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Manuscript number: nhess-2024-90 

My co-authors and I would like to express our gratitude to the reviewer for his constructive 

feedback and suggestions for strengthening our research. The changes we have made to the 

attached file in response to such feedback and suggestions have been highlighted in blue to 

facilitate their identification. I would also like to offer my apologies for the length of time it 

took us to prepare this response. We also record our deep appreciation for the efficient handling 

of the manuscript. 

Response to Editor 

Overall Observations: Referees who have reported on your initial submission have evaluated 

your manuscript again. However, their comments read rather contrasting: While referee #1 

recommends publication of the paper as it is, referee #2 still has important concerns regarding 

the scientific context of your article in accordance to earlier comments mostly considering 

motivation of your research and discussion of the results including model transferability. 

Looking at the current version of your manuscript, I think you thoroughly revised your 

paper, which is now not far from being publishable in NHESS. However, I agree with referee 

#2 that the presentation of your research still requires some improvements as detailed in the 

attached report, but I am not convinced that the paper necessarily needs another round of 

external peer-review. Based on this, I like to advise you to revise your paper considering the 

comments made by the referee and resubmit a new version of the article accompanied by a 

detailed point-per-point reply letter on the comments of the reviewer, and a version in track 

change mode highlighting the applied changes. After resubmission, the editor will review the 

article again. 

 

Response: Thank you for your incomparable assistance during the review process of this 

manuscript. We are grateful for the constructive and insightful comments provided by both 

reviewers, which have significantly contributed to enhancing the quality and clarity of our 

work. We sincerely appreciate your recommendation for minor revision and have carefully 

addressed the comments provided by Reviewer #2, as well as the suggestions from the Editor. 

These revisions have been incorporated into the revised manuscript. 
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Response to Reviwer#2 

Overall Observations: Thank you for your response, dear authors. I appreciate the revisions 

made after the previous round of reviews, but I believe the manuscript can still be further 

improved with additional revisions before it is ready for publication. I have presented my 

comments and suggestions in this iteration of the review, which I hope the authors will find 

helpful in enhancing the manuscript further. 

Thank you for your valuable suggestions and guidance, which have greatly contributed to 

improving the earlier version of the manuscript. We acknowledge that the Introduction and 

Discussion sections required further refinement, and we have carefully revised each part in 

accordance with your recommendations. 

 

Comment 1A: I will begin the second review and my line of questions starting from the 

Introduction section. In the last round of review, I raised a general concern about the lack of 

connection between volume estimation, geomorphological process understanding, and 

engineering solutions. Unfortunately, I still observe two major issues with the revised version: 

It appears that the authors have addressed a wide range of topics, including engineering 

solutions for mitigation, risk assessment, financial compensation, and related aspects. While 

these are undoubtedly important, the way they are presented lacks a clear and cohesive 

narrative, making it difficult for readers to follow. As a reader, it feels like I am encountering a 

series of disconnected bullet points about various applications of volume information for 

landslides and their societal or biodiversity impacts, without a clear sense of purpose or 

direction in the text. Let’s take this for example, “Firstly, to manage landslide risk effectively, 

the quantification of VLDR can be useful for updating hazard maps to reflect the scale of 

potential landslides in various regions to facilitate the identification of high-risk zones for 

monitoring and intervention.” Now, normally such statements (especially in a review) is 

followed by a general explanation as to how the volume information can be used directly for 

the purposes of “updating hazard maps”, for instance, by illustrating how these updated maps 

help prioritize areas for additional ground-based investigations, early warning system 

placements, or resource allocation for slope stabilization efforts. In other words, the statement 

should detail the direct linkage between volume quantification and subsequent practical steps 

that can be taken to mitigate landslide risk, rather than simply asserting that such a connection 

exists without any further elaboration.  
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This type of simple assertion is not the best for a reader to gauge what really is going on. 

Particularly, if there is no direct link between volumes and the respective impact. Other 

statements have the same ‘linking’ problem. Moreover, an equally big issue is that the new 

added paragraphs read the same to me. I do not gain any new information from the new text. 

The authors mention: "mitigation strategies, effective risk management, emergency response, 

public awareness on safety measures and preparedness, drainage system to control surface 

runoff, determining expected number of personnel for ‘clean up’ and recovery, establishing 

ecosystem impacts, habitat restoration, protection of crops and farmlands." Frankly, these 

topics are very diverse and complex, spanning multiple engineering, scientific, and social 

science disciplines. However, I see no clear connection to the manuscript's main narrative. Are 

the authors implying that their method can address all of these issues simply because it can 

accurately predict volumes? Does all of South Korea face these problems (more or less) equally? 

My point is that I cannot discern a clear, concise rationale or storyline explaining why landslide 

volume estimation is necessary. I recommend re-writing the two paragraphs related to the 

volumes and associated topic in the Introduction more carefully. Please keep the linkage direct 

and to the point, while citing some examples from the literature. 

 

Response: Thank you for your insightful observations. We sincerely appreciate your detailed 

and constructive comments regarding the Introduction section. We agreed with the reviewer's 

suggestion that the material presented lacked coherence in the Introduction section. 

Accordingly, we have restructured the Introduction to maintain a clear and direct connection 

between landslide volume estimation and its engineering and scientific applications. The 

revised text eliminates broad and generalized statements, focusing instead on specific, practical 

linkages between volume estimation and its role in hazard assessment, risk mitigation, and 

resource allocation. The revised Introduction is provided below, 

“ Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural position 

and slide downward along a slope due to gravity forces. Intense or long-duration rainfall 

infiltrates the soil and increases the pore pressure, resulting in soil saturation that leads to slope 

failure. The saturated soil becomes weak and loses cohesion, and the slope fails when rainfall 

crosses a certain threshold (Bernardie et al., 2014; Martinović et al., 2018; Lee et al., 2021). 

The heavy rainfall saturates a slope and triggers a landslide due to the reduction of the soil's 
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shear strength and the increase of pore water pressure (Tsai and Chen, 2010; Lacerda et al., 

2014; Chatra et al., 2019; Chen et al., 2021; Luino et al., 2022). For example, steep slopes with 

loose soils and even moderate rainfall can lead to the displacement of an enormous quantity of 

soil mass. On the contrary, in slopes with more stable, cohesive soils, the surface failure might 

be smaller (Tsai and Chen, 2010). The rainfall quantity and duration influence the volume of 

the landslides; the higher the intensity and the longer the duration of rainfall, the larger the 

resulting surface failure (Chang and Chiang, 2009; Bernardie et al., 2014; Chen et al., 2017). 

The landslide occurrences can also be influenced by human activities that weaken the slope, 

such as excavation at the slope toe and loading caused by construction and land use such as 

agriculture, mining etc. (Rosi et al., 2016). The rapid urbanization activities in mountainous 

regions affect the topography through hill cutting, deforestation and water drainage (Rahman 

et al., 2017); these activities disturb the slope structure and change the water flow, which 

exacerbates the effect of landslides in regions where human engineering activities are mostly 

located (Holcombe et al., 2016; Chen et al., 2019). Therefore, to mitigate landslide-induced 

risks in the runout regions, estimation of the volume of landslides due to rainfall (VLDR) plays 

a crucial role.  

The quantification of the VLDR is essential for effective risk management (Tacconi 

Stefanelli et al., 2020), emergency response, engineering design (Cheung, 2021), economic 

assessment and environmental protection (Alcántara-Ayala and Sassa, 2023). With the 

estimates of VLDR, the morphologist can update hazard maps (Van Westen, 2000)  to reflect 

the scale of potential mass movement in various regions to obtain regions with similar 

likelihood of landslides of similar soil mass to highlight risk zone levels, i.e., low, moderate 

and high. These classifications help engineers to apply appropriate slope stabilization 

techniques depending on the level of risk ( Dahal and Dahal, 2017). Additionally, enhancing 

the precision of VLDR estimations and improving the predictive capabilities is essential for 

understanding and monitoring landscape evolution. Montgomery (2009) emphasized that the 

volume of landslides is a key factor in determining the extent of downstream damage, 

particularly for large debris flows or rock avalanches, which can drastically alter the landscape 

and affect surrounding ecosystems and infrastructure. Similarly, Korup (2004) further explored 

the long-term geomorphological effects of large-volume landslides, highlighting their 

importance in reshaping mountainous terrains and influencing sediment transport, which is 

critical for understanding both immediate and future landscape changes. However, the existing 
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landslide susceptibility models mostly used for the identification of regions susceptible to 

landslides (i.e., landslide zonation) (Kim et al., 2014; Gutierrez-Martin, 2020; Chen et al., 

2021; Li et al., 2022), which are essential in emergency management because they provide a 

general overview of zones with a higher probability of landslide occurrence; however, they do 

not emphasize the determination of the approximate value of the volume of failing mass in 

relation to excessive rainfall events. 

Numerous researchers used landslide inventory, remote sensing data and numerical 

techniques to establish the relationship between landslide geometry and the influencing factors 

to determine the landslide volume quantitatively. For example, Saito et al. (2014) studied the 

relationship between rainfall-triggered landslides to test whether the volume of landslides 

across Japan that occurred between 2001 and 2011 can be directly predicted from rainfall 

metrics. The findings revealed that larger landslides occurred when rainfall exceeded certain 

thresholds, but there were significant discrepancies between peaks of rainfall metrics and 

maximum landslide volumes, and the total rainfall was the suitable predictor of landslides. Dai 

and Lee (2001) established the frequency-volume relation for landslides in Hong Kong and 

noticed that the relation for shallow landslides above 4m3 followed the power law. The 12-hour 

rolling rainfall contributed most to the prediction of the volume of landslides. Jaboyedoff et al. 

(2012) contributed by demonstrating the value of remote sensing technologies such as Light 

Detection and Ranging (LiDAR) in conjunction with field data to improve the accuracy of 

volume estimates and capture the geomorphological changes associated with landslides. Ju et 

al. (2023) constructed an area-volume power law model for the estimation of the volume of 

landslides using high-resolution LiDAR data collected between 2010 and 2020 in Hong Kong. 

The aim was to estimate accurately the volume of landslides on small-scale landslides. The 

reliance on localized datasets limits the model's applicability in regions with different 

geological settings, and the model does not consider all variabilities of landslide characteristics. 

Razakova et al. (2020) calculated landslide volume using remote sensing data to assess the 

efficiency of aerial photographs in environmental impact assessment and ground-based 

measurement. The study did not consider the effect of vegetation and topography and only 

focused on a single landslide case, which may be a source of bias due to differences in soil 

composition and environmental factors. Hovius et al. (1997) analyzed multiple sets of aerial 

photos and frequency-magnitude relations for landslides in New Zealand. The finding 

pinpointed that the landslides frequency-magnitude followed power law and infrequent large 
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magnitude contributed to the landscape change. The study also noticed the importance of soil 

composition in the size of the landslides. This work had a limitation due to the reliance on 

aerial photos only, which cannot provide accurate measurement in regions of dense forest, and 

the climatic conditions, which are landslide triggering factors, were not considered, and this 

may affect the generality of the findings. Guzzetti et al. (2008) applied statistical methods on 

regional landslide inventories and antecedent rainfall data ranging between 10 min to 35 days. 

The findings revealed that the slope angle and soil type significantly influence landslide volume 

estimates, and the rainfall intensity is more important than duration. Chatra et al. (2019) applied 

numerical methods to study the effect of rainfall duration and intensity on the generation of 

pore pressure in the soil; the finding revealed a higher instability in loose soil compared to 

medium soil slopes. Huang et al. (2020) introduced a hybrid machine-learning model 

combining support vector regression (SVR) with a genetic algorithm to estimate debris-flow 

volumes. The model was tested on real-world case studies, showing improved accuracy in 

volume predictions compared to traditional methods. However, a notable weakness of the study 

is its reliance on a limited dataset, which may reduce the model's generalizability to 

environmental contexts. Shirzadi et al. (2017) compared the effectiveness of statistical and 

machine-learning models in simulating landslide volumes-areal relations, demonstrating that 

machine-learning techniques outperform traditional statistical methods in terms of accuracy. 

This method did not consider the climatic and geomorphic factors such as rainfall, vegetation, 

soil type, etc., triggering and influencing factors for the landslide occurrence. It was noted that 

existing models only treated the interaction of soil and rainfall without considering the 

environmental factors, human activity, and non-linear behavior of the triggering and 

influencing factors. 

In the present study, the volume of landslides due to rainfall is predicted using OLS, 

RF, SVM, EGB, GLM, DT, DNN, KNN and RR algorithms, considering the details of 

triggering factors (i.e., rainfall) and predisposing factors (i.e., geomorphological, soil and 

environmental). Here, we aim to construct a data-driven algorithm that combines input 

parameters for physical-based and empirical models and incorporates more complex non-linear 

features of input variables to predict the occurrence of associated events more accurately. The 

main assumption behind the data-driven algorithm is that the considered feature input of the 

model produces a similar volume of landslides due to rainfall and follows the same pattern at 

a particular region with the same features under the same quantity of rainfall. Here, we examine 
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different machine learning (ML) algorithms and compare their performance using the 

coefficient of determinations (R2), mean square errors (MAE), Root mean square error (RMSE), 

Mean absolute percentage error (MAPE), and symmetric mean absolute percentage errors 

(SMAPE) of the predicted volume of landslides. The focus is to optimize the predictions of the 

volume of landslides due to rainfall, taking into account triggering and influencing factors with 

higher accuracy.” 

     

Comment 1B: Additionally, the authors did not adequately integrate the volume estimations 

or predictions into a geomorphological context. This aspect is crucial, as it forms the crux for 

studies linking sediment transport, material mobilization, and sediment influx into river 

systems for example. Omitting this perspective is problematic since it averts a reader from 

understanding how the observed volumes relate to underlying geomorphological processes 

(including hillslope process evolution), ultimately limiting the usefulness and practicality of 

the study’s findings for both scientific insight and practical applications in landscape 

management and hazard mitigation. 

I believe the current structure of the Introduction is not optimal. I encourage the authors 

to take their time and thoroughly revise this section, especially the two paragraphs related to 

volumes. I suggest a comprehensive overhaul of the discussion on the importance of volumes, 

incorporating key works by Montgomery, Jaboyedoff, Korup, and van Westen to strengthen the 

narrative. Please take this opportunity to carefully revise the text such that the importance of 

volumes is clear and coherent from an application point of view, ranging from both engineering 

and geomorphological perspectives. 

Response: Thank you for your observations. We understand the importance of incorporating 

the geomorphological aspect, and some literature was included in the revised manuscript 

accordingly. We reread the introduction and rewrote it considering your suggestions to improve 

the technicality, clarity and logical coherence of the section. The revised Introduction provides 

a clearer and more coherent discussion of the importance of landslide volume estimation from 

both engineering and geomorphological perspectives. The updated introduction is highlighted 

in our response to Comment#1A. 

 

Comment 2A. Moving on to the next topic, I want to stress a bit more on the geographical split 
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testing argument and the application of the model to other locations/regions. 

Let’s start with the geographical split. The authors state that dividing the data by region 

would compromise model reliability due to the reduced size of the test set. While I partially 

agree, the authors also mention that they incorporated altitude as a predictor variable to reflect 

geographical diversity citing the influence of orographic rainfall on higher-altitude areas. This 

reasoning, however, may be oversimplified. Altitude is only one dimension of regional 

variability and may not fully capture the complexity of geographic differences in landslide 

susceptibility (and/or by proxy, volumes). Although incorporating altitude could help the model 

account for some variations associated with elevation, it cannot completely substitute for 

explicit geographic variability. Regionally distinct factors—such as geology, lithology, 

vegetation, land use, and soil types—may not be adequately represented by altitude alone. 

Relying solely on altitude as a proxy for regional variability implies oversimplifying the spatial 

heterogeneity inherent in landslide processes. 

Please note that, while I do support the approach for splitting the data, I disagree with 

the notion that altitude alone is sufficient to capture the geographic diversity inherent in South 

Korea's varied landscapes. In my previous review, my suggestion was to consider performing 

or evaluating a spatial cross-validation, although a regular 10-fold cross-validation could also 

suffice (as the authors noted that 60% of the data is concentrated in the northeast), despite the 

methodological differences between the two approaches. I am interested to hear the authors’ 

thoughts on the use of altitude as a proxy for geographic diversity. 

Response: Thank you for your insightful comment. We agree that relying solely on altitude to 

capture the geographic variability inherent in South Korea's diverse landscapes would be an 

oversimplification. In the present study, we incorporated additional variables in the modeling 

process, including soil types, soil depth, slope aspect (versant), drainage, and vegetation-related 

variables to capture the spatial heterogeneity inherent in landslide processes. Soil types and 

their coefficients of permeability reflect regional lithological variations; the drainage 

significantly affects slope stability and promotes efficient control of rainfall's influence on 

groundwater fluctuation; slope aspect accounts for potential influences of rainfall patterns and 

wind direction on slope vulnerability, and vegetation-related variables (age of tree, forest 

density, timber diameter) improve soil cohesion and prevent direct contact of raindrops 

with the soil surface as highlighted in the feature importance (Fig. 6). These selected 

variables contribute to capturing regional variability and improving the model's predictive 
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capability. We believe that the selected features provide sufficient insight on the application of 

suggested methods in the prediction of VLDR. 

 

Figure 6. Variable importance for the EGB model.  

 

Comment 2B: For the application of the model, the authors mention using an unknown 

dataset—presumably the independent test set—where the model achieved an R² value above 

0.8, which is quite good. My previous recommendation was to see if the authors could apply 

the model elsewhere, ideally in a nearby area (still in the South Korean Peninsula) with new 

(or even old) landslides for which no volume information is currently available. While ML/DL 

models often perform well on familiar data, they may produce unpredictable, random or less 

meaningful results when applied in a ‘new’ region or context. This way, the authors might see 

how the model behaves under different conditions, while providing insights into its 

generalizability and practical applicability to scenarios beyond the training environment. Of 

course, the authors will not be able to validate these results (for N number of landslides) since 

no ground truth exist, but it will give a good idea if the predicted volume prediction numbers 

are off the charts (e.g., extremely large or very small). This is important to investigate how 

random the model(s)’ predictions can be and, beyond that, provides additional motivation for 

the authors' work, moving it beyond merely a ‘modelling exercise’. 

Response: Thank you for your suggestion. We acknowledge the importance of testing the 

model in diverse conditions to evaluate its robustness and behavior under different 
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environmental and geological contexts. In the present study, to understand the applicability of 

the developed models, the trained model was tested using unknown data (test data), with 

volume predictions generated solely based on the predictor variables; actual volume values 

were utilized only for evaluating model prediction accuracy. The outcome exhibited that the 

difference in R2 on the training and holdout set of 7.72% for the optimal model (i.e., EGB) 

highlights that the model can be applied to another region of a similar setting. It was noted that 

without proper model calibration with the independent data set, it's difficult to determine 

whether these discrepancies in performance are due to model limitations or data differences in 

different regions (Huang et al., 2020). Therefore, in future work, we plan to develop an 

independent database based on collecting the extensive recent landslide geometry at different 

parts of the Korean Peninsula to improve the models further by calibrating region-specific 

parameters to ensure the transferability of the model to other regions. 

Comment 3: Regarding the Discussion, the authors stated in their response: “direct comparison 

with result of existing numerical and statistical models that solely depend on geometrical 

features of landslide (such as, surface area or runout length) is out of the scope of this 

investigation”. It seems that the authors may have misinterpreted my suggestions. The 

recommendation was not to perform a numerical comparison with other methods, such as 

statistical or numerical models, but rather to review the literature on such methods and highlight 

why the authors’ approach is reliable. 

This suggestion is particularly important because, as the authors themselves mentioned, 

no previous study has used such a multivariate predictor approach for volume predictions. 

Therefore, it is important to discuss and review this aspect as a huge chunk of the literature rely 

on, for instance, numerical and geometrical methods for volume estimations. Additionally, it is 

crucial to discuss and review related topics in common geomorphological research—such as 

sediment transport, landscape evolution, and material mobilization—since these processes rely 

heavily on volume data for quantification. This connects back to the Introduction section, 

which I previously noted requires an overhaul. Elements introduced in that section can be 

further expanded upon in the Discussion to emphasize potential applications of the proposed 

approach. While volume information is undeniably important, simply focusing on the influence 

of ML/DL on model performance significantly underestimates the broader implications that 

the Discussion section could address given the scope and nature of the study. 
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Response: Thank you for your insightful comment. Regarding the improvement in the 

Introduction and Discussion, the suggested modifications have been incorporated in the 

updated version of the discussion section as follows,  

Line Nos 457- 480: 

Numerical models have traditionally been employed due to their foundation in physical 

principles such as slope stability and hydrological dynamics (Glade et al., 2005). These models 

are valuable for understanding the underlying mechanisms of landslide processes but often face 

limitations when applied to regions with complex or heterogeneous terrain, as they require 

detailed, high-quality input data that may not always be available (Caine, 1980). In the same 

way, statistical models, which use historical rainfall and landslide data to establish correlations, 

can offer useful predictions of VLDR in regions with extensive historical records (Chung and 

Fabbri, 2003). However, these models may struggle to account for local variations in 

topography or rapidly changing weather patterns, limiting their general applicability. 

Additionally, ML techniques have shown significant promise in improving predictive accuracy 

at the regional level due to the capability of processing large, diverse datasets and capturing 

complex, non-linear relationships that traditional models might fail to capture (Pourghasemi 

and Rahmati, 2018). Further, ML models can adapt to regional variations and continuously 

improve as new data is introduced, offering a more flexible and dynamic approach to predict 

VLDR on a regional scale (Liu et al., 2021). Subsequently, the aim of this study was to 

construct a data-driven algorithm that accurately predicts the VLDR. The result of nine 

different tested algorithms revealed a tremendous difference between classical regression 

models (OLS, RR, and GLM) and other data-driven machine learning models. In this study, 

apart from SVM regression, DT and KNN, other machine learning models (DNN, DT, RF, and 

EGB) exhibited high prediction capability with R2 above 50% (Fig. 5). The DNN, EGB, and 

RF models achieved R2>0.8 on both training and test set with accuracy reduced R2 by 1.75, 

7.72, and 12.17% for RF, EGB and DNN respectively, on the holdout set, indicating that the 

model could yield reliable volume estimates in adjacent areas with similar geological and 

environmental conditions. The random forest model performed well in predicting smaller 

volume; however, as the volume increased, the model underpredicted volume values. 

 

Line Nos. 514-525: 
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“To understand the applicability of the developed models, the trained model was tested using 

unknown data (test data), with volume predictions generated solely based on the predictor 

variables; actual volume values were utilized only for evaluating model prediction accuracy. 

The outcome exhibited that the difference in R2 on the training and holdout set of 7.72% for 

the optimal model (i.e., EGB) highlights that the model can be applied to another region of a 

similar setting. It was noted that without proper model calibration with the independent data 

set, it's difficult to determine whether these discrepancies in performance are due to model 

limitations or data differences in different regions (Huang et al., 2020). Therefore, in future 

work, we plan to develop an independent database based on collecting the extensive recent 

landslide geometry at different parts of the Korean Peninsula to improve the models further by 

calibrating region-specific parameters to ensure the transferability of the model to other 

regions.”  

 

Comment 4: Table 1 column ‘Descriptions’ seem misleading. Descriptions should also include 

the definition of the variables, not just the ‘influence’ of the variable. For example, for Slope 

angle, there’s no definition as to what it means, but rather a statement which explains the 

influence of the slope angle (e.g., slope at 20-30 degrees more vulnerable to landslides due to 

rainfall). This is not really a ‘description’. I suggest either changing the column name or adding 

a definition first for each variable and then explaining their influence on landslides.  

Also, based on line 287, it seems that there are only three types of soil, sandy loam, 

loam, and silt loam. Please add them in the table for soil types as well. 

Response: Thank you for your observations, and we agree with your suggestion. Accordingly, 

the word ‘description’ was replaced by ‘feature relevance’ in the revised manuscript. 

Additionally, the feature relevance of three types of soil has been incorporated in Table 1. The 

revised text incorporated in Table 1 is given below. 

‘Soil types, namely, Sandy loam, silt loam and loam, with their coefficient of 

permeability 1.7, 1.65 and 1.5, respectively, retain water differently, leading to different 

saturation times. The soil with higher permeability tends to drain water more efficiently, 

making it less prone to saturation. In contrast, the soil with lower permeability, the pore 

pressure rapidly increases, which leads to shallow landslide initiation during intense rainfall 

events.’ 
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Comment 5. The authors have provided a clear explanation of the feature importance for soil 

depth, and I appreciate their decision to retain it, as it is crucial for volume estimations. The 

authors noted that soil depth could play a more significant role in different regional settings 

with varying behaviors or responses, and I agree with this perspective. I have no further 

comments on this matter. 

Response: Thank you for your insightful comment. We appreciate your earlier suggestions, 

which helped us refine and clearly articulate the rationale for including soil depth as a critical 

predictor variable in the model.  

Comment 6: I appreciate the response and explanation regarding the differences between the 

Random Forest and EGB models in predicting smaller and larger volumes, respectively. Indeed, 

an iterative process like EGB, guided by gradient descent, is likely to capture the more intricate 

patterns associated with landslides generating large volumes. Similarly, the 'average' behaviour 

of the ensemble approach in Random Forest effectively accounts for the prediction of smaller 

volumes on average. I have no further comments on this matter. 

Response: Thank you for the comment, which helped us to improve the interpretation 

regarding the differences in the predictions of different models. 

 

Comment 7: The authors have also explained the landslide movement query very well, and I 

have no further questions in that regard. 

Response: Thank you for your feedback. We appreciate your observations, which have greatly 

improved the clarity and quality of the manuscript. We are pleased that the explanation 

regarding the landslide movement met your expectations. 

 

Comment 8: In conclusion, my impression of the technical aspects of the work is positive 

since much of the authors’ clarifications addressed my concerns. However, the justification for 

the importance of volume information, its applications, and the future scope remains limited, 

which undersells the contribution of this study. I believe that an additional round of revisions 

would further enhance the manuscript, making it more accessible and impactful for a broader 

audience. I wish the authors good luck with their revisions. 
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Response: Thank you for the positive response regarding the technical aspect of the manuscript. 

The suggested improvements were incorporated into the revised manuscript. 
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