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My co-authors and | would like to express our gratitude to the reviewer for his constructive
feedback and suggestions for strengthening our research. The changes we have made to the
attached file in response to such feedback and suggestions have been highlighted in blue to
facilitate their identification. | would also like to offer my apologies for the length of time it
took us to prepare this response. We also record our deep appreciation for the efficient handling
of the manuscript.

Response to Reviewer#1

General remarks: | am attaching my full comments in the attached PDF. At the same time, |
am summarizing my general comments here for the editor's perusal.

This manuscript presents a valuable reflection of data-driven modelling for
robust regional-scale analyses of landslide masses. The authors deserve commendation
for their interesting research, which has significant implications for hazard prediction
and modelling. However, | have some major comments and concerns. While the study
is promising and of great interest to the landslide community, it requires further work.
Some aspects of the training and testing regimes are not clear. Furthermore, the choice
of certain parameters is not well justified which, in my opinion, must be clarified for
readers to understand the logic of choosing said parameters. The English language,
particularly in the Introduction, needs improvement. Some sentences read awkwardly
and are hard to follow. Improved sentence phrasing is necessary to make the
manuscript clearer, especially for non-native English readers. In my opinion, a major
revision is required to adapt the manuscript before considering acceptance.

Response: Thank you for your detailed comments and for the recognition of the value of our
research. We appreciate your commendation and acknowledge the importance of addressing
your highlighted concerns. In the revised manuscript, we have focused on the aspects of the
training and testing datasets to enhance understanding, as well as provide a stronger
justification regarding the choice of predictor variables to ensure the logic is clear to all readers.
Additionally, we revised the language throughout the entire manuscript to enhanced

readability.

General comments: The problem of landslide volume estimation has been a focus for the
community for quite some time, through methods such as area-volume scaling,
geometrical modelling, numerical simulations, and more. This parameter is crucial
as it helps gauge the magnitude of landslides, particularly at regional scales. Most
highly accurate methods, like numerical simulations, often struggle at the regional
scale. This manuscript offers a valuable reflection of data-driven modelling for
delivering robust regional-scale analyses of landslide masses. Kudos to the authors
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for this interesting research, which has significant implications for hazard prediction
and modelling. However, there are some major comments and curiosities | have. |
believe the study is promising and of great interest to the landslide community, but
it requires further work. The English language writing can be improved, especially
in the Introduction. Some sentences read awkwardly and are hard to follow. Sentence
phrasing must be improved to make the manuscript clearer, particularly for non-
native English readers.

Response: We appreciate the thoughtful feedback and for recognizing the value of our research
in the context of landslide volume prediction and acknowledgment of the challenges faced by
highly accurate methods at regional scales, and we appreciate that our data-driven modeling
approach resonates with the landslide community. We took your concerns regarding the clarity
of the English language and improved the phrasing and overall readability, particularly in the

Introduction, to ensure it is accessible to all readers.

Specific major comments:

Comment 1: The Introduction needs to be revisited for editing in both grammar and phrasing
of the language. Moreover, the motivation for the importance of volume
quantification appears to be a bit lacklustre. I do not see a geomorphological
connection as to why volume estimates are important to understand process
mechanism and kinematics. Although, the manuscript does not explore said
mechanism and kinematics expressions, however, to build a succinct story, a
logical connection between the geomorphology and the surface failure should, in
my opinion, be expressed to highlight why volume estimations are important as it
directly feeds into the story of hazard prediction moving forward.

Response: Thank you for your insightful comment. We appreciate your suggestion to improve
both the grammar and phrasing to enhance clarity. We also acknowledge the need to strengthen
the motivation for volume quantification and its geomorphological significance. In the revised
manuscript, we emphasized the connection between volume estimates and the understanding
of process mechanisms, illustrating their importance in the context of hazard prediction. The
revised Introduction is given below,

“Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural
position and slide downward along a slope due to gravity forces. Intense or long-duration
rainfall infiltrates the soil and increases the pore pressure, resulting in soil saturation that leads
to slope failure. The saturated soil becomes weak and loses cohesion, and the slope fails when
rainfall crosses a certain threshold (Bernardie et al., 2014; Martinovi¢ et al., 2018; Lee et al.,

2



2021). The heavy rainfall saturates a slope and triggers a landslide due to the reduction of the
soil's shear strength and the increase of pore water pressure (Luino et al.,2022; Chen et al.,
2021; Chatraetal., 2019; Lacerda et al., 2014; Tsai and Chen, 2010;). For example, steep slopes
with loose soils and even moderate rainfall can lead to the displacement of an enormous
quantity of soil mass. On the contrary, in slopes with more stable, cohesive soils, the surface
failure might be smaller (Tsai and Chen, 2010). The rainfall quantity and duration influence the
volume of the landslides; the higher the intensity and the longer the duration of rainfall, the
larger the resulting surface failure (Chen et al., 2017; Bernardie et al., 2014; Chang and Chiang,
2009). The landslide occurrences can also be influenced by human activities that weaken the
slope, such as excavation at the slope toe and loading caused by construction and land use such
as agriculture, mining etc. (Rosi et al., 2016). The rapid urbanization activities affect the
topography through hill cutting, deforestation and water drainage (Rahman et al., 2017); these
activities disturb the slope structure and change the water flow, which exacerbates the effect of
landslides in regions where human engineering activities are mostly located (Holcombe et al.,
2016; Islam et al., 2017; Chen et al., 2019).

To estimate the volume of the soil mass displaceable subsequent to intensive rainfall, is
essential to set appropriate mitigation strategies to reduce environmental degradation,
infrastructure damage, casualties, and to establish post-disaster resilience policies to restore the
socio-economic aspect of communities (Van et al., 2021; Alcantara-Ayala, 2021). This
quantification of the volume of landslides due to rainfall (VLDR) is essential for effective risk
management (Tacconi et al., 2020), emergency response, engineering design (Cheung, 2021),
economic assessment and environmental protection (Alcantara-Ayala and Sassa, 2023). Firstly,
to manage landslide risk effectively, the quantification of VLDR can be useful for updating
hazard maps to reflect the scale of potential landslides in various regions to facilitate the
identification of high-risk zones for monitoring and intervention. In addition, to develop
mitigation strategies, such as land stabilization measures and land use planning, planners might
put in place strict construction regulations in particular regions that are susceptible to landslides
(Mateos et al., 2020). The accurate measurements of VLDR can be used to promote public
awareness for safety measures and preparedness (Yang and Adler, 2008). Secondly, estimating
precise VLDR is crucial for structural engineers to design a structure that can withstand
extreme landslide events. Knowing the exact volume of displaceable material, an engineer can
set robust stabilization solutions to prevent future occurrences (Dai and Lee, 2001). Moreover,

the VLDR can help design the drainage system to manage water flow by controlling
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groundwater and surface runoff to mitigate landslide risks (Dikshit et al., 2019; Kim et al.,
2014). Furthermore, to prepare for emergence responses such as resource allocation,
evacuation planning, and search and rescue operations, accurate VLDR estimation is necessary
to ensure efficient implementation (Fan et al., 2019). To allocate resources effectively, the
volume data is needed to determine the expected number of personnel for evacuation, materials
sufficient for cleaning up and recovery (Amatya, 2016; Yang and Adler, 2008; Spiker and Gori,
2003). Further, to establish environmental protection measures such as ecosystem impacts,
preservation of soil and water quality, and habitat restoration, the estimates of VLDR are
essential (Pradhan et al., 2022; Li et al., 2022a; Barik et al., 2017).

To mitigate the economic impacts of landslides, the values of VLDR can be a basis for
estimation of property damages, which is critical for settling insurance claims and assessment
of financial impacts on communities and government to facilitate efficient budgeting for
repairing damaged infrastructure and restoration of affected parts (Klimes et al., 2017; Dai et
al., 2002). The prediction of the VLDR can assist in long-term economic planning for landslide
risk by creating disaster preparedness and recovery funds (Winter and Bromhead, 2012). The
accurate estimation of the VLDR is an important key for designing strategies for resilience and
planning for the protection of the inhabitants of a particular region with certain landslide risks
subjected to a predicted quantity of rainfall (Conte et al., 2022). Consequently, for the safety
of communities, the selection of infrastructure construction sites must be done in places with
low landslide risks (Fan et al., 2017). Further, for the protection of crops, the farmland location,
and other land use activities, accurate landslide prediction taking into account real root causes
through the analysis of triggering and influencing factors, is crucial to achieve a durable
landslide safety management system (Paudel et al., 2003; Lee, 2009; Fan et al., 2017; Chen et
al.,2019; Dai et al., 2019; Alcantara-Ayala, 2021). *

Comment 2: Are the training and testing datasets split randomly with keeping the training data
fixed or is the split performed geographically? It would be interesting to see a
geographically split dataset to see how well the model(s) perform due to apparent
differences in the geological and environmental conditions across the study area.

Response: Thank you for your insightful suggestion, which helped us improve the manuscript.
In the present study, we opted to split the training and testing data randomly, implementing a
10-fold cross-validation to obtain an optimal model. This choice was made to balance bias and



variance effectively, adhering to a common 70% training and 30% testing split frequently
employed in machine learning models (Nguyen et al., 2021), which has been shown to be an
optimal data ratio.

While a geographically-based split could offer insight into regional variability, it may
introduce challenges for this study, as landslide occurrences in our dataset are unevenly
distributed, with about 60% located in the northeast part of the country. Geographically
splitting this region as the test set would significantly reduce test data size, which could
compromise model reliability and result in a suboptimal training process. To address regional
variability without introducing geographic splitting, we incorporated altitude as a predictor
variable in the model, recognizing that orographic rainfall in higher-altitude regions impacts
soil saturation and may influence landslide susceptibility differently across regions. This
approach allows the model to account for environmental differences while maintaining a

balanced and representative dataset.

Comment 3: One of my main concerns, or rather my curiosity, is regarding the data set itself.
The volume information, along with the inventory, is particularly noteworthy in
this case, as most inventories lack volume data. Keeping this in mind, how do the
authors think about the application of such methods in other areas? Now, the
authors have created a method that works pretty well within the given region.
Instead of finding other regions (which might be difficult and time-consuming)
could the authors simply use the model and predict volumes on similar nearby
regions where the volumes are not calculated? This could serve as a simple
prediction example demonstrating the method's application, without requiring
extensive investigation. This approach is important as it helps the authors extend
beyond a simple ‘exercise’ of the method, since it is currently applied only in the
study area. Moreover, this would make the claim in Conclusion, Lines 346-349
more credible.

Response: Thank you for your insightful comment. We agree that extending the applicability
of our model to other regions is a valuable goal. While a comprehensive analysis of other
regions is beyond the scope of this study, we recognize the potential to apply our model to
similar regions with similar geological and environmental conditions.

In the present investigation, we selected a test set treated as unknown data to the model,
where volume predictions were based solely on predictor variables, and actual volume values
were used only to evaluate model performance. Our results indicate that the DNN, EGB, GLM,

and RF models performed well, achieving an R?>0.8. This level of accuracy suggests that the



model could provide reliable volume estimates in adjacent areas with comparable input data.

We have clarified this point in the revised manuscript to highlight the model’s adaptability.

Comment 4: My biggest concern is related to the soil-depth. Now, it is impossible to imagine
the calculation of volumes without the depth of the material that has failed as that
is the 3™ volume calculations. It appears that the soil depth was ‘removed’ after
feature importance analysis for the best performing EGB model. Sure, the depth
information might not have been that important in this example of model training
for this region, but | would argue that in other regions, particularly if the region
contains multiple deep-seated landslides and the failure surface runs deep until
the bedrock. I am just not convinced that removing soil depth makes sense, as
geomorphologically, depth (which also relates to soil composition) is very
important for accurate volume estimation and calculation.

Response: Thank you for the fruitful observation. We agree that soil depth is important in the
prediction of the volume of landslides due to rainfall. In this study, the average topsoil depth
was considered, and during the training process, the contribution was minor in the prediction
of volumes and values below 0.01 were not shown even though those features remained in the
model. To remove the confusion caused by the absence of those variables with less contribution
on the variable importance plot and to acknowledge that those variables may be more
significant in other regions, all variables used to train all models were shown in the updated

manuscript. The updated figure with its caption in the revised manuscript is depicted below,
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Comment 5: Another question is pertaining to the type of failure movement. The inventory
contains multitude of information but what about the movement types of the
landslides? What types of landslides are considered in the inventory? Because
clearly shallow and deep landslides would require separate treatments when looking
at volume predictions because the material composition, material type, and material
depths would be tremendously different. Do the authors combine these landslides
together? What is the proportion of these landslide types? Also, are there prevalent
debris flows, because volumes of debris flows is another story altogether since
entrained volumes due to channelization are different than surface failure volumes.
| see that the Discussion can be improved a lot by addressing and discussing these
topics and limitations.

Response: We appreciate the reviewer’s insightful comments. We agree that landslide
movement types are critical for accurate volume predictions, as they exhibit distinct failure
mechanisms, material properties, and depositional patterns. As the reviewer correctly noted,
our initial dataset contained a variety of landslide types. Upon further examination, we
identified that the majority of landslides in our study area were shallow, translational slope
failures. Only one deep-seated landslide, with an approximate volume of 33,000 m3 was
included in the inventory. As observed in prior studies, shallow translational slides are common
in granite areas of Korea due to uniform weathering profiles, while metamorphic regions tend
to experience larger debris flows due to steeper slopes and irregular weathering profiles (Kim
and Chae, 2009). Kim et al. (2001) further noted that in north and northwest part of the country,
most landslides are classified as debris flows, though their initiation points often exhibit
characteristics of translational slides. Recognizing that shallow and deep-seated landslides
exhibit different material properties, failure mechanisms, and volumetric characteristics, we
have removed this deep-seated landslide from our analysis to ensure consistency and relevance
to our study objectives. We have therefore focused our analysis on this dominant type, as it
represents the primary landslide hazard in the region.

This manuscript contains exclusively shallow-seated landslides with volumes below
13,000m3with topsoil depth varying between 0.2m and 1m. We have updated the methodology
and analysis sections to clarify that our dataset only includes shallow-seated landslides.
Additionally, the Discussion section now addresses this limitation, acknowledging that the
exclusion of deep-seated landslides and debris flows may affect the generalizability of our
findings to other landslide types. This improvement aligns with the study’s focus on shallow

landslides, allowing for a more accurate assessment of volume predictions within this specific
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landslide type. We have also noted in the Discussion that future studies would benefit from
separate analyses of deep-seated landslides and debris flows, given the unique volumetric and

channelization characteristics of debris flows.

Comment 6: The Discussion section is oriented quite too much on the aspects of the different
models, conditioning factors, and their roles in the prediction of the volumes. As
I mentioned in my previous comment, not much is discussed on the practical
questions of scalability, different modes of movements, soil depths, runout
volumes of entrained materials etc. These are essential topics as the direct
counterpart of statistical models, i.e., numerical models tend to answer these
questions. So, a comparison with the literature in that order is missing which |
believe would add new levels of arguments to put forward by the authors and
cement why their method works well despite lacking/following physical laws.

Response: This study aim was to construct a data-driven algorithm that predicts the volume of
landslides due to rainfall. The result of nine different tested algorithms revealed a tremendous
difference between classical regression models (OLS, RR, and GLM) and other data-driven
machine learning models. In this study, apart from SVM regression, DT and KNN, other
machine learning models (DNN, DT, RF, and EGB) exhibited high prediction capability with
R? above 50%. Further, to understand the applicability of the developed models, the trained
model was tested using unknown data, with volume predictions generated solely based on the
predictor variables; actual volume values were utilized only for evaluating model performance.
We found that the DNN, EGB, GLM, and RF models achieved R?>0.8, indicating that the
model could yield reliable volume estimates in adjacent areas with similar geological and
environmental conditions. It was noted that the numerical models and machine learning
approach mostly used for the landslide volume estimation depend on landslide geometry
(Leong and Cheng, 2022; Do et al., 2017; Shirzadi et al., 2017). As or our knowledge, none of
the ML models used to predict volume of landslides using multiple predictors (such as,
geological, topographical, geomorphological, soil, vegetation, and rainfall factors) on large
scale. Therefore, the direct comparison with result of existing numerical and statistical models
that solely depend on geometrical features of landslide (such as, surface area or runout length)

is out of the scope of this investigation.

Comment 7: In Table 1, under Geomorphology, the feature “erosion” is presented. Now,
erosion itself can be referred to the volume, which is the main variable that the
authors are trying to estimate. So, how is this variable used in the training regime?
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Or is this erosion feature different than the output of volume? Also, there are
summary statistics of the erosion under Table 2. Why is that? My concern is that the
authors are not clear as to what ‘erosion’ refers to in the data-driven model construct.
If it is in fact similar to volumes, then the predictor variable and output variables are
more or less the same. This needs further in-dept clarification.

Response: We appreciate the reviewer comment regarding the confusion originating from the
use of ‘erosion’ as a predictor variable. We agreed that the term may have caused confusion.
In the preprint, the feature named 'erosion’ was incorporated as a categorical variable
with "Yes' and 'No' values, indicating whether minor erosion events (such as gradual surface
degradation due to wind or water) occurred prior to the landslide event. This differs from the
volume variable, which is our dependent variable and represents the total mass of displaced
material due to a landslide. Importantly, volume was not used as a predictor in the model,
rather, it serves solely as the target output. To avoid ambiguity, we have removed the ‘erosion’
variable from the predictor variable list in Table 1 and accordingly updated Table 2 in the

revised manuscript.

Table 2: Summary statistics continuous variables.

Variable units N Min  Mean Median Max  Std dev
Max Hourly rain mm 455 0 48 48 78 20
Continuous rainfall mm 455 0 285 327 550 106
Three hours rainfall mm 455 0 88 80 171 60
Twelve Hours rainfall  mm 455 0 150 99 447 95
One day rainfall mm 455 0 202 162 538 112
Three days rain mm 455 0 280 284 550 86
Seven days rain mm 455 05 323 330 634 88
Two weeks rain mm 455 0.5 385 400 663 90
Three weeks rain mm 455 86 504 533 914 115
Four weeks rain mm 455 108 587 561 1135 160
Soil depth m 455 0.2 0.6 0.75 75 0.19
Soil type - 455 15 1.6 15 1.7 0.087
Timber diameter m 455 0.15 0.27 0.23 0.35 0.086
Age of tree Years 455 10 34 35 60 14
Slope length m 455 1.8 21 13 180 23
Slope angle Degree (0) 455 10 34 34 65 7.9
Altitude m 455 9 391 272 1324 273

Comment 8: Table 1: Descriptions should be written properly for each feature/variable. At the
moment, the descriptions read more like a summary of the sub-groups, written
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altogether. Please provide descriptions individually for each feature properly. For
example, Slope angle, slope aspect, and slope length are all written in one
statement. Make them three individual statements to make it clearer to understand.
Also, the descriptions are not clear enough. For volume landslide due to rainfall”.
This is not a description. It is a reasoning to justify a claim. Please provide
appropriate descriptions.

Response: Thank you for your comment. We have updated Table 1 to enhance clarity by
providing separate descriptions for each feature. Each description is now specific to the
individual feature, detailing its relevance to landslide volume estimation. While rainfall
parameters, such as rainfall on the day of the event and rainfall in prior days were grouped, as
they represent related precipitation metrics, all other features have been distinctly separated.

The revised version of Table 1, with improved feature descriptions, is shown below.

Table 1. Landslide influencing and triggering factors.

Group Features Description Reference
The burning of the vegetation intensifies the
mass movement of soil near the uncovered
burned stem of trees and free movement on
uncovered soil due to post-fire rainfall and
storms. The sliding may also be due to loss of
vegetation, altered soil property and structure,
which lead to soil degradation and infiltration
which increase pore pressure, and change in
hydrology by concentrating water flow in places
that exacerbate landslides.

Mature forests have more resistance to shallow
landslides due to highly developed roots, which
improve soil cohesion and leaves that prevent
direct contact of raindrops with the soil surface.

Highland and
Bobrowsky,
2008; Culler
etal., 2021;
Hyde et al.,
2016; Stoof
etal., 2012

Fire history

Sato et al.,
2023; Lann
etal., 2024

Age of tree

Vegetation

Lann et al.,
2024;
Greenwood
etal., 2004;
Turner et al.,
2010;

Scheidl et al.,
2020; Asada
et al., 2023

The presence of forest reduces the likelihood of
landslides about three times compared to
grassland. Grassland has been revealed to be
three times more vulnerable to shallow
landslides than broadleaf and, coniferous and in
secondary forests.

Forest density

Timber Tree spacing and size had been used to Cohen and
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Group

Features

Description

Reference

diameter (m)

investigate the effect of root and tree in shallow
landslide control. The high root density
generally enhances slope stability, and specific
tree placement and root sizes between 5 to 20
mm are effective in landslide prevention.

Schwarz.,
2017; Wang
etal., 2016

Geomorphology

Drainage

The drainage has a significant effect on the
slope stability and promotes the efficient control
of the influence of rainfall on the ground water
fluctuation. The presence of drainage increases
the threshold of landslides due to rainfall.

Yan et al.,
2019; Sun et
al., 2010 ;
Wei et al.
2019 ; Korup
etal., 2007

Slope angle
(degree)

The steeper slopes have lower presence of
landslide due to low transportable materials.
Slopes between 20-40 degrees are most
vulnerable to greater landslides as rainfall
intensity and duration increase. Here, we
considered the average angle of the terrain at the
landslide location, which provides valuable
insight into the region's overall steepness and
geomorphic characteristics, which are crucial
factors influencing landslide susceptibility and
risk modeling.

Duc, 2013 ;
Qiuetal.,
2016 ;
Donnarumma
etal., 2013

Slope aspect

The effect of rainfall on slope differs by slope
angle and slope aspect which lead to unevenly
distributed occurrence of landslides.

Panday and
Dong, 2021,
Cellek, 2021

Slope length
(m)

The volume increases as the slope length
increases. There exists a complex interplay
between rainfall, length of slope and slope angle
on the occurrence of landslides.

Turner et al.,
2010

Soil depth (m)

Soil properties, depth, and texture have
significant differences in infiltration rates,
which have different influences on the
occurrence of landslides.

Kitutu et al.,
2009;
McKenna et
al., 2012

Soil type

Higher rainfall intensity affects the occurrence
of landslides differently, particularly in certain
soil types that have shorter saturation and failure
times.

Liuetal.,
2021

Location

Altitude

Regional variability of elevation and mountain
steepness affect the quantity of rainfall and
associated landslides.

Hyun et al,
2010, Yoon
and Bae,

2013; Park,
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Group Features Description Reference

2015 Um et
al., 2010
Wieczorek,
The rainfall infiltrates the slope and increases 1987;
Maximum pore water pressure that reduces soil shear Daiand Lee,
hourly rainfall strength, which leads to soil saturation that 2001; Smith
causes surface failure. etal., 2023
C(_)ntmuous Sudden intense rainfall concentrated in short Zhang etal.,
rainfall i : ) : 2019
periods of time is responsible for shallow
Three hours . i
. landslide and debris flow.
rainfall
Three days Ran et al.,
= rainfall 2022 Zhang
:_% Two weeks etal., 2019 ;
3 : .
rainfall The antecedent rainfalls increase moisture in zerggrld;a e
the soil and weaken soil cohesion. a ’
Four weeks Chenetal,
rainfall 20152;
Gariano et
al., 2017

Comment 9: Lines 311-312: It would be nice explain why the random forest works well with
smaller volumes. The connection between the machine learning predictions and
the scale of the estimated volumes should be explained more intricately to provide
a grounded understanding. Does the EGB model predict larger volumes more
accurately than the rest, like Random Forest? If so, then why? Please explain these
aspects.

Response: Thank you for your insightful comment. Random Forest tends to perform well with
smaller volumes due to its ability to capture complex relationships and interactions in the data
without overfitting. RF uses multiple decision trees as base models, builds each tree on a
random subset of samples and features, and computes averages as predictions to get the final
result (Breiman, 2001). The model’s random sampling of both observations and features allows
it to build diverse trees; this enhances the generalization capabilities, particularly when the
dataset is small. This characteristic helps the RF to maintain accuracy by reducing variance. It
was noticed that the difference between of R? on training and testing sets was small compared
to other models.
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In contrast, the EGB model may predict larger volumes more accurately because it
employs an iterative process to improve predictions. It uses a decision tree as the base model
and builds them sequentially in such a way that each new tree corrects prediction errors made
by previous trees using gradient descent, allowing for fine-tuning of predictions over iterations
and to minimize loss functions effectively (Chen and Guestrin, 2016). This iterative correction
can capture complex patterns in larger datasets that may not be evident in smaller ones. The
fact that the RF predictions are averages of multiple decision trees may cause the difference
since predicting averages will be less than predictions produced sequentially (Sagi and Rokach,
2018).

Furthermore, as volume size increases, the relationships between features can become
more intricate, and EGB’s ability to handle these complexities may lead to superior
performance in those scenarios. However, Random Forest remains advantageous when data is
scarce because it is less prone to overfitting compared to some boosting methods, which may
struggle with limited data. A clear understanding of these dynamics provides valuable insights
into the varying performance of different models across different volume scales, emphasizing
the importance of choosing the right algorithm based on dataset characteristics. This has been

highlighted in the discussion section of the revised manuscript.

Minor comments:

Comment 1: Line 31: “high”, should be “height”.

Response: Thank you for your observation. The identified error has been corrected in the
revised manuscript. The entire sentence has been modified as,
“Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural position

and slide downward along a slope due to gravity forces.”

Comment 2: Line 36: “resulting volume of landslides”. Change this to “resulting surface
failure”.

Response: We have made the modification in the revised manuscript, replacing "resulting

volume of landslides" with "resulting surface failure" for improved clarity.
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Response 3: Line 38: “fragilize”. Not sure if such a word is used commonly to express the
weakening of slopes. I'd rather opt for 'weaken'.

Response: Thank you for your suggestion. Accordingly, we have replaced "fragilize" with

"weaken" in the revised manuscript.

Comment 4: Similar English issues are found in Section 2 (Study area). Please address the
language issues.

Response: Thank you for the fruitful suggestion and observations. We have addressed the
language issues throughout the entire manuscript, including the Study Area section. The
modification made in the study area section is reflected in the text below:

“The region for testing the model is South Korea, characterized by mountainous (63%
of total land) relief, especially in the eastern part of the country (Lee et al., 2022). South Korea
is located on the southern part of the Korean Peninsula, bordered by the Yellow Sea to the west
coast and the East Sea (Sea of Japan) to the East. According to the Korean Meteorological
Administration (2020), the country has a temperate climate characterized by four distinct
seasons: hot and humid summers, cold winters, and springs and falls with moderate
temperatures. The annual rainfall ranges between 1000 mm to 1400mm and 1800mm for the
central region and southern region, respectively (Jung et al., 2017; Alcantara and Ahn, 2020).
During the summer, heavy rainfall from June to September leads to significant surface runoff,
increases landslide risk, and causes approximately 95% of all landslides each year (Lee et al.,
2020; Park and Lee, 2021). In addition, the landslides may be aggravated by typhoons, which
mostly occur in August and September, and it is anticipated that frequency will increase due to
climate change (Kim and Park, 2021). The rainfall trend analysis from 1971 to 2100 predicted
the increase in rainfall of 271.23mm, which indicates the growing risk of landslides associated
with climate change (Lee, 2016). Temperature variations are influenced by its geographical
location, the average summer temperatures range between 25 and 30°C, while winter
temperatures can drop to -10°C in some parts of the country (Korea Meteorological
Administration, 2020). The South Korean geologically is mainly composed of granitic and
metamorphic rocks, such as gneiss, schist, and granite, which influence the stability of the
landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, river
valleys, and coastal plains, with the Taeback Mountains running along the eastern edge (Kim

et al., 2020). In addition, the influence of rainfall, environmental, geomorphology, and
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geological factors increase the vulnerability to landslides across the country, especially in the
northeastern mountainous region, as depicted in Figure 1.

The predominant soil types in South Korea include clay, sandy, and loamy soils, each
with different characteristics affecting water infiltration, retention and erosion (Kang et al.,
2022; Lee et al., 2023). Clay soils, being more stable, can become highly saturated, increasing
landslide risk during heavy rains. On the other hand, sandy soils are more prone to shallow
landslides due to fast saturation, leading to instability. Regions with steep topography and
poorly consolidated soil (loose) are mostly at risk, especially after prolonged rainfalls (Kim et
al., 2015).

Coastal areas are exposed to sea-level rise and coastal erosion, which can further
complicate the landscape and increase landslide susceptibility. The combination of heavy
summer rainfall, geological composition, and geomorphological factors makes South Korea
particularly vulnerable to shallow landslides. Thus, continuous monitoring and research are
vital to understand the complex interactions between climate, geology, soil types, and landslide
occurrences in this region (Park, 2022). Understanding the combination of environmental,
geological stability, and geomorphological features is crucial for developing effective disaster
management strategies and enhancing public safety in landslide-prone areas. As climate change
continues to impact rainfall patterns, South Korea faces ongoing challenges in mitigating

landslide risks and protecting vulnerable communities.”

Comment 5: Figure 2. Font size of plot (b) is different than the rest, and also stretched. Please
make all font sizes uniform.

Response: Thank you for your suggested improvements. Figure 2 (now Figure 3), titled
“Workflow for the Prediction of Volume of Landslide Due to Rainfall,” has been revised to

ensure uniform font sizes throughout the plot. The updated figure is provided below,
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Figure 3. Workflow for the prediction of the volume of landslides due to rainfall.

Comment 6: Line 111: Replace ‘joined’ with ‘combined’.

Response: Thank you for your comment. As suggested, the term "joined" has been replaced

with "combined" in the revised manuscript.

Comment 7: Line 128: “flown away”? I am not sure if using this term is accurate. Generally,
we refer to them as “removed material” from the surface. Can you please double-
check this?

Response: Thank you for your valuable comment. The suggested modifications were
incorporated in the revised manuscript as,

“The estimation of the volume of removed material by landslides is important as it helps to
assess risks the estimated damage can cause down at the toe of the failed slope, such as blocking
transportation network, burying crops or farmland, the damage-built environment near
landslide risks area, and post-disaster recovery planning (Evans et al., 2007; Rotaru et al., 2007;

Intrieri et al., 2019).”

Comment 8: Is the slope angle the average angle of the terrain where the landslide was located
or is the angle of reach? In my opinion, the angle of reach would make more sense
as landslides that are closer to each other will exhibit different angles of reach but
the same adjacent landslides would bear the same average slope angle as you are
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averaging based on the terrain. Please make it clear as to which one you have
considered and why.

Response: Thank you for your comment. The slope angle referenced in the manuscript pertains
to the average angle of the terrain at the landslide location. This measurement provides valuable
insight into the overall steepness and geomorphic characteristics of the area, which are crucial
factors influencing landslide susceptibility and risk modeling (Donnarumma et al., 2013). On
the other hand, the angle of reach refers to the angle at which a landslide material travels after
detaching from the slope, which is important for assessing mobility and potential impact
(Corominas, 1996). However, this is a different metric and not the focus of our analysis. While
the angle of reach considers the mobility of landslides, the average slope angle is critical for
assessing the risk of landslide occurrence. We acknowledge your point regarding the
differences in angle of reach among closely situated landslides, but in our study, the average
slope angle is more relevant for evaluating landslide volume. We have clarified this distinction

in the revised manuscript (Table 1) to ensure a better understanding.

Comment 9: Line 136: What do you mean by ‘composing material’? This is not clear.

Response: Thank you for your insightful comment. The term "composing material” refers to
soil composition properties, which significantly impact slope stability. These properties,
including soil permeability indices, influence water infiltration and saturation levels, both of
which are critical factors in landslide susceptibility (Chen et al., 2015a). The revised sentence
is as follows,

“The slope stability depends on soil composition properties, including soil permeability indices

that affect water infiltration and saturation level (Chen et al., 2015a).”

Comment 10: Lines 140-142: Please check the English grammar here. The sentence can be
improved a lot.

Response: Thank you for your comment. We revised the sentence in the updated manuscript.
Additionally, we conducted a thorough review of the manuscript to identify and correct similar

issues throughout.

Comment 11: Line 341: Change to “Among the tested models,”
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Response: Thank you for your comment. The sentence has been modified in the revised
manuscript as,
“Among the tested models, extreme gradient boosting (EGB) produced the most accurate

prediction.”

Comment 12: Conclusion- Line 349: Change from “can be a better tool” to “can be a good
tool”.
Response: Thank you for your comment. As suggested, the sentence has been revised in the

updated manuscript as,
“Therefore, this model can be a good tool for planning for resilience and infrastructure pre-
construction risk assessment to ensure the new infrastructure is placed in stable regions free

from severe landslides.”
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Response to Reviewer #2
General remarks

Comment 1: In the introduction, the authors should explain more about why volume
estimations are crucial for understanding and managing landslide hazards.

Response: Thank you for your valuable comment. As suggested, we have revised the
introduction to highlight the critical role of landslide volume estimations in understanding and
managing landslide hazards. The revised section of the introduction is provided below.

“To estimate the volume of the soil mass displaceable subsequent to intensive rainfall,
is essential to set appropriate mitigation strategies to reduce environmental degradation,
infrastructure damage, casualties, and to establish post-disaster resilience policies to restore the
socio-economic aspect of communities (Van et al., 2021; Alcantara-Ayala, 2021). This
quantification of the volume of landslides due to rainfall (VLDR) is essential for effective risk
management (Tacconi et al., 2020), emergency response, engineering design (Cheung, 2021),
economic assessment and environmental protection (Alcdntara-Ayala and Sassa, 2023). Firstly,
to manage landslide risk effectively, the quantification of VLDR can be useful for updating
hazard maps to reflect the scale of potential landslides in various regions to facilitate the
identification of high-risk zones for monitoring and intervention. In addition, to develop
mitigation strategies, such as land stabilization measures and land use planning, planners might
put in place strict construction regulations in particular regions that are susceptible to landslides
(Mateos et al., 2020). The accurate measurements of VLDR can be used to promote public
awareness for safety measures and preparedness (Yang and Adler, 2008). Secondly, estimating
precise VLDR is crucial for structural engineers to design a structure that can withstand
extreme landslide events. Knowing the exact volume of displaceable material, an engineer can
set robust stabilization solutions to prevent future occurrences (Dai and Lee, 2001). Moreover,
the VLDR can help design the drainage system to manage water flow by controlling
groundwater and surface runoff to mitigate landslide risks (Dikshit et al., 2019; Kim et al.,
2014). Furthermore, to prepare for emergence responses such as resource allocation,
evacuation planning, and search and rescue operations, accurate VLDR estimation is necessary
to ensure efficient implementation (Fan et al., 2019). To allocate resources effectively, the
volume data is needed to determine the expected number of personnel for evacuation, materials
sufficient for cleaning up and recovery (Amatya, 2016; Yang and Adler, 2008; Spiker and Gori,

2003). Further, to establish environmental protection measures such as ecosystem impacts,
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preservation of soil and water quality, and habitat restoration, the estimates of VLDR are
essential (Pradhan et al., 2022; Li et al., 2022a; Barik et al., 2017).

To mitigate the economic impacts of landslides, the values of VLDR can be a basis for
estimation of property damages, which is critical for settling insurance claims and assessment
of financial impacts on communities and government to facilitate efficient budgeting for
repairing damaged infrastructure and restoration of affected parts (Klimes et al., 2017; Dai et
al., 2002). The prediction of the VLDR can assist in long-term economic planning for landslide
risk by creating disaster preparedness and recovery funds (Winter and Bromhead, 2012). The
accurate estimation of the VLDR is an important key for designing strategies for resilience and
planning for the protection of the inhabitants of a particular region with certain landslide risks
subjected to a predicted quantity of rainfall (Conte et al., 2022). Consequently, for the safety
of communities, the selection of infrastructure construction sites must be done in places with
low landslide risks (Fan et al., 2017). Further, for the protection of crops, the farmland location,
and other land use activities, accurate landslide prediction taking into account real root causes
through the analysis of triggering and influencing factors, is crucial to achieve a durable
landslide safety management system (Paudel et al., 2003; Lee, 2009; Fan et al., 2017; Chen et
al.,2019; Dai et al., 2019; Alcantara-Ayala, 2021). ”

Comment 2: The literature review section should be expanded to incorporate more recent
studies on landslide volume prediction models, providing a comprehensive
overview of the current state of research in this field.

Response: We appreciate this suggestion. We have done an extensive literature review to
include recent studies on landslide volume prediction models, offering a more comprehensive
overview of the current state of research in this field. Accordingly, the literature review section

in the introduction has been updated as,

“The prediction of VLDR has gained the interest of many researchers to understand the
mechanism and interaction between triggering and aggravating factors. Saito et al. (2014)
studied the relationship between rainfall-triggered landslides to test whether the volume of
landslides across Japan that occurred between 2001 and 2011 can be directly predicted from
rainfall metrics. The findings revealed that larger landslides occurred when rainfall exceeded
certain thresholds, but there were significant discrepancies between peaks of rainfall metrics

and maximum landslide volumes, and the total rainfall was the suitable predictor of landslides.
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Dai and Lee (2001) established the frequency-volume relation for landslides in Hong Kong and
noticed that the relation for shallow landslides above 4m? followed the power law. The 12-hour
rolling rainfall contributed most to the prediction of the volume of landslides. Ju et al. (2023)
constructed an area-volume power law model for the estimation of the volume of landslides
using high-resolution LiDAR data collected between 2010 and 2020 in Hong Kong. The aim
was to estimate accurately the volume of landslides on small-scale landslides. The reliance on
localized datasets limits the model's applicability in regions with different geological settings,
and the model does not consider all variabilities of landslide characteristics. Razakova et al.
(2020) calculated landslide volume using remote sensed data with the aim of assessing the
efficiency of aerial photographs in environmental impact assessment and ground-based
measurement. The study did not take into account the effect of vegetation and topography and
only focused on a single landslide case, which may be a source of bias due to differences in
soil composition and environmental factors. Hovius et al. (1997) analyzed multiple sets of
aerial photos and frequency-magnitude relation for landslides in New Zealand. The finding
pinpointed that the landslides frequency-magnitude followed power law and infrequent large
magnitude contributed to the landscape change. The study also noticed the importance of soil
composition in the size of the landslides. This work had a limitation due to the reliance on
aerial photos only, which cannot provide accurate measurement in regions of dense forest, and
the climatic conditions, which are landslide triggering factors, were not considered, and this
may affect the generality of the findings. Guzzetti et al. (2008) applied statistical methods on
regional landslide inventories and antecedent rainfall data ranging between 10 min to 35 days.
The findings revealed that the slope angle and soil type significantly influence landslide volume
estimates, and the rainfall intensity is more important than duration. Chatra et al., 2019) applied
numerical methods to study the effect of rainfall duration and intensity on the generation of
pore pressure in the soil; the finding revealed a higher instability in loose soil compared to
medium soil slopes. The work only treated the interaction of soil and rainfall without
considering the environmental factors and human activity, which might also influence mass
failure. Recently, the application of GIS technologies has been increasing in the identification
of regions susceptible to landslides (landslide zonation) (Chen and Zhang, 2021; Gutierrez-
Martin, 2020; Li et al., 2022b). These methods are essential in emergency management because
they provide a general overview of zones with a higher probability of landslide occurrence;
however, they do not put emphasis on the determination of the approximate value of the volume

of failing mass in relation to excessive rainfall events.”
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Comment 3: The study area section should be enhanced with more detailed information on
landslide-triggering factors. Additionally, it would be beneficial to incorporate a
figure showing representative rainfall characteristics prior to the recorded
landslide events in different parts of the Korean Peninsula. This would help
better understand the unique rainfall patterns of the region responsible for
landslides.

Response: We appreciate this fruitful comment. As recommended, we have included a rainfall
plot within the data subsection in the revised manuscript to ensure logical coherence.
Furthermore, we have combined the study area and data into a single section with two
subsections for improved clarity. The updated information on the study area and the figure
illustrating the rainfall characteristics prior to the recorded landslide events are provided below,

“The region for testing the model is South Korea, characterized by mountainous (63%
of total land) relief, especially in the eastern part of the country (Lee et al., 2022). South Korea
is located on the southern part of the Korean Peninsula, bordered by the Yellow Sea to the west
coast and the East Sea (Sea of Japan) to the East. According to the Korean Meteorological
Administration (2020), the country has a temperate climate characterized by four distinct
seasons: hot and humid summers, cold winters, and springs and falls with moderate
temperatures. The annual rainfall ranges between 1000 mm to 1400mm and 1800mm for the
central region and southern region, respectively (Jung et al., 2017; Alcantara and Ahn, 2020).
During the summer, heavy rainfall from June to September leads to significant surface runoff,
increases landslide risk, and causes approximately 95% of all landslides each year (Lee et al.,
2020; Park and Lee, 2021). In addition, the landslides may be aggravated by typhoons, which
mostly occur in August and September, and it is anticipated that frequency will increase due to
climate change (Kim and Park, 2021). The rainfall trend analysis from 1971 to 2100 predicted

the increase in rainfall of 271.23mm, which indicates the growing risk of landslides associated

with climate change (Lee, 2016). Temperature variations are influenced by its geographical

location, the average summer temperatures range between 25 and 30°C, while winter
temperatures can drop to -10°C in some parts of the country (Korea Meteorological
Administration, 2020). The South Korean geologically is mainly composed of granitic and
metamorphic rocks, such as gneiss, schist, and granite, which influence the stability of the

landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, river
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valleys, and coastal plains, with the Taeback Mountains running along the eastern edge (Kim
et al,, 2020). In addition, the influence of rainfall, environmental, geomorphology, and
geological factors increase the vulnerability to landslides across the country, especially in the
northeastern mountainous region, as depicted in Figure 1.

The predominant soil types in South Korea include clay, sandy, and loamy soils, each
with different characteristics affecting water infiltration, retention and erosion (Kang et al.,
2022; Lee et al., 2023). Clay soils, being more stable, can become highly saturated, increasing
landslide risk during heavy rains. On the other hand, sandy soils are more prone to shallow
landslides due to fast saturation, leading to instability. Regions with steep topography and
poorly consolidated soil (loose) are mostly at risk, especially after prolonged rainfalls (Kim et
al., 2015).

Coastal areas are exposed to sea-level rise and coastal erosion, which can further
complicate the landscape and increase landslide susceptibility. The combination of heavy
summer rainfall, geological composition, and geomorphological factors makes South Korea
particularly vulnerable to shallow landslides. Thus, continuous monitoring and research are
vital to understand the complex interactions between climate, geology, soil types, and landslide
occurrences in this region (Park, 2022). Understanding the combination of environmental,
geological stability, and geomorphological features is crucial for developing effective disaster
management strategies and enhancing public safety in landslide-prone areas. As climate change
continues to impact rainfall patterns, South Korea faces ongoing challenges in mitigating

landslide risks and protecting vulnerable communities.”
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Figure 1. (a) Spatial distribution of landslides in South Korea, (b) temporal variation of rainfall,
1.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D:
Three days rainfall and E: Two weeks rainfall, (c) cumulative frequency distribution
of volume of landslides and (d) box plot of volume of landslides.
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Figure 2. (a-f) Histograms of rainfall data, and (g) the scatter plot showing the variation of
landslide volumes with respect to slope aspect, fire history and altitude.

Comment 4: Figure 2 needs to be updated. In the predictor variables, the authors should clearly
specify which factors are influencing factors and which are triggering factors.

Response: Thank you for this observation. We agreed with the reviewer that the workflow had
some missing information. Accordingly, the workflow figure was updated to reflect the
reviewer’s comment, and the model training and testing part was restructured to make it clearer.

The updated Figure 3 (previously Figure 2 in the pre-print) is provided below,
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Figure 3. Workflow for the prediction of the volume of landslides due to rainfall.

Comment 5: A more detailed discussion of the input variables considered for volume prediction
is required to better understand their roles as influencing and triggering factors.
Additionally, the manuscript should provide further justification for the selection
of these predictor variables.

Response: Thank you for your insightful comment. The details about the input variable are
summarized in the data part of the manuscript, and Table 1 provides the reference justifying
the reason for considering the stated feature as an input variable of the model. Accordingly, we
have thoroughly revised section 2.2 (i.e., Data) in the revised manuscript as follows,

The landslide inventory dataset contains 450 landslide record information from 2011 to
2012, collected from different locations in South Korea by Korean Forest Services. This dataset
tabulates information on landslide geometry, such as runout length, width, depth, and volume
of the affected area, along with geomorphological composition, vegetation, and antecedent
rainfall prior to landslide events. The details regarding landslide predisposing and triggering

factors are summarized in Table 1.

Table 1. Landslide influencing and triggering factors.

Group Features Description Reference

% The burning of the vegetation intensifies the Highland and

© = Fire history mass movement of soil near the uncovered Bobrowsky, 2008;
S burned stem of trees and free movement on Culler et al., 2021,
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Group

Features

Description

Reference

uncovered soil due to post-fire rainfall and
storms. The sliding may also be due to loss of
vegetation, altered soil property and structure,
which lead to soil degradation and infiltration
which increase pore pressure, and change in
hydrology by concentrating water flow in
places that exacerbate landslides.

Hyde et al., 2016;
Stoofetal., 2012

Age of tree

Mature forests have more resistance to shallow
landslides due to highly developed roots,
which improve soil cohesion and leaves that
prevent direct contact of raindrops with the

soil surface.

Sato et al., 2023;
Lann et al., 2024

Forest density

The presence of forest reduces the likelihood
of landslides about three times compared to
grassland. Grassland has been revealed to be
three times more vulnerable to shallow
landslides than broadleaf and, coniferous and
in secondary forests.

Lann et al., 2024;
Greenwood et al.,
2004; Turner et al.,
2010; Scheidl et
al., 2020; Asada et
al., 2023

Timber
diameter (m)

Tree spacing and size had been used to
investigate the effect of root and tree in
shallow landslide control. The high root
density generally enhances slope stability,
and specific tree placement and root sizes
between 5 to 20 mm are effective in landslide
prevention.

Cohen and
Schwarz., 2017;
Wang et al., 2016

Geomorphology

Drainage

The drainage has a significant effect on the
slope stability and promotes the efficient
control of the influence of rainfall on the
ground water fluctuation. The presence of
drainage increases the threshold of landslides
due to rainfall.

Yan et al., 2019;
Sunetal., 2010 ;
Wei et al., 2019 ;
Korup et al., 2007

Slope angle
(degree)

The steeper slopes have lower presence of
landslide due to low transportable materials.
Slopes between 20-40 degrees are most
vulnerable to greater landslides as rainfall
intensity and duration increase. Here, we
considered the average angle of the terrain at
the landslide location, which provides
valuable insight into the region's overall
steepness and geomorphic characteristics,
which are crucial factors influencing landslide

Duc, 2013 ; Qiu et
al., 2016 ;
Donnarumma et
al., 2013
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Group

Features

Description

Reference

susceptibility and risk modeling.

Slope aspect

The effect of rainfall on slope differs by slope
angle and slope aspect which lead to
unevenly distributed occurrence of landslides.

Panday and Dong,
2021; Cellek, 2021

Slope length
(m)

The volume increases as the slope length
increases. There exists a complex interplay
between rainfall, length of slope and slope
angle on the occurrence of landslides.

Turner et al., 2010

Soil properties, depth, and texture have
significant differences in infiltration rates,

Kitutu et al., 2009;

Soil depth (m) which have different influences on the McKenna et al.,
. 2012
occurrence of landslides.
Higher rainfall intensity affects the
. occurrence  of landslides differently, .
Soil type i ) . . " Liuetal., 2021
yp particularly in certain soil types that have
shorter saturation and failure times.
) - . Hyun I, 201
Regional variability of elevation and yun et al, 2010,
c . . . Yoon and Bae,
= Altitude mountain steepness affect the quantity of
§ rainfall and associated landslides 2013; Park, 2015
9 ' Umetal., 2010
. The rainfall infiltrates the slope and |r?creases Wieczorek, 1987
Maximum pore water pressure that reduces soil shear .
hourly rainfall  strength, which leads to soil saturation that Smith et al., 2023;
y g, ) Dai and Lee, 2001
causes surface failure.
ntin . ) .
zci)n;;”uous Sudden intense rainfall concentrated in short Zhang et al., 2019
periods of time is responsible for shallow
Three hours ) .
. landslide and debris flow.
_ rainfall
J—_; Three days Ran et al., 2022
g rainfall Zhang et al., 2019;
Two weeks The antecedent rainfalls increase moisture in  Bernardie et al.,
rainfall the soil and weaken soil cohesion. 2014; Chen et al.,
Four weeks 2015a; Gariano et
rainfall al., 2017

Location parameters such as altitude, latitude and longitude are essential elements that

determine the microclimate of a given region, influencing rainfall patterns (Hyun et al., 2010;
Yoon and Bae, 2013; Park, 2015). The northeastern region is characterized by high-elevation

terrain, such as Taebaek, and Sobaek ranges, which dry air and lead to orographic precipitation
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(Yun et al., 2009). The windward mountain versants receive a substantial amount of rainfall,
which can increase the likelihood of landslides (Jin et al., 2022). This variation of rainfall with
respect to the direction highlights the importance of including slope aspect variables in
landslide studies (Kunz and Kottmeier, 2006). Figure 2(g) depicts the relationship between the
slope aspect and the volume of landslides and slope aspect, altitude and fire history and shows
that larger volumes were localized in regions that faced forest fire and altitudes between 500
and 1000m. Additionally, the topographical features such as slope length and slope angle aftect
the size of the landslide (Panday and Dong, 2021), slope failure due to over-saturation from
groundwater and rainfall infiltration that destabilize the slope (Kafle et al., 2022). Furthermore,
slope length, slope angle and slope aspect play an important role in the determination of the
volume of geological material uprooted by landslides (Zaruba and Mencl, 2014; Khan et al.,
2021). The slope stability depends on soil composition properties, including soil permeability
indices that affect water infiltration and saturation level (Chen et al., 2015a). From surveyed
regions, three main soil types, namely, sandy loam, loam, and silt loam, were observed, and
their coefficient of permeability is 1.7, 1.65 and 1.5, respectively (Lee et al., 2013). Moreover,
to reduce the infiltration drainage network that channeling rainwater terrain drains soil and
reduces the saturation, which minimizes the likelihood of landslide occurrence as a result of
groundwater discharge and rainfall water flow (Hovius et al., 1997; Wei et al., 2019).
Furthermore, the vegetation protects the topsoil from the direct impact of raindrops hitting the
ground, which causes erosion due to the force of gravity and reduces infiltration (Omwega,
1989; Keefer, 2000). The absence of vegetation allows rainwater to seep away fine topsoil,
causing shallow landslides (Gonzalez-Ollauri and Mickovski, 2017). On the contrary,
vegetation improves soil cohesion and prevents potential shallow landslides due to soil-root
interaction (Gong et al., 2021; Phillips et al., 2021). The density of vegetation (forest) and
leafage type (broad, pines or mixture) directly affects the quantity of raindrop intercepted and
prevented from directly hitting the soil, which emphasizes the vegetation’s landslides
mitigation role. Further, the occurrence of forest fires can contribute to the occurrence of
landslides due to the burning of vegetation covering the area, changing soil properties and
increasing soil pH (Lee et al., 2013).

The rainfall, a triggering factor of landslides, is the immediate cause of slope instability
and failure due to infiltration that leads to saturation resulting from increased pore water
pressure that reduces soil shear strength (Yune et al., 2010; Khan et al., 2012; Kim et al., 2021;

Lee et al., 2021). The antecedent rainfall increases the moisture in the soil, which accelerates
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the soil saturation; the cumulative effect is essential to understand the saturation levels (Ran et
al.,2022). In this study, rainfall variables are grouped based on time, namely, continuous
rainfall, which is the accumulative value of rainfall on the day of a landslide from rainfall start
hour to the landslide event, maximum hourly rainfall, rainfall during the fixed period such as

three hours, one day, three days, two weeks etc.

Comment 6: | recommend providing clearer details on the geometry of the landslide inventory.

Response: Thank you for this recommendation. The landslide inventory provided by the Korea
Forest Service (KFS) contains 455 landslide records (point locations) information from 2011
to 2012 within the triggering area. This dataset tabulates information on landslide geometry,
such as runout length, width, depth, and volume of the affected area, along with
geomorphological composition, vegetation, and antecedent rainfall prior to landslide events,
which are integral to understanding the spatial extent and impact of each landslide. These
geometric details have been incorporated into our analysis to represent landslide characteristics
accurately. Accordingly, the data section has been revised in the updated manuscript as follows:

“The landslide inventory dataset contains 455 landslide record information from 2011
to 2012, collected from different locations in South Korea by Korean Forest Services. This
dataset tabulates information on landslide geometry, such as runout length, width, depth, and
volume of the affected area, along with geomorphological composition, vegetation, and

antecedent rainfall prior to landslide events.”

Comment 7: A brief discussion on why nine data-driven models were chosen is recommended
in the methods section. While these models have become quite common,
providing a rationale for their selection will help justify their use in the study.

Response: Thank you for your valuable feedback. The inclusion of model selection is essential
to justify the selection basis. In the present study, we aimed at predicting the volume of
landslides using models that minimize error with interpretability and scalability. Since one
model can not have all properties at the same time, we decided to select some of the models
with those properties. The OLS, GLM, and DT were selected for their high interpretability,
which helps to understand the influence of individual features on predictions (Gelman, 2007;
Breiman, 2017). On the other hand, the EGB, RF, SVM, RR, and KNN were chosen due to
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their robust performance in capturing complex patterns in data, which is essential for accurate
predictions of landslide volumes (Chen and Guestrin, 2016; Liaw and Wiener, 2002; Hastie et
al., 2009). Additionally, taking into account that the model will be used for regional scale,
which will require the use of big data, the EGB, RF, DNN are designed to efficiently handle
large datasets, making them suitable for the regional scale analysis. These last models can be
scaled to incorporate more data from different geographical areas without significant

adjustments, enhancing their applicability in future research (Krizhevsky et al., 2012).

Comment 8: The authors mainly use MAE and R? for model validation. It is recommended to
consider additional metrics commonly used in data-driven model evaluation.
Relying solely on these two statistics may not comprehensively assess model
performance.

Response: Thank you for your valuable suggestion. We have expanded the metrics used for
model validation to provide a more comprehensive assessment of the model performance. In
addition to Mean Absolute Error (MAE) and R2 we have included additional metrics such as
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and symmetric
mean absolute percentage errors (SMAPE). These metrics will offer a broader perspective on
the accuracy and reliability of our predictions. The updated section detailing the selected
metrics is included in the revised manuscript as,

“The model performance evaluation is a process of quantifying the difference between
the observed value not used in the modeling process and the predicted value by the model.
Diftferent metrics are applied depending on the type of task, whether it is a classification or a
regression problem. Subsequently, the widely used evaluation metrics for regression models,
namely, R%2, MAE, RMSE, MAPE and SMAPE, were utilized to evaluate the model

performances. The metric formulae and evaluation criteria are summarized in Table 3.

Table 3. Model evaluation metrics.

Metrics Evaluation Reference
RMSE e Measures the square root of the average Hyndman and
N squared differences between predicted and ~ Koehler, 2006.
_ lz(yi 52 actual values.
e e Lower values indicate better model
performance.
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1 ¢ The average of the absolute differences Willmott and
MAE = Ezb’i —Jil between predicted and actual values. Matsuura,
=t e Lower values indicate better model 2005.
performance.
100 & y; — 9;| ® Measures the accuracy of a model as a Armstrong,
MAPE = n Z v, | percentage, which can be more 2001.
=1 l interpretable.
e Lower values indicate better model
performance.
e Unlike MAPE, which can be skewed by Hyndman and
very small actual values, SMAPE accounts Koehler, 2006
SMAPE for both the actual and predicted values,
100 |y, — 9 making it symmetric.
T n Z il -l ° SMAPE is expressed as a percentage
=t e Mitigates the impact of small actual values
on the error metric, providing a more
balanced assessment.
o Lower values indicate better model
performance.
RZ 1 Y .(vi — 9% e Represents the proportion of variance in Darlington,
*,(y;—¥)? thedependent variable that can be 1990;
explained by the independent variables. Chicco et al.,
e Values closer to 1 indicate a better fit 2021

*y, and y; representing the actual and predicted value and, y and n standing for the mean of actual value and
number of observations in the dataset, respectively.

Comment 9: The summary of the various data-driven models (Table 3) indicates that the EGB
model is the best-performing. However, the variable importance analysis shown
in Figure 5 highlights only a subset of predictor variables, raising questions about
whether different models utilize different sets of features. Further clarification is
needed.

Response: We appreciate your insightful comment regarding the inconsistencies between the
summary of the various data-driven models in Table 3 (now Table 4) and the variable
importance analysis presented in Figure 5 (now Figure 6). In the earlier version of the
manuscript, the variable importance features with a value of gain below 0.01 were removed
from the plot. To avoid those inconsistencies and make clear all variables, the figure was

updated and reflect all variables used in the updated manuscript depicted below,
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Figure 6. Variable importance for the EGB model.

Specific Comments

Comment 1: Figure 1(b): The y-axis label is missing.

Response: We appreciate this observation that helped us to improve the clarity of Fig 1(b),
which was missing the y-axis. We have corrected this oversight, and the updated Figure 1 now
includes the y-axis label. Figure 1(b) illustrates the boxplot of various rainfall features utilized

in the model. The revised figure is provided below,
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Figure 1. (a) Spatial distribution of landslides in South Korea, (b) temporal variation of rainfall,
i.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D:
Three days rainfall and E: Two weeks rainfall, (c) cumulative frequency distribution
of volume of landslides and (d) box plot of volume of landslides.

Comment 2: In Figure 2, it would be better to use the terms ‘Training and Testing Algorithms’
instead of ‘Run and Test Algorithms’. This terminology more accurately reflects

the standard processes involved in model development.

Response: Thank you for your insightful observation. Figure 2 (now Figure 3) has been updated

in the revised manuscript as follows,
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Figure 3. Workflow for the prediction of volume of landslides due to rainfall.

Comment 3: Line No. 104-107: | recommend that the authors use the acronyms for the different
data-driven models here, as they have already been defined earlier in the
manuscript. Consistent use of these acronyms throughout the manuscript will
improve clarity and readability.

Response: We appreciate the comment regarding the consistency in the use of acronyms in the
manuscript to keep the clarity. The suggested consistency in the use of acronyms was adopted

in the updated manuscript.

Comment 4: Line No. 150-152: ‘Thus, planting vegetation is recommended as a better practice
to improve soil cohesion and prevent potential landslides due to soil root
interaction (Gong et al., 2017; Phillips et al., 2021)’. This is a recommendation,
not a description. Please provide appropriate descriptions.

Response: Thank you for your comment. We understand the misuse of English connectives.
The sentence was modified in the revised manuscript as follows,

“The absence of vegetation allows rainwater to seep away fine topsoil, causing shallow
landslides (Gonzalez-Ollauri and Mickovski, 2017). On the contrary, vegetation improves soil
cohesion and prevents potential shallow landslides due to soil-root interaction (Gong et al.,
2021; Phillips et al., 2021).”
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Comment 5: Why did the authors use 70% of the inventory and 30% for the validation? Why
not 50% for each? The authors should state in the methods section why they used
these percentages. Further, the authors need to clarify whether training and testing
data were chosen randomly or if any specific criteria were used for the analysis.

Response: Thank you for your insightful suggestion. The training and testing were split
randomly to train the model. The 10-fold cross-validation was performed to obtain an optimal
model. This division aligns with common practices in machine learning, where a 70 (training):
30 (test) ratio is frequently used to ensure adequate training data while reserving a sufficient
amount for model testing. In addition, Nguyen et al. (2021) also highlighted that 0.7/0.3 is the
optimal split for the data.

Comment 6: Please review the references cited in the text, as there are frequent errors with the
use of commas and semicolons between references. This issue occurs multiple
times throughout the manuscript and needs correction for proper citation
formatting.

Response: We thank you for pointing out the mis-references in the manuscript. We understand
the concern regarding improper citations, and we carefully read and corrected all

misreferencing.

Comment 7: Chen et al. (2015) is not cited correctly in the text. There are two different articles
by Chen et al. (2015) listed in the references section. The authors need to
distinguish between these references by specifying them as Chen et al. (2015a)
and Chen et al. (2015b). The reference section and citation in the text should be
updated accordingly to reflect these distinctions.

Response: We appreciate the observation regarding the two authors with the same name, and

the correction has been done accordingly, as follows,

Chen, Z., Luo, R., Huang, Z., Tu, W., Chen, J., Li, W., ... and Al, Y. (2015a). Effects of
different backfill soils on artificial soil quality for cut slope revegetation: Soil structure,
soil erosion, moisture retention and soil C stock. Ecological engineering, 83, 5-12.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... and Zhou, T. (2015b).
Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.

Comment 8: Line 133 cites (Kafle, 2022), but this article is either missing from the reference
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section or is not cited correctly. Please verify and ensure that this reference is
properly included and formatted in the reference section.

Response: The citation was mis-referenced. The citation has been corrected to "Kafle et al.
(2022)" and is now properly included and formatted in the reference section of the revised

manuscript.

Kafle, L., Xu, W. J.,, Zeng, S. Y., & Nagel, T. (2022). A numerical investigation of slope
stability influenced by the combined effects of reservoir water level fluctuations and
precipitation: A case study of the Bianjiazhai landslide in China. Engineering Geology,
297, 106508.

Comment 9: Line no 215: Chowdhury (2023)- article not present in the reference section or not
mentioned in the correct form.

Response: Thank you for your comment. The reference has been updated to "Chowdhury et al.
(2023)" in the revised manuscript, and it is now correctly included in the reference section as

follows,

Chowdhury, M. Z. L., Leung, A. A., Walker, R. L., Sikdar, K. C., O’Beirne, M., Quan, H., and
Turin, T. C. (2023). A comparison of machine learning algorithms and traditional
regression-based statistical modeling for predicting hypertension incidence in a
Canadian population. Scientific Reports, 13(1), 13.

Comment 10: Line no 236: (Team, 2022)- article is not present in the reference section or not
mentioned in the correct form.

Response: Thank you for pointing out the citation issue. The reference has been corrected to

"R Core Team (2022)" in the revised manuscript. The updated reference is provided below:

“R core Team (2022). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org/>.”

Comment 11: Line no 239: Jerome et al. (2012)- article not present in the reference section or
not mentioned in the correct form.

Response: We appreciate your observation regarding the mis-reference in line 239 of the
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manuscript concerning Jerome et al. (2012). The reference was updated as “Jerome et al.

(2010)” in the updated manuscript. The updated citation is as follows,

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33, 1-22.
URL:<https://www.jstatsoft.org/v33/i01/>.”

Comment 12: Please verify the unit of soil depth. Most landslide inventories presented in Table
2 and Figure 1(d) suggest that the landslides are shallow-seated based on their
volume distributions; the unit of soil depth does not seem to align with this
observation.

Response: We thank the reviewer for highlighting the mistake in the soil depth unit. The correct
unit for soil depth is centimeters (cm). However, for consistency and clarity, we have

transformed the soil depth data into meters (m) and updated the manuscript accordingly.

Comment 13: | suggest adding a few lines in the discussion section to highlight the practical
applicability of the proposed model. This would provide insight into how the
model can be used in real-world scenarios and its potential impact on practice or

policy.

Response: Thank you for your suggestion regarding the practical applicability of our proposed
model. In the revised discussion section, we included a few lines highlighting how the model
can be utilized in real-world scenarios.

We emphasized that the model’s ability to accurately predict landslide volumes can aid
in disaster risk management by providing timely information for early warning systems.
Additionally, the insights gained from the model can inform land-use planning and policy
decisions, allowing stakeholders to identify high-risk areas and implement mitigation strategies
effectively. By integrating the model into existing monitoring frameworks, agencies can

enhance their response capabilities and better allocate resources during heavy rainfall events.
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