides are different in some categories. For the slope aspect, the second most
significant predictor for the EGB model, the results of Kruskal-Wallis test (chi-squared = 20.889,
df =7, p-value = 0.003938) showed that there is a significant difference in median of volume in
some categories of slope aspects. To know which classes of slope aspects had significantly
different mean volumes, the Dunn’s test results at 95% confidence interval, pairs (East-South west,
East-South East, East-South, East-North West and North West-South East) had significantly
different means of landslides’ volume (with p-value <0.05). Figure 78 depicts that the southwest

and southeast aspects had a higher frequency of landslides.

N
30% A
20% A
10% 4 Volume (m®)
(0,600]
0% W = =
(600,1000]
I (1000 15000]
s

A

Figure 78, The distribution of the yolume of landslides due to rainfall with respect to the slope-
aspect.

The Kruskal-Wallis test for the difference in mean of drainage classes showed the result

was: chi-squared = 15.792, df = 2, p-value = 0.000372, which shows that the means of volume per

elassesclass were different. This was clarified by Dunn’s test results, were p-values were less than
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0.05 in all pairwise mean difference comparisons. The results of these tests highlighted that the
drainage has a remarkable influence on the occurrence of rainfall-induced landslides in the Korean

Peninsula.

5. Discussion

This study aim was to construct dataa, data-driven algorithm that predietpredicts the volume of

landshidelandslides, due to rainfall. The result of nine different tested algorithms revealed a

tremendous difference between classical regression models (OLS, RR, and GLM) and other data
-driven machine learning models. In this study, apart from SVM regression, DT, and KNN, other
machine learning models (DNN, DT, RF, and EGB) exhibited high prediction capability with R?

above 50% (Fig.35). The random forest- model performed well in predicting smaller volume

however as the volume increased the model underpredicted volume values. The DNN model

performed quite well with low MAE eemparecompared, to random forest; however, the model did

not perform en-well on moderate volume values-whichresulted, resulting in reduetion-ofreduced,

R2. The EGB model tested on South Korean landslide inventory coupled with rainfall data at the
time of landslide events and antecedent rainfall within one month of the event exhibited the highest

performance compared to other constructed algorithms. The difference in performance may be due

to the internal structure of each algorithm; the RF build multiple decision trees and averages

predictions to improve accuracy (Breiman, 2001), while the EGB builds sequential trees in a

recursive order where the new built tree improves error occurred while building the previous

decision tree and optimizes the loss function through a gradient descent (Chen and Guestrin, 2016),

The slope aspect played an important role in the prediction of the volume, and the landslide

W oy e Y

mostly occurred en—leecationin locations oriented toward south—west-southwest, and seuth

l AVLAUUlS,

eastsoutheast, That may be due to the direction taken by typheentyphoons, which hit the seuth

westsouthwest, versants of mountains upon landfall on the Korean peninsula toward the North East
Pacific (Ha, 2022;; Lee et al., 2013). The findings of this research are congruent with those of Lee

et al. (2013), who also highlighted that the mountain versant oriented to strong wind direction
may face more landslides. The study also highlighted that the-efficacy—efa moderate rainwater,
drainage channel plays an important role in the prevention of landslides whieh—due to theits

stabilizing effect. The landslide location and pattern follow the rainfall climate scenario, which

highlighted a higher intensity of rainfall in the northeastern region of South Korea (Lee, 2016),
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The findings of this study are congruent with Zhang et al. (2019) observations that

highlighted the low influence of soil type in landslide modeling and the maximum rainfall and

cumulative three hours of rainfall were the most contributing rainfall, which indicated that these

shallow landslides may have been triggered by sudden rainfall concentrated in few hours before

the occurrence of the event. The occurrence of landslides triggered by rainfall is a complex

phenomenon which-invelvethat involves many interrelated environmental settingsettings, human

activity, geological conditions and climatic conditions. Moreover, the occurrence of typhoons is

typhoon variables in future studies to customize for regional settingsettings, may improve the

accuracy of the model. The advantage of his research is that the constructed model has high
predictive accuracy and can handle the non-linearity of predisposing factors. The model came to

fill the gap of few literatures related to the prediction of the yolume of landslides using data-driven

techniques. This model can be a bettergood, tool to help policy makers to integrate the landslides

volume risks in in policy to protect infrastructure and inhabitants dwelling near foot of mountains
with high risks of being buried by geological materials resulting from landslides.

To understand the applicability of the developed models, the trained model was tested using

unknown data (test data), with volume predictions generated solely based on the predictor

variables; actual volume values were utilized only for evaluating model performance. We found

that the DNN, EGB, GLM, and RF models achieved R?>0.8, indicating that the model could yield

reliable volume estimates in adjacent areas with similar geological and environmental conditions.

It is also noted that the EGB, RF, and DNN are designed to efficiently handle large datasets, making
them suitable for regional-scale analysis with high scalability. Thus, these models can be scaled to

incorporate _more data from different geographical areas without significant adjustments

enhancing their applicability in future research (Krizhevsky et al., 2012). Subsequently, the

optimized model can aid in disaster risk management by providing timely information for early

warning systems. Additionally, the insights gained from the model can inform land-use planning

and policy decisions, allowing stakeholders to identify high-risk areas and implement mitigation

strategies effectively. By integrating the model into existing monitoring frameworks, agencies can

enhance their response capabilities and better allocate resources during heavy rainfall events.

The major limitation of this study is that the analysis is solely focused on shallow-seated

landslides, specifically translational slope failures with volumes below 13,000m3. Thus, the
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analysis may not fully capture the variability in landslide characteristics across different

geomorphological and geological contexts. Deep-seated landslides, for instance, often exhibit

distinct failure mechanisms, material compositions, and depositional patterns that influence their

volumetric characteristics, which were not considered in this investigation. Similarly, debris flows,

known for their unique channelization and entrainment behaviors, were not included, potentially

limiting the applicability of the optimized models to other landslide types. Further, this study was

also performed using point-based landslide inventory data, which may not capture all variability

of influencing factors and their exact state. The incorporation of high-resolution data from remote

sensing and other sources may also improve the efficiency of the predictions. These limitations

may impact the broader applicability of the proposed model; however, future studies will aim to

address this by conducting separate analyses for deep-seated landslides and debris flows, allowing

for a more comprehensive understanding of landslide volume predictions across diverse landslide

types and geomorphological settings.

A

6. Conclusions

In this paper, the aim was to construct thea data--driven model that predietpredicts the volume of

landslides due to rainfall. To this, nine different classical regression models and machine learning
algorithms were tested on South Korean landslide data set containing features of landslides that

occurred between 2011 and 2012. Among the tested models, Extremeextreme, gradient boosting

(EGB) produced the most accurate prediction. This is proven by the evaluation of the difference
between actual and predicted values—were, such as R*—was—0.8545= 88.41% and MAE—was

245.1695m*=146.6120m’ on the test set, The analysis of feature variables in the contribution to

the prediction of the model; revealed that the slope length was the most influencing predictor. The
EGB model can be a promising tool for the prediction of the volume of landshdelandslides due to
its high predictive performance. The model can be customized enin, different environmental
settings. The model can be applied to estimate the expected volume of landslides based on
forecasted rainfall once the model is well-adjusted to fit the geomorphological and environmental

settings of the region of interest- after re-training on the regional historical data to include regional

variability, Therefore, this model can be a bettergood, tool for planning for resilience and

infrastructure pre-construction risk assessment to ensure the new infrastructure is placed in stable

regions free from severe landslides.
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