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Manuscript number: nhess-2024-90 

My co-authors and I would like to express our gratitude to the reviewer for his constructive 

feedback and suggestions for strengthening our research. The changes we have made to the 

attached file in response to such feedback and suggestions have been highlighted in blue to 

facilitate their identification. I would also like to offer my apologies for the length of time it 

took us to prepare this response. We also record our deep appreciation for the efficient handling 

of the manuscript. 

Response to Reviewer#1 

General remarks: I am attaching my full comments in the attached PDF. At the same time, I 

am summarizing my general comments here for the editor's perusal. 

This manuscript presents a valuable reflection of data-driven modelling for 

robust regional-scale analyses of landslide masses. The authors deserve commendation 

for their interesting research, which has significant implications for hazard prediction 

and modelling. However, I have some major comments and concerns. While the study 

is promising and of great interest to the landslide community, it requires further work. 

Some aspects of the training and testing regimes are not clear. Furthermore, the choice 

of certain parameters is not well justified which, in my opinion, must be clarified for 

readers to understand the logic of choosing said parameters. The English language, 

particularly in the Introduction, needs improvement. Some sentences read awkwardly 

and are hard to follow. Improved sentence phrasing is necessary to make the 

manuscript clearer, especially for non-native English readers. In my opinion, a major 

revision is required to adapt the manuscript before considering acceptance. 

 

Response: Thank you for your detailed comments and for the recognition of the value of our 

research. We appreciate your commendation and acknowledge the importance of addressing 

your highlighted concerns. In the revised manuscript, we have focused on the aspects of the 

training and testing datasets to enhance understanding, as well as provide a stronger 

justification regarding the choice of predictor variables to ensure the logic is clear to all readers. 

Additionally, we revised the language throughout the entire manuscript to enhanced 

readability.  

 

 

General comments: The problem of landslide volume estimation has been a focus for the 

community for quite some time, through methods such as area-volume scaling, 

geometrical modelling, numerical simulations, and more. This parameter is crucial 

as it helps gauge the magnitude of landslides, particularly at regional scales. Most 

highly accurate methods, like numerical simulations, often struggle at the regional 

scale. This manuscript offers a valuable reflection of data-driven modelling for 

delivering robust regional-scale analyses of landslide masses. Kudos to the authors 
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for this interesting research, which has significant implications for hazard prediction 

and modelling. However, there are some major comments and curiosities I have. I 

believe the study is promising and of great interest to the landslide community, but 

it requires further work. The English language writing can be improved, especially 

in the Introduction. Some sentences read awkwardly and are hard to follow. Sentence 

phrasing must be improved to make the manuscript clearer, particularly for non-

native English readers.  

 

Response: We appreciate the thoughtful feedback and for recognizing the value of our research 

in the context of landslide volume prediction and acknowledgment of the challenges faced by 

highly accurate methods at regional scales, and we appreciate that our data-driven modeling 

approach resonates with the landslide community. We took your concerns regarding the clarity 

of the English language and improved the phrasing and overall readability, particularly in the 

Introduction, to ensure it is accessible to all readers.  

 

Specific major comments:  

 

Comment 1: The Introduction needs to be revisited for editing in both grammar and phrasing 

of the language. Moreover, the motivation for the importance of volume 

quantification appears to be a bit lacklustre. I do not see a geomorphological 

connection as to why volume estimates are important to understand process 

mechanism and kinematics. Although, the manuscript does not explore said 

mechanism and kinematics expressions, however, to build a succinct story, a 

logical connection between the geomorphology and the surface failure should, in 

my opinion, be expressed to highlight why volume estimations are important as it 

directly feeds into the story of hazard prediction moving forward.  

 

Response: Thank you for your insightful comment. We appreciate your suggestion to improve 

both the grammar and phrasing to enhance clarity. We also acknowledge the need to strengthen 

the motivation for volume quantification and its geomorphological significance. In the revised 

manuscript, we emphasized the connection between volume estimates and the understanding 

of process mechanisms, illustrating their importance in the context of hazard prediction. The 

revised Introduction is given below,  

“Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural 

position and slide downward along a slope due to gravity forces. Intense or long-duration 

rainfall infiltrates the soil and increases the pore pressure, resulting in soil saturation that leads 

to slope failure. The saturated soil becomes weak and loses cohesion, and the slope fails when 

rainfall crosses a certain threshold (Bernardie et al., 2014; Martinović et al., 2018; Lee et al., 
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2021). The heavy rainfall saturates a slope and triggers a landslide due to the reduction of the 

soil's shear strength and the increase of pore water pressure (Luino et al.,2022; Chen et al., 

2021; Chatra et al., 2019; Lacerda et al., 2014; Tsai and Chen, 2010;). For example, steep slopes 

with loose soils and even moderate rainfall can lead to the displacement of an enormous 

quantity of soil mass. On the contrary, in slopes with more stable, cohesive soils, the surface 

failure might be smaller (Tsai and Chen, 2010). The rainfall quantity and duration influence the 

volume of the landslides; the higher the intensity and the longer the duration of rainfall, the 

larger the resulting surface failure (Chen et al., 2017; Bernardie et al., 2014; Chang and Chiang, 

2009). The landslide occurrences can also be influenced by human activities that weaken the 

slope, such as excavation at the slope toe and loading caused by construction and land use such 

as agriculture, mining etc. (Rosi et al., 2016). The rapid urbanization activities affect the 

topography through hill cutting, deforestation and water drainage (Rahman et al., 2017); these 

activities disturb the slope structure and change the water flow, which exacerbates the effect of 

landslides in regions where human engineering activities are mostly located (Holcombe et al., 

2016; Islam et al., 2017; Chen et al., 2019).  

To estimate the volume of the soil mass displaceable subsequent to intensive rainfall, is 

essential to set appropriate mitigation strategies to reduce environmental degradation, 

infrastructure damage, casualties, and to establish post-disaster resilience policies to restore the 

socio-economic aspect of communities (Van et al., 2021; Alcántara-Ayala, 2021). This 

quantification of the volume of landslides due to rainfall (VLDR) is essential for effective risk 

management (Tacconi et al., 2020), emergency response, engineering design (Cheung, 2021), 

economic assessment and environmental protection (Alcántara-Ayala and Sassa, 2023). Firstly, 

to manage landslide risk effectively, the quantification of VLDR can be useful for updating 

hazard maps to reflect the scale of potential landslides in various regions to facilitate the 

identification of high-risk zones for monitoring and intervention. In addition, to develop 

mitigation strategies, such as land stabilization measures and land use planning, planners might 

put in place strict construction regulations in particular regions that are susceptible to landslides 

(Mateos et al., 2020). The accurate measurements of VLDR can be used to promote public 

awareness for safety measures and preparedness (Yang and Adler, 2008). Secondly, estimating 

precise VLDR is crucial for structural engineers to design a structure that can withstand 

extreme landslide events. Knowing the exact volume of displaceable material, an engineer can 

set robust stabilization solutions to prevent future occurrences (Dai and Lee, 2001). Moreover, 

the VLDR can help design the drainage system to manage water flow by controlling 
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groundwater and surface runoff to mitigate landslide risks (Dikshit et al., 2019; Kim et al., 

2014). Furthermore, to prepare for emergence responses such as resource allocation, 

evacuation planning, and search and rescue operations, accurate VLDR estimation is necessary 

to ensure efficient implementation (Fan et al., 2019). To allocate resources effectively, the 

volume data is needed to determine the expected number of personnel for evacuation, materials 

sufficient for cleaning up and recovery (Amatya, 2016; Yang and Adler, 2008; Spiker and Gori, 

2003). Further, to establish environmental protection measures such as ecosystem impacts, 

preservation of soil and water quality, and habitat restoration, the estimates of VLDR are 

essential (Pradhan et al., 2022; Li et al., 2022a; Barik et al., 2017).  

To mitigate the economic impacts of landslides, the values of VLDR can be a basis for 

estimation of property damages, which is critical for settling insurance claims and assessment 

of financial impacts on communities and government to facilitate efficient budgeting for 

repairing damaged infrastructure and restoration of affected parts (Klimeš et al., 2017; Dai et 

al., 2002). The prediction of the VLDR can assist in long-term economic planning for landslide 

risk by creating disaster preparedness and recovery funds (Winter and Bromhead, 2012). The 

accurate estimation of the VLDR is an important key for designing strategies for resilience and 

planning for the protection of the inhabitants of a particular region with certain landslide risks 

subjected to a predicted quantity of rainfall (Conte et al., 2022). Consequently, for the safety 

of communities, the selection of infrastructure construction sites must be done in places with 

low landslide risks (Fan et al., 2017). Further, for the protection of crops, the farmland location, 

and other land use activities, accurate landslide prediction taking into account real root causes 

through the analysis of triggering and influencing factors, is crucial to achieve a durable 

landslide safety management system (Paudel et al., 2003; Lee, 2009; Fan et al., 2017; Chen et 

al.,2019; Dai et al., 2019; Alcántara-Ayala, 2021). “ 

 

 

Comment 2: Are the training and testing datasets split randomly with keeping the training data 

fixed or is the split performed geographically? It would be interesting to see a 

geographically split dataset to see how well the model(s) perform due to apparent 

differences in the geological and environmental conditions across the study area.  

 

Response: Thank you for your insightful suggestion, which helped us improve the manuscript. 

In the present study, we opted to split the training and testing data randomly, implementing a 

10-fold cross-validation to obtain an optimal model. This choice was made to balance bias and 
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variance effectively, adhering to a common 70% training and 30% testing split frequently 

employed in machine learning models (Nguyen et al., 2021), which has been shown to be an 

optimal data ratio. 

While a geographically-based split could offer insight into regional variability, it may 

introduce challenges for this study, as landslide occurrences in our dataset are unevenly 

distributed, with about 60% located in the northeast part of the country. Geographically 

splitting this region as the test set would significantly reduce test data size, which could 

compromise model reliability and result in a suboptimal training process. To address regional 

variability without introducing geographic splitting, we incorporated altitude as a predictor 

variable in the model, recognizing that orographic rainfall in higher-altitude regions impacts 

soil saturation and may influence landslide susceptibility differently across regions. This 

approach allows the model to account for environmental differences while maintaining a 

balanced and representative dataset. 

 

Comment 3: One of my main concerns, or rather my curiosity, is regarding the data set itself. 

The volume information, along with the inventory, is particularly noteworthy in 

this case, as most inventories lack volume data. Keeping this in mind, how do the 

authors think about the application of such methods in other areas? Now, the 

authors have created a method that works pretty well within the given region. 

Instead of finding other regions (which might be difficult and time-consuming) 

could the authors simply use the model and predict volumes on similar nearby 

regions where the volumes are not calculated? This could serve as a simple 

prediction example demonstrating the method's application, without requiring 

extensive investigation. This approach is important as it helps the authors extend 

beyond a simple ‘exercise’ of the method, since it is currently applied only in the 

study area. Moreover, this would make the claim in Conclusion, Lines 346-349 

more credible.  

 

Response:  Thank you for your insightful comment. We agree that extending the applicability 

of our model to other regions is a valuable goal. While a comprehensive analysis of other 

regions is beyond the scope of this study, we recognize the potential to apply our model to 

similar regions with similar geological and environmental conditions. 

In the present investigation, we selected a test set treated as unknown data to the model, 

where volume predictions were based solely on predictor variables, and actual volume values 

were used only to evaluate model performance. Our results indicate that the DNN, EGB, GLM, 

and RF models performed well, achieving an R2>0.8. This level of accuracy suggests that the 
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model could provide reliable volume estimates in adjacent areas with comparable input data. 

We have clarified this point in the revised manuscript to highlight the model’s adaptability. 

 

Comment 4: My biggest concern is related to the soil-depth. Now, it is impossible to imagine 

the calculation of volumes without the depth of the material that has failed as that 

is the 3rd volume calculations. It appears that the soil depth was ‘removed’ after 

feature importance analysis for the best performing EGB model. Sure, the depth 

information might not have been that important in this example of model training 

for this region, but I would argue that in other regions, particularly if the region 

contains multiple deep-seated landslides and the failure surface runs deep until 

the bedrock. I am just not convinced that removing soil depth makes sense, as 

geomorphologically, depth (which also relates to soil composition) is very 

important for accurate volume estimation and calculation.  

 

Response: Thank you for the fruitful observation. We agree that soil depth is important in the 

prediction of the volume of landslides due to rainfall. In this study, the average topsoil depth 

was considered, and during the training process, the contribution was minor in the prediction 

of volumes and values below 0.01 were not shown even though those features remained in the 

model. To remove the confusion caused by the absence of those variables with less contribution 

on the variable importance plot and to acknowledge that those variables may be more 

significant in other regions, all variables used to train all models were shown in the updated 

manuscript. The updated figure with its caption in the revised manuscript is depicted below, 

 

Figure 6. Variable importance for the EGB model.  
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Comment 5: Another question is pertaining to the type of failure movement. The inventory 

contains multitude of information but what about the movement types of the 

landslides? What types of landslides are considered in the inventory? Because 

clearly shallow and deep landslides would require separate treatments when looking 

at volume predictions because the material composition, material type, and material 

depths would be tremendously different. Do the authors combine these landslides 

together? What is the proportion of these landslide types? Also, are there prevalent 

debris flows, because volumes of debris flows is another story altogether since 

entrained volumes due to channelization are different than surface failure volumes. 

I see that the Discussion can be improved a lot by addressing and discussing these 

topics and limitations.  

 

Response: We appreciate the reviewer’s insightful comments. We agree that landslide 

movement types are critical for accurate volume predictions, as they exhibit distinct failure 

mechanisms, material properties, and depositional patterns. As the reviewer correctly noted, 

our initial dataset contained a variety of landslide types. Upon further examination, we 

identified that the majority of landslides in our study area were shallow, translational slope 

failures. Only one deep-seated landslide, with an approximate volume of 33,000 m³, was 

included in the inventory. As observed in prior studies, shallow translational slides are common 

in granite areas of Korea due to uniform weathering profiles, while metamorphic regions tend 

to experience larger debris flows due to steeper slopes and irregular weathering profiles (Kim 

and Chae, 2009). Kim et al. (2001) further noted that in north and northwest part of the country, 

most landslides are classified as debris flows, though their initiation points often exhibit 

characteristics of translational slides. Recognizing that shallow and deep-seated landslides 

exhibit different material properties, failure mechanisms, and volumetric characteristics, we 

have removed this deep-seated landslide from our analysis to ensure consistency and relevance 

to our study objectives. We have therefore focused our analysis on this dominant type, as it 

represents the primary landslide hazard in the region.  

This manuscript contains exclusively shallow-seated landslides with volumes below 

13,000m³ with topsoil depth varying between 0.2m and 1m. We have updated the methodology 

and analysis sections to clarify that our dataset only includes shallow-seated landslides. 

Additionally, the Discussion section now addresses this limitation, acknowledging that the 

exclusion of deep-seated landslides and debris flows may affect the generalizability of our 

findings to other landslide types. This improvement aligns with the study’s focus on shallow 

landslides, allowing for a more accurate assessment of volume predictions within this specific 
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landslide type. We have also noted in the Discussion that future studies would benefit from 

separate analyses of deep-seated landslides and debris flows, given the unique volumetric and 

channelization characteristics of debris flows. 

 

Comment 6: The Discussion section is oriented quite too much on the aspects of the different 

models, conditioning factors, and their roles in the prediction of the volumes. As 

I mentioned in my previous comment, not much is discussed on the practical 

questions of scalability, different modes of movements, soil depths, runout 

volumes of entrained materials etc. These are essential topics as the direct 

counterpart of statistical models, i.e., numerical models tend to answer these 

questions. So, a comparison with the literature in that order is missing which I 

believe would add new levels of arguments to put forward by the authors and 

cement why their method works well despite lacking/following physical laws.  

 

Response: This study aim was to construct a data-driven algorithm that predicts the volume of 

landslides due to rainfall. The result of nine different tested algorithms revealed a tremendous 

difference between classical regression models (OLS, RR, and GLM) and other data-driven 

machine learning models. In this study, apart from SVM regression, DT and KNN, other 

machine learning models (DNN, DT, RF, and EGB) exhibited high prediction capability with 

R2 above 50%. Further, to understand the applicability of the developed models, the trained 

model was tested using unknown data, with volume predictions generated solely based on the 

predictor variables; actual volume values were utilized only for evaluating model performance. 

We found that the DNN, EGB, GLM, and RF models achieved R2>0.8, indicating that the 

model could yield reliable volume estimates in adjacent areas with similar geological and 

environmental conditions. It was noted that the numerical models and machine learning 

approach mostly used for the landslide volume estimation depend on landslide geometry 

(Leong and Cheng, 2022; Do et al., 2017; Shirzadi et al., 2017). As or our knowledge, none of 

the ML models used to predict volume of landslides using multiple predictors (such as, 

geological, topographical, geomorphological, soil, vegetation, and rainfall factors) on large 

scale. Therefore, the direct comparison with result of existing numerical and statistical models 

that solely depend on geometrical features of landslide (such as, surface area or runout length) 

is out of the scope of this investigation.  

 

Comment 7: In Table 1, under Geomorphology, the feature “erosion” is presented. Now, 

erosion itself can be referred to the volume, which is the main variable that the 

authors are trying to estimate. So, how is this variable used in the training regime? 
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Or is this erosion feature different than the output of volume? Also, there are 

summary statistics of the erosion under Table 2. Why is that? My concern is that the 

authors are not clear as to what ‘erosion’ refers to in the data-driven model construct. 

If it is in fact similar to volumes, then the predictor variable and output variables are 

more or less the same. This needs further in-dept clarification.  

 

Response: We appreciate the reviewer comment regarding the confusion originating from the 

use of ‘erosion’ as a predictor variable. We agreed that the term may have caused confusion. 

In the preprint, the feature named 'erosion' was incorporated as a categorical variable 

with 'Yes' and 'No' values, indicating whether minor erosion events (such as gradual surface 

degradation due to wind or water) occurred prior to the landslide event. This differs from the 

volume variable, which is our dependent variable and represents the total mass of displaced 

material due to a landslide. Importantly, volume was not used as a predictor in the model; 

rather, it serves solely as the target output. To avoid ambiguity, we have removed the 'erosion' 

variable from the predictor variable list in Table 1 and accordingly updated Table 2 in the 

revised manuscript.  

 

Table 2: Summary statistics continuous variables.  

Variable units N Min Mean Median Max Std dev 

Max Hourly rain  mm 455 0 48 48 78 20 

Continuous rainfall mm 455 0 285 327 550 106 

Three hours rainfall  mm 455 0 88 80 171 60 

Twelve Hours rainfall mm 455 0 150 99 447 95 

One day rainfall mm 455 0 202 162 538 112 

Three days rain mm 455 0 280 284 550 86 

Seven days rain mm 455 0.5 323 330 634 88 

Two weeks rain mm 455 0.5 385 400 663 90 

Three weeks rain mm 455 86 504 533 914 115 

Four weeks rain mm 455 108 587 561 1135 160 

Soil depth m 455 0.2 0.6 0.75 .75 0.19 

Soil type  - 455 1.5 1.6 1.5 1.7 0.087 

Timber diameter m 455 0.15 0.27 0.23 0.35 0.086 

Age of tree  Years 455 10 34 35 60 14 

Slope length m 455 1.8 21 13 180 23 

Slope angle Degree (o) 455 10 34 34 65 7.9 

Altitude  m 455 9 391 272 1324 273 

 

Comment 8: Table 1: Descriptions should be written properly for each feature/variable. At the 

moment, the descriptions read more like a summary of the sub-groups, written 
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altogether. Please provide descriptions individually for each feature properly. For 

example, Slope angle, slope aspect, and slope length are all written in one 

statement. Make them three individual statements to make it clearer to understand. 

Also, the descriptions are not clear enough. For volume landslide due to rainfall”. 

This is not a description. It is a reasoning to justify a claim. Please provide 

appropriate descriptions.  

 

Response: Thank you for your comment. We have updated Table 1 to enhance clarity by 

providing separate descriptions for each feature. Each description is now specific to the 

individual feature, detailing its relevance to landslide volume estimation. While rainfall 

parameters, such as rainfall on the day of the event and rainfall in prior days were grouped, as 

they represent related precipitation metrics, all other features have been distinctly separated. 

The revised version of Table 1, with improved feature descriptions, is shown below. 

 

Table 1. Landslide influencing and triggering factors. 

Group Features Description Reference 

V
eg

et
at

io
n

 

Fire history 

The burning of the vegetation intensifies the 

mass movement of soil near the uncovered 

burned stem of trees and free movement on 

uncovered soil due to post-fire rainfall and 

storms. The sliding may also be due to loss of 

vegetation, altered soil property and structure, 

which lead to soil degradation and infiltration 

which increase pore pressure, and change in 

hydrology by concentrating water flow in places 

that exacerbate landslides. 

Highland and 

Bobrowsky, 

2008; Culler 

et al., 2021; 

Hyde et al., 

2016; Stoof 

et al., 2012 

Age of tree 

Mature forests have more resistance to shallow 

landslides due to highly developed roots, which 

improve soil cohesion and leaves that prevent 

direct contact of raindrops with the soil surface. 

Sato et al., 

2023; Lann 

et al., 2024 

Forest density 

The presence of forest reduces the likelihood of 

landslides about three times compared to 

grassland. Grassland has been revealed to be 

three times more vulnerable to shallow 

landslides than broadleaf and, coniferous and in 

secondary forests. 

Lann et al., 

2024; 

Greenwood 

et al., 2004; 

Turner et al., 

2010; 

Scheidl et al., 

2020; Asada 

et al., 2023 

Timber Tree spacing and size had been used to Cohen and 
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Group Features Description Reference 

diameter (m) investigate the effect of root and tree in shallow 

landslide control. The high root density 

generally enhances slope stability, and specific 

tree placement and root sizes between 5 to 20 

mm are effective in landslide prevention. 

Schwarz., 

2017; Wang 

et al., 2016 

G
eo

m
o
rp

h
o
lo

g
y

 

Drainage 

The drainage has a significant effect on the 

slope stability and promotes the efficient control 

of the influence of rainfall on the ground water 

fluctuation. The presence of drainage increases 

the threshold of landslides due to rainfall. 

Yan et al., 

2019; Sun et 

al., 2010 ; 

Wei et al., 

2019 ; Korup 

et al., 2007 

Slope angle 

(degree) 

The steeper slopes have lower presence of 

landslide due to low transportable materials. 

Slopes between 20-40 degrees are most 

vulnerable to greater landslides as rainfall 

intensity and duration increase. Here, we 

considered the average angle of the terrain at the 

landslide location, which provides valuable 

insight into the region's overall steepness and 

geomorphic characteristics, which are crucial 

factors influencing landslide susceptibility and 

risk modeling. 

Duc, 2013 ; 

Qiu et al., 

2016 ; 

Donnarumma 

et al., 2013 

Slope aspect 

The effect of rainfall on slope differs by slope 

angle and slope aspect  which lead to unevenly 

distributed occurrence of landslides. 

Panday and 

Dong, 2021; 

Cellek, 2021 

Slope length 

(m) 

The volume increases as the slope length 

increases. There exists a complex interplay 

between rainfall, length of slope and slope angle 

on the occurrence of landslides. 

Turner et al., 

2010 

Soil depth (m) 

Soil properties, depth, and texture have 

significant differences in infiltration rates, 

which have different influences on the 

occurrence of landslides. 

Kitutu et al., 

2009; 

McKenna et 

al., 2012 

Soil type 

Higher rainfall intensity affects the occurrence 

of landslides differently, particularly in certain 

soil types that have shorter saturation and failure 

times.  

Liu et al., 

2021 

L
o
ca

ti
o
n

 

Altitude 

Regional variability of elevation and mountain 

steepness affect the quantity of rainfall and 

associated landslides. 

Hyun et al, 

2010, Yoon 

and  Bae, 

2013; Park, 



12 

 

Group Features Description Reference 

2015 Um et 

al., 2010 

 

Maximum 

hourly rainfall 

The rainfall infiltrates the slope and increases 

pore water pressure that reduces soil shear 

strength, which leads to soil saturation that 

causes surface failure. 

Wieczorek, 

1987;  

Dai and Lee, 

2001; Smith 

et al., 2023 

 

R
ai

n
fa

ll
 

Continuous 

rainfall 
Sudden intense rainfall concentrated in short 

periods of time is responsible for shallow 

landslide and debris flow. 

Zhang et al., 

2019 

Three hours 

rainfall 
 

Three days 

rainfall 

The antecedent rainfalls increase moisture in 

the soil and weaken soil cohesion.   

Ran et al., 

2022 Zhang 

et al., 2019 ; 

Bernardie et 

al., 2014; 

Chen et al., 

2015a; 

Gariano et 

al., 2017 

Two weeks 

rainfall 

Four weeks 

rainfall 

 

 

Comment 9: Lines 311-312: It would be nice explain why the random forest works well with 

smaller volumes. The connection between the machine learning predictions and 

the scale of the estimated volumes should be explained more intricately to provide 

a grounded understanding. Does the EGB model predict larger volumes more 

accurately than the rest, like Random Forest? If so, then why? Please explain these 

aspects.  

 

Response: Thank you for your insightful comment. Random Forest tends to perform well with 

smaller volumes due to its ability to capture complex relationships and interactions in the data 

without overfitting. RF uses multiple decision trees as base models, builds each tree on a 

random subset of samples and features, and computes averages as predictions to get the final 

result (Breiman, 2001). The model’s random sampling of both observations and features allows 

it to build diverse trees; this enhances the generalization capabilities, particularly when the 

dataset is small. This characteristic helps the RF to maintain accuracy by reducing variance. It 

was noticed that the difference between of R2 on training and testing sets was small compared 

to other models. 
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In contrast, the EGB model may predict larger volumes more accurately because it 

employs an iterative process to improve predictions. It uses a decision tree as the base model 

and builds them sequentially in such a way that each new tree corrects prediction errors made 

by previous trees using gradient descent, allowing for fine-tuning of predictions over iterations 

and to minimize loss functions effectively (Chen and Guestrin, 2016). This iterative correction 

can capture complex patterns in larger datasets that may not be evident in smaller ones. The 

fact that the RF predictions are averages of multiple decision trees may cause the difference 

since predicting averages will be less than predictions produced sequentially (Sagi and Rokach, 

2018). 

Furthermore, as volume size increases, the relationships between features can become 

more intricate, and EGB’s ability to handle these complexities may lead to superior 

performance in those scenarios. However, Random Forest remains advantageous when data is 

scarce because it is less prone to overfitting compared to some boosting methods, which may 

struggle with limited data. A clear understanding of these dynamics provides valuable insights 

into the varying performance of different models across different volume scales, emphasizing 

the importance of choosing the right algorithm based on dataset characteristics. This has been 

highlighted in the discussion section of the revised manuscript. 

 

 

Minor comments:  

 

Comment 1: Line 31: “high”, should be “height”.  

 

Response: Thank you for your observation. The identified error has been corrected in the 

revised manuscript. The entire sentence has been modified as,  

“Landslides due to rainfall are phenomena that dislocate a mass of soil from its natural position 

and slide downward along a slope due to gravity forces.” 

 

Comment 2: Line 36: “resulting volume of landslides”. Change this to “resulting surface 

failure”.  

 

Response: We have made the modification in the revised manuscript, replacing "resulting 

volume of landslides" with "resulting surface failure" for improved clarity. 
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Response 3: Line 38: “fragilize”. Not sure if such a word is used commonly to express the 

weakening of slopes. I'd rather opt for 'weaken'.  

 

Response: Thank you for your suggestion. Accordingly, we have replaced "fragilize" with 

"weaken" in the revised manuscript. 

 

Comment 4: Similar English issues are found in Section 2 (Study area). Please address the 

language issues.  

 

Response: Thank you for the fruitful suggestion and observations. We have addressed the 

language issues throughout the entire manuscript, including the Study Area section. The 

modification made in the study area section is reflected in the text below: 

“The region for testing the model is South Korea, characterized by mountainous (63% 

of total land) relief, especially in the eastern part of the country (Lee et al., 2022). South Korea 

is located on the southern part of the Korean Peninsula, bordered by the Yellow Sea to the west 

coast and the East Sea (Sea of Japan) to the East. According to the Korean Meteorological 

Administration (2020), the country has a temperate climate characterized by four distinct 

seasons: hot and humid summers, cold winters, and springs and falls with moderate 

temperatures. The annual rainfall ranges between 1000 mm to 1400mm and 1800mm for the 

central region and southern region, respectively (Jung et al., 2017; Alcantara and Ahn, 2020). 

During the summer, heavy rainfall from June to September leads to significant surface runoff, 

increases landslide risk, and causes approximately 95% of all landslides each year (Lee et al., 

2020; Park and Lee, 2021). In addition, the landslides may be aggravated by typhoons, which 

mostly occur in August and September, and it is anticipated that frequency will increase due to 

climate change (Kim and Park, 2021). The rainfall trend analysis from 1971 to 2100 predicted 

the increase in rainfall of 271.23mm, which indicates the growing risk of landslides associated 

with climate change (Lee, 2016). Temperature variations are influenced by its geographical 

location, the average summer temperatures range between 25 and 30°C, while winter 

temperatures can drop to -10°C in some parts of the country (Korea Meteorological 

Administration, 2020). The South Korean geologically is mainly composed of granitic and 

metamorphic rocks, such as gneiss, schist, and granite, which influence the stability of the 

landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, river 

valleys, and coastal plains, with the Taebaek Mountains running along the eastern edge (Kim 

et al., 2020). In addition, the influence of rainfall, environmental, geomorphology, and 
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geological factors increase the vulnerability to landslides across the country, especially in the 

northeastern mountainous region, as depicted in Figure 1. 

The predominant soil types in South Korea include clay, sandy, and loamy soils, each 

with different characteristics affecting water infiltration, retention and erosion (Kang et al., 

2022; Lee et al., 2023). Clay soils, being more stable, can become highly saturated, increasing 

landslide risk during heavy rains. On the other hand, sandy soils are more prone to shallow 

landslides due to fast saturation, leading to instability. Regions with steep topography and 

poorly consolidated soil (loose) are mostly at risk, especially after prolonged rainfalls (Kim et 

al., 2015). 

Coastal areas are exposed to sea-level rise and coastal erosion, which can further 

complicate the landscape and increase landslide susceptibility. The combination of heavy 

summer rainfall, geological composition, and geomorphological factors makes South Korea 

particularly vulnerable to shallow landslides. Thus, continuous monitoring and research are 

vital to understand the complex interactions between climate, geology, soil types, and landslide 

occurrences in this region (Park, 2022). Understanding the combination of environmental, 

geological stability, and geomorphological features is crucial for developing effective disaster 

management strategies and enhancing public safety in landslide-prone areas. As climate change 

continues to impact rainfall patterns, South Korea faces ongoing challenges in mitigating 

landslide risks and protecting vulnerable communities.” 

 

Comment 5: Figure 2. Font size of plot (b) is different than the rest, and also stretched. Please 

make all font sizes uniform.  

Response: Thank you for your suggested improvements. Figure 2 (now Figure 3), titled 

“Workflow for the Prediction of Volume of Landslide Due to Rainfall,” has been revised to 

ensure uniform font sizes throughout the plot. The updated figure is provided below, 
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Figure 3. Workflow for the prediction of the volume of landslides due to rainfall. 

 

Comment 6: Line 111: Replace ‘joined’ with ‘combined’.  

 

Response: Thank you for your comment. As suggested, the term "joined" has been replaced 

with "combined" in the revised manuscript. 

 

Comment 7: Line 128: “flown away”? I am not sure if using this term is accurate. Generally, 

we refer to them as “removed material” from the surface. Can you please double-

check this?  

 

Response: Thank you for your valuable comment. The suggested modifications were 

incorporated in the revised manuscript as,   

“The estimation of the volume of removed material by landslides is important as it helps to 

assess risks the estimated damage can cause down at the toe of the failed slope, such as blocking 

transportation network, burying crops or farmland, the damage-built environment near 

landslide risks area, and post-disaster recovery planning (Evans et al., 2007; Rotaru et al., 2007; 

Intrieri et al., 2019).” 

 

Comment 8: Is the slope angle the average angle of the terrain where the landslide was located 

or is the angle of reach? In my opinion, the angle of reach would make more sense 

as landslides that are closer to each other will exhibit different angles of reach but 

the same adjacent landslides would bear the same average slope angle as you are 
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averaging based on the terrain. Please make it clear as to which one you have 

considered and why.  

 

Response: Thank you for your comment. The slope angle referenced in the manuscript pertains 

to the average angle of the terrain at the landslide location. This measurement provides valuable 

insight into the overall steepness and geomorphic characteristics of the area, which are crucial 

factors influencing landslide susceptibility and risk modeling (Donnarumma et al., 2013). On 

the other hand, the angle of reach refers to the angle at which a landslide material travels after 

detaching from the slope, which is important for assessing mobility and potential impact 

(Corominas, 1996). However, this is a different metric and not the focus of our analysis. While 

the angle of reach considers the mobility of landslides, the average slope angle is critical for 

assessing the risk of landslide occurrence. We acknowledge your point regarding the 

differences in angle of reach among closely situated landslides, but in our study, the average 

slope angle is more relevant for evaluating landslide volume. We have clarified this distinction 

in the revised manuscript (Table 1) to ensure a better understanding. 

 

 

Comment 9: Line 136: What do you mean by ‘composing material’? This is not clear.  

 

Response: Thank you for your insightful comment. The term "composing material" refers to 

soil composition properties, which significantly impact slope stability. These properties, 

including soil permeability indices, influence water infiltration and saturation levels, both of 

which are critical factors in landslide susceptibility (Chen et al., 2015a). The revised sentence 

is as follows, 

“The slope stability depends on soil composition properties, including soil permeability indices 

that affect water infiltration and saturation level (Chen et al., 2015a).” 

 

Comment 10: Lines 140-142: Please check the English grammar here. The sentence can be 

improved a lot.  

Response: Thank you for your comment. We revised the sentence in the updated manuscript. 

Additionally, we conducted a thorough review of the manuscript to identify and correct similar 

issues throughout. 

 

Comment 11: Line 341: Change to “Among the tested models,”  
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Response: Thank you for your comment. The sentence has been modified in the revised 

manuscript as, 

“Among the tested models, extreme gradient boosting (EGB) produced the most accurate 

prediction.” 

 

Comment 12: Conclusion- Line 349: Change from “can be a better tool” to “can be a good 

tool”.  

Response: Thank you for your comment. As suggested, the sentence has been revised in the 

updated manuscript as, 

“Therefore, this model can be a good tool for planning for resilience and infrastructure pre-

construction risk assessment to ensure the new infrastructure is placed in stable regions free 

from severe landslides.” 
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Response to Reviewer #2 

General remarks 

Comment 1: In the introduction, the authors should explain more about why volume 

estimations are crucial for understanding and managing landslide hazards. 

 

Response: Thank you for your valuable comment. As suggested, we have revised the 

introduction to highlight the critical role of landslide volume estimations in understanding and 

managing landslide hazards. The revised section of the introduction is provided below. 

“To estimate the volume of the soil mass displaceable subsequent to intensive rainfall, 

is essential to set appropriate mitigation strategies to reduce environmental degradation, 

infrastructure damage, casualties, and to establish post-disaster resilience policies to restore the 

socio-economic aspect of communities (Van et al., 2021; Alcántara-Ayala, 2021). This 

quantification of the volume of landslides due to rainfall (VLDR) is essential for effective risk 

management (Tacconi et al., 2020), emergency response, engineering design (Cheung, 2021), 

economic assessment and environmental protection (Alcántara-Ayala and Sassa, 2023). Firstly, 

to manage landslide risk effectively, the quantification of VLDR can be useful for updating 

hazard maps to reflect the scale of potential landslides in various regions to facilitate the 

identification of high-risk zones for monitoring and intervention. In addition, to develop 

mitigation strategies, such as land stabilization measures and land use planning, planners might 

put in place strict construction regulations in particular regions that are susceptible to landslides 

(Mateos et al., 2020). The accurate measurements of VLDR can be used to promote public 

awareness for safety measures and preparedness (Yang and Adler, 2008). Secondly, estimating 

precise VLDR is crucial for structural engineers to design a structure that can withstand 

extreme landslide events. Knowing the exact volume of displaceable material, an engineer can 

set robust stabilization solutions to prevent future occurrences (Dai and Lee, 2001). Moreover, 

the VLDR can help design the drainage system to manage water flow by controlling 

groundwater and surface runoff to mitigate landslide risks (Dikshit et al., 2019; Kim et al., 

2014). Furthermore, to prepare for emergence responses such as resource allocation, 

evacuation planning, and search and rescue operations, accurate VLDR estimation is necessary 

to ensure efficient implementation (Fan et al., 2019). To allocate resources effectively, the 

volume data is needed to determine the expected number of personnel for evacuation, materials 

sufficient for cleaning up and recovery (Amatya, 2016; Yang and Adler, 2008; Spiker and Gori, 

2003). Further, to establish environmental protection measures such as ecosystem impacts, 
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preservation of soil and water quality, and habitat restoration, the estimates of VLDR are 

essential (Pradhan et al., 2022; Li et al., 2022a; Barik et al., 2017).  

To mitigate the economic impacts of landslides, the values of VLDR can be a basis for 

estimation of property damages, which is critical for settling insurance claims and assessment 

of financial impacts on communities and government to facilitate efficient budgeting for 

repairing damaged infrastructure and restoration of affected parts (Klimeš et al., 2017; Dai et 

al., 2002). The prediction of the VLDR can assist in long-term economic planning for landslide 

risk by creating disaster preparedness and recovery funds (Winter and Bromhead, 2012). The 

accurate estimation of the VLDR is an important key for designing strategies for resilience and 

planning for the protection of the inhabitants of a particular region with certain landslide risks 

subjected to a predicted quantity of rainfall (Conte et al., 2022). Consequently, for the safety 

of communities, the selection of infrastructure construction sites must be done in places with 

low landslide risks (Fan et al., 2017). Further, for the protection of crops, the farmland location, 

and other land use activities, accurate landslide prediction taking into account real root causes 

through the analysis of triggering and influencing factors, is crucial to achieve a durable 

landslide safety management system (Paudel et al., 2003; Lee, 2009; Fan et al., 2017; Chen et 

al.,2019; Dai et al., 2019; Alcántara-Ayala, 2021). ” 

 

Comment 2: The literature review section should be expanded to incorporate more recent 

studies on landslide volume prediction models, providing a comprehensive 

overview of the current state of research in this field. 

 

Response: We appreciate this suggestion. We have done an extensive literature review to 

include recent studies on landslide volume prediction models, offering a more comprehensive 

overview of the current state of research in this field. Accordingly, the literature review section 

in the introduction has been updated as, 

 

“The prediction of VLDR has gained the interest of many researchers to understand the 

mechanism and interaction between triggering and aggravating factors. Saito et al. (2014) 

studied the relationship between rainfall-triggered landslides to test whether the volume of 

landslides across Japan that occurred between 2001 and 2011 can be directly predicted from 

rainfall metrics. The findings revealed that larger landslides occurred when rainfall exceeded 

certain thresholds, but there were significant discrepancies between peaks of rainfall metrics 

and maximum landslide volumes, and the total rainfall was the suitable predictor of landslides. 
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Dai and Lee (2001) established the frequency-volume relation for landslides in Hong Kong and 

noticed that the relation for shallow landslides above 4m3 followed the power law. The 12-hour 

rolling rainfall contributed most to the prediction of the volume of landslides. Ju et al. (2023) 

constructed an area-volume power law model for the estimation of the volume of landslides 

using high-resolution LiDAR data collected between 2010 and 2020 in Hong Kong. The aim 

was to estimate accurately the volume of landslides on small-scale landslides. The reliance on 

localized datasets limits the model's applicability in regions with different geological settings, 

and the model does not consider all variabilities of landslide characteristics. Razakova et al. 

(2020) calculated landslide volume using remote sensed data with the aim of assessing the 

efficiency of aerial photographs in environmental impact assessment and ground-based 

measurement. The study did not take into account the effect of vegetation and topography and 

only focused on a single landslide case, which may be a source of bias due to differences in 

soil composition and environmental factors. Hovius et al. (1997) analyzed multiple sets of 

aerial photos and frequency-magnitude relation for landslides in New Zealand. The finding 

pinpointed that the landslides frequency-magnitude followed power law and infrequent large 

magnitude contributed to the landscape change. The study also noticed the importance of soil 

composition in the size of the landslides. This work had a limitation due to the reliance on 

aerial photos only, which cannot provide accurate measurement in regions of dense forest, and 

the climatic conditions, which are landslide triggering factors, were not considered, and this 

may affect the generality of the findings. Guzzetti et al. (2008) applied statistical methods on 

regional landslide inventories and antecedent rainfall data ranging between 10 min to 35 days. 

The findings revealed that the slope angle and soil type significantly influence landslide volume 

estimates, and the rainfall intensity is more important than duration. Chatra et al., 2019) applied 

numerical methods to study the effect of rainfall duration and intensity on the generation of 

pore pressure in the soil; the finding revealed a higher instability in loose soil compared to 

medium soil slopes. The work only treated the interaction of soil and rainfall without 

considering the environmental factors and human activity, which might also influence mass 

failure. Recently, the application of GIS technologies has been increasing in the identification 

of regions susceptible to landslides (landslide zonation) (Chen and Zhang, 2021; Gutierrez-

Martin, 2020; Li et al., 2022b). These methods are essential in emergency management because 

they provide a general overview of zones with a higher probability of landslide occurrence; 

however, they do not put emphasis on the determination of the approximate value of the volume 

of failing mass in relation to excessive rainfall events.” 
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Comment 3: The study area section should be enhanced with more detailed information on 

landslide-triggering factors. Additionally, it would be beneficial to incorporate a 

figure showing representative rainfall characteristics prior to the recorded 

landslide events in different parts of the Korean Peninsula. This would help 

better understand the unique rainfall patterns of the region responsible for 

landslides. 

 

Response: We appreciate this fruitful comment. As recommended, we have included a rainfall 

plot within the data subsection in the revised manuscript to ensure logical coherence. 

Furthermore, we have combined the study area and data into a single section with two 

subsections for improved clarity. The updated information on the study area and the figure 

illustrating the rainfall characteristics prior to the recorded landslide events are provided below, 

“The region for testing the model is South Korea, characterized by mountainous (63% 

of total land) relief, especially in the eastern part of the country (Lee et al., 2022). South Korea 

is located on the southern part of the Korean Peninsula, bordered by the Yellow Sea to the west 

coast and the East Sea (Sea of Japan) to the East. According to the Korean Meteorological 

Administration (2020), the country has a temperate climate characterized by four distinct 

seasons: hot and humid summers, cold winters, and springs and falls with moderate 

temperatures. The annual rainfall ranges between 1000 mm to 1400mm and 1800mm for the 

central region and southern region, respectively (Jung et al., 2017; Alcantara and Ahn, 2020). 

During the summer, heavy rainfall from June to September leads to significant surface runoff, 

increases landslide risk, and causes approximately 95% of all landslides each year (Lee et al., 

2020; Park and Lee, 2021). In addition, the landslides may be aggravated by typhoons, which 

mostly occur in August and September, and it is anticipated that frequency will increase due to 

climate change (Kim and Park, 2021). The rainfall trend analysis from 1971 to 2100 predicted 

the increase in rainfall of 271.23mm, which indicates the growing risk of landslides associated 

with climate change (Lee, 2016). Temperature variations are influenced by its geographical 

location, the average summer temperatures range between 25 and 30°C, while winter 

temperatures can drop to -10°C in some parts of the country (Korea Meteorological 

Administration, 2020). The South Korean geologically is mainly composed of granitic and 

metamorphic rocks, such as gneiss, schist, and granite, which influence the stability of the 

landscape (Jung et al., 2024). The geomorphology is characterized by rugged mountains, river 
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valleys, and coastal plains, with the Taebaek Mountains running along the eastern edge (Kim 

et al., 2020). In addition, the influence of rainfall, environmental, geomorphology, and 

geological factors increase the vulnerability to landslides across the country, especially in the 

northeastern mountainous region, as depicted in Figure 1. 

The predominant soil types in South Korea include clay, sandy, and loamy soils, each 

with different characteristics affecting water infiltration, retention and erosion (Kang et al., 

2022; Lee et al., 2023). Clay soils, being more stable, can become highly saturated, increasing 

landslide risk during heavy rains. On the other hand, sandy soils are more prone to shallow 

landslides due to fast saturation, leading to instability. Regions with steep topography and 

poorly consolidated soil (loose) are mostly at risk, especially after prolonged rainfalls (Kim et 

al., 2015). 

Coastal areas are exposed to sea-level rise and coastal erosion, which can further 

complicate the landscape and increase landslide susceptibility. The combination of heavy 

summer rainfall, geological composition, and geomorphological factors makes South Korea 

particularly vulnerable to shallow landslides. Thus, continuous monitoring and research are 

vital to understand the complex interactions between climate, geology, soil types, and landslide 

occurrences in this region (Park, 2022). Understanding the combination of environmental, 

geological stability, and geomorphological features is crucial for developing effective disaster 

management strategies and enhancing public safety in landslide-prone areas. As climate change 

continues to impact rainfall patterns, South Korea faces ongoing challenges in mitigating 

landslide risks and protecting vulnerable communities.” 
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Figure 1. (a) Spatial distribution of landslides in South Korea, (b) temporal variation of rainfall, 

i.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D: 

Three days rainfall and E: Two weeks rainfall, (c) cumulative frequency distribution 

of volume of landslides and (d) box plot of volume of landslides. 
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Figure 2. (a-f) Histograms of rainfall data, and (g) the scatter plot showing the variation of 

landslide volumes with respect to slope aspect, fire history and altitude. 

 

 

Comment 4: Figure 2 needs to be updated. In the predictor variables, the authors should clearly 

specify which factors are influencing factors and which are triggering factors. 

 

Response: Thank you for this observation. We agreed with the reviewer that the workflow had 

some missing information. Accordingly, the workflow figure was updated to reflect the 

reviewer’s comment, and the model training and testing part was restructured to make it clearer. 

The updated Figure 3 (previously Figure 2 in the pre-print) is provided below, 
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Figure 3. Workflow for the prediction of the volume of landslides due to rainfall. 

 

 

Comment 5: A more detailed discussion of the input variables considered for volume prediction 

is required to better understand their roles as influencing and triggering factors. 

Additionally, the manuscript should provide further justification for the selection 

of these predictor variables. 

 

Response: Thank you for your insightful comment. The details about the input variable are 

summarized in the data part of the manuscript, and Table 1 provides the reference justifying 

the reason for considering the stated feature as an input variable of the model. Accordingly, we 

have thoroughly revised section 2.2 (i.e., Data) in the revised manuscript as follows, 

The landslide inventory dataset contains 450 landslide record information from 2011 to 

2012, collected from different locations in South Korea by Korean Forest Services. This dataset 

tabulates information on landslide geometry, such as runout length, width, depth, and volume 

of the affected area, along with geomorphological composition, vegetation, and antecedent 

rainfall prior to landslide events. The details regarding landslide predisposing and triggering 

factors are summarized in Table 1.  

 

Table 1. Landslide influencing and triggering factors. 

Group Features Description Reference 

V
eg

et
at

io

n
 

Fire history 

The burning of the vegetation intensifies the 

mass movement of soil near the uncovered 

burned stem of trees and free movement on 

Highland and 

Bobrowsky, 2008; 

Culler et al., 2021; 
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Group Features Description Reference 

uncovered soil due to post-fire rainfall and 

storms. The sliding may also be due to loss of 

vegetation, altered soil property and structure, 

which lead to soil degradation and infiltration 

which increase pore pressure, and change in 

hydrology by concentrating water flow in 

places that exacerbate landslides. 

Hyde et al., 2016; 

Stoof et al., 2012 

Age of tree 

Mature forests have more resistance to shallow 

landslides due to highly developed roots, 

which improve soil cohesion and leaves that 

prevent direct contact of raindrops with the 

soil surface. 

Sato et al., 2023; 

Lann et al., 2024 

Forest density 

The presence of forest reduces the likelihood 

of landslides about three times compared to 

grassland. Grassland has been revealed to be 

three times more vulnerable to shallow 

landslides than broadleaf and, coniferous and 

in secondary forests. 

Lann et al., 2024; 

Greenwood et al., 

2004; Turner et al., 

2010; Scheidl et 

al., 2020; Asada et 

al., 2023 

Timber 

diameter (m) 

Tree spacing and size had been used to 

investigate the effect of root and tree in 

shallow landslide control. The high root 

density generally enhances slope stability, 

and specific tree placement and root sizes 

between 5 to 20 mm are effective in landslide 

prevention. 

Cohen and 

Schwarz., 2017; 

Wang et al., 2016 

G
eo

m
o
rp

h
o
lo

g
y

 

Drainage 

The drainage has a significant effect on the 

slope stability and promotes the efficient 

control of the influence of rainfall on the 

ground water fluctuation. The presence of 

drainage increases the threshold of landslides 

due to rainfall. 

Yan et al., 2019; 

Sun et al., 2010 ; 

Wei et al., 2019 ; 

Korup et al., 2007 

Slope angle 

(degree) 

The steeper slopes have lower presence of 

landslide due to low transportable materials. 

Slopes between 20-40 degrees are most 

vulnerable to greater landslides as rainfall 

intensity and duration increase. Here, we 

considered the average angle of the terrain at 

the landslide location, which provides 

valuable insight into the region's overall 

steepness and geomorphic characteristics, 

which are crucial factors influencing landslide 

Duc, 2013 ; Qiu et 

al., 2016 ; 

Donnarumma et 

al., 2013 
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Group Features Description Reference 

susceptibility and risk modeling. 

Slope aspect 

The effect of rainfall on slope differs by slope 

angle and slope aspect  which lead to 

unevenly distributed occurrence of landslides. 

Panday and Dong, 

2021; Cellek, 2021 

Slope length 

(m) 

The volume increases as the slope length 

increases. There exists a complex interplay 

between rainfall, length of slope and slope 

angle on the occurrence of landslides. 

Turner et al., 2010 

Soil depth (m) 

Soil properties, depth, and texture have 

significant differences in infiltration rates, 

which have different influences on the 

occurrence of landslides. 

Kitutu et al., 2009; 

McKenna et al., 

2012 

Soil type 

Higher rainfall intensity affects the 

occurrence of landslides differently, 

particularly in certain soil types that have 

shorter saturation and failure times.  

Liu et al., 2021 

L
o
ca

ti
o
n

 

Altitude 

Regional variability of elevation and 

mountain steepness affect the quantity of 

rainfall and associated landslides. 

Hyun et al, 2010, 

Yoon and  Bae, 

2013; Park, 2015 

Um et al., 2010 

 

Maximum 

hourly rainfall 

The rainfall infiltrates the slope and increases 

pore water pressure that reduces soil shear 

strength, which leads to soil saturation that 

causes surface failure. 

Wieczorek, 1987; 

Smith et al., 2023; 

Dai and Lee, 2001 

R
ai

n
fa

ll
 

Continuous 

rainfall 
Sudden intense rainfall concentrated in short 

periods of time is responsible for shallow 

landslide and debris flow. 

Zhang et al., 2019 

Three hours 

rainfall 
 

Three days 

rainfall 

The antecedent rainfalls increase moisture in 

the soil and weaken soil cohesion.   

Ran et al., 2022 

Zhang et al., 2019; 

Bernardie et al., 

2014; Chen et al., 

2015a; Gariano et 

al., 2017 

Two weeks 

rainfall 

Four weeks 

rainfall 

 

Location parameters such as altitude, latitude and longitude are essential elements that 

determine the microclimate of a given region, influencing rainfall patterns (Hyun et al., 2010; 

Yoon and Bae, 2013; Park, 2015). The northeastern region is characterized by high-elevation 

terrain, such as Taebaek, and Sobaek ranges, which dry air and lead to orographic precipitation 
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(Yun et al., 2009). The windward mountain versants receive a substantial amount of rainfall, 

which can increase the likelihood of landslides (Jin et al., 2022). This variation of rainfall with 

respect to the direction highlights the importance of including slope aspect variables in 

landslide studies (Kunz and Kottmeier, 2006). Figure 2(g) depicts the relationship between the 

slope aspect and the volume of landslides and slope aspect, altitude and fire history and shows 

that larger volumes were localized in regions that faced forest fire and altitudes between 500 

and 1000m. Additionally, the topographical features such as slope length and slope angle affect 

the size of the landslide (Panday and Dong, 2021), slope failure due to over-saturation from 

groundwater and rainfall infiltration that destabilize the slope (Kafle et al., 2022). Furthermore, 

slope length, slope angle and slope aspect play an important role in the determination of the 

volume of geological material uprooted by landslides (Zaruba and Mencl, 2014; Khan et al., 

2021). The slope stability depends on soil composition properties, including soil permeability 

indices that  affect water infiltration and saturation level (Chen et al., 2015a). From surveyed 

regions, three main soil types, namely, sandy loam, loam, and silt loam, were observed, and 

their coefficient of permeability is 1.7, 1.65 and 1.5, respectively (Lee et al., 2013). Moreover, 

to reduce the infiltration drainage network that channeling rainwater terrain drains soil and 

reduces the saturation, which minimizes the likelihood of landslide occurrence as a result of 

groundwater discharge and rainfall water flow (Hovius et al., 1997; Wei et al., 2019). 

Furthermore, the vegetation protects the topsoil from the direct impact of raindrops hitting the 

ground, which causes erosion due to the force of gravity and reduces infiltration (Omwega, 

1989; Keefer, 2000). The absence of vegetation allows rainwater to seep away fine topsoil, 

causing shallow landslides (Gonzalez-Ollauri and Mickovski, 2017). On the contrary, 

vegetation improves soil cohesion and prevents potential shallow landslides due to soil-root 

interaction (Gong et al., 2021; Phillips et al., 2021). The density of vegetation (forest) and 

leafage type (broad, pines or mixture) directly affects the quantity of raindrop intercepted and 

prevented from directly hitting the soil, which emphasizes the vegetation’s landslides 

mitigation role. Further, the occurrence of forest fires can contribute to the occurrence of 

landslides due to the burning of vegetation covering the area, changing soil properties and 

increasing soil pH (Lee et al., 2013). 

The rainfall, a triggering factor of landslides, is the immediate cause of slope instability 

and failure due to infiltration that leads to saturation resulting from increased pore water 

pressure that reduces soil shear strength (Yune et al., 2010; Khan et al., 2012; Kim et al., 2021; 

Lee et al., 2021). The antecedent rainfall increases the moisture in the soil, which accelerates 
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the soil saturation; the cumulative effect is essential to understand the saturation levels (Ran et 

al.,2022). In this study, rainfall variables are grouped based on time, namely, continuous 

rainfall, which is the accumulative value of rainfall on the day of a landslide from rainfall start 

hour to the landslide event, maximum hourly rainfall, rainfall during the fixed period such as 

three hours, one day, three days, two weeks etc. 

 

Comment 6: I recommend providing clearer details on the geometry of the landslide inventory. 

 

Response:  Thank you for this recommendation. The landslide inventory provided by the Korea 

Forest Service (KFS) contains 455 landslide records (point locations) information from 2011 

to 2012 within the triggering area. This dataset tabulates information on landslide geometry, 

such as runout length, width, depth, and volume of the affected area, along with 

geomorphological composition, vegetation, and antecedent rainfall prior to landslide events, 

which are integral to understanding the spatial extent and impact of each landslide. These 

geometric details have been incorporated into our analysis to represent landslide characteristics 

accurately. Accordingly, the data section has been revised in the updated manuscript as follows: 

“The landslide inventory dataset contains 455 landslide record information from 2011 

to 2012, collected from different locations in South Korea by Korean Forest Services. This 

dataset tabulates information on landslide geometry, such as runout length, width, depth, and 

volume of the affected area, along with geomorphological composition, vegetation, and 

antecedent rainfall prior to landslide events.” 

 

 

Comment 7: A brief discussion on why nine data-driven models were chosen is recommended 

in the methods section. While these models have become quite common, 

providing a rationale for their selection will help justify their use in the study. 

 

 

Response: Thank you for your valuable feedback. The inclusion of model selection is essential 

to justify the selection basis. In the present study, we aimed at predicting the volume of 

landslides using models that minimize error with interpretability and scalability. Since one 

model can not have all properties at the same time, we decided to select some of the models 

with those properties. The OLS, GLM, and DT were selected for their high interpretability, 

which helps to understand the influence of individual features on predictions (Gelman, 2007; 

Breiman, 2017). On the other hand, the EGB, RF, SVM, RR, and KNN were chosen due to 
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their robust performance in capturing complex patterns in data, which is essential for accurate 

predictions of landslide volumes (Chen and Guestrin, 2016; Liaw and Wiener, 2002; Hastie et 

al., 2009). Additionally, taking into account that the model will be used for regional scale, 

which will require the use of big data, the EGB, RF, DNN are designed to efficiently handle 

large datasets, making them suitable for the regional scale analysis. These last models can be 

scaled to incorporate more data from different geographical areas without significant 

adjustments, enhancing their applicability in future research (Krizhevsky et al., 2012). 

 

 

Comment 8: The authors mainly use MAE and R2 for model validation. It is recommended to 

consider additional metrics commonly used in data-driven model evaluation. 

Relying solely on these two statistics may not comprehensively assess model 

performance. 

 

Response: Thank you for your valuable suggestion. We have expanded the metrics used for 

model validation to provide a more comprehensive assessment of the model performance. In 

addition to Mean Absolute Error (MAE) and R², we have included additional metrics such as 

Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and symmetric 

mean absolute percentage errors (SMAPE). These metrics will offer a broader perspective on 

the accuracy and reliability of our predictions. The updated section detailing the selected 

metrics is included in the revised manuscript as, 

“The model performance evaluation is a process of quantifying the difference between 

the observed value not used in the modeling process and the predicted value by the model. 

Different metrics are applied depending on the type of task, whether it is a classification or a 

regression problem. Subsequently, the widely used evaluation metrics for regression models, 

namely, R2, MAE, RMSE, MAPE and SMAPE, were utilized to evaluate the model 

performances. The metric formulae and evaluation criteria are summarized in Table 3.  

Table 3. Model evaluation metrics.  

Metrics Evaluation Reference 

𝑅𝑀𝑆𝐸

= √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

• Measures the square root of the average 

squared differences between predicted and 

actual values. 

• Lower values indicate better model 

performance. 

Hyndman and 

Koehler, 2006. 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
• The average of the absolute differences 

between predicted and actual values. 

• Lower values indicate better model 

performance. 

Willmott and 

Matsuura, 

2005. 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

 
• Measures the accuracy of a model as a 

percentage, which can be more 

interpretable. 

• Lower values indicate better model 

performance. 

Armstrong, 

2001. 

 

 

𝑆𝑀𝐴𝑃𝐸

=
100

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

|𝑦𝑖| − |𝑦̂𝑖|

𝑛

𝑖=1

 

• Unlike MAPE, which can be skewed by 

very small actual values, SMAPE accounts 

for both the actual and predicted values, 

making it symmetric. 

• SMAPE is expressed as a percentage 

• Mitigates the impact of small actual values 

on the error metric, providing a more 

balanced assessment. 

• Lower values indicate better model 

performance. 

Hyndman and 

Koehler, 2006 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
• Represents the proportion of variance in 

the dependent variable that can be 

explained by the independent variables. 

• Values closer to 1 indicate a better fit 

Darlington, 

1990; 

 Chicco et al., 

2021 

*𝑦𝑖  𝑎𝑛𝑑 𝑦̂𝑖  representing the actual and predicted value and, 𝑦̅ 𝑎𝑛𝑑 𝑛 standing for the mean of actual value and 

number of observations in the dataset, respectively. 

 

 

Comment 9: The summary of the various data-driven models (Table 3) indicates that the EGB 

model is the best-performing. However, the variable importance analysis shown 

in Figure 5 highlights only a subset of predictor variables, raising questions about 

whether different models utilize different sets of features. Further clarification is 

needed. 

 

Response: We appreciate your insightful comment regarding the inconsistencies between the 

summary of the various data-driven models in Table 3 (now Table 4) and the variable 

importance analysis presented in Figure 5 (now Figure 6). In the earlier version of the 

manuscript, the variable importance features with a value of gain below 0.01 were removed 

from the plot. To avoid those inconsistencies and make clear all variables, the figure was 

updated and reflect all variables used in the updated manuscript depicted below,  
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Figure 6. Variable importance for the EGB model. 

 

 

Specific Comments 

Comment 1: Figure 1(b): The y-axis label is missing. 

 

Response:  We appreciate this observation that helped us to improve the clarity of Fig 1(b), 

which was missing the y-axis. We have corrected this oversight, and the updated Figure 1 now 

includes the y-axis label. Figure 1(b) illustrates the boxplot of various rainfall features utilized 

in the model. The revised figure is provided below, 
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Figure 1. (a) Spatial distribution of landslides in South Korea, (b) temporal variation of rainfall, 

i.e., A: Maximum hourly rainfall, B: Four weeks rainfall, C: Three hours rainfall, D: 

Three days rainfall and E: Two weeks rainfall, (c) cumulative frequency distribution 

of volume of landslides and (d) box plot of volume of landslides. 

 

Comment 2: In Figure 2, it would be better to use the terms ‘Training and Testing Algorithms’ 

instead of ‘Run and Test Algorithms’. This terminology more accurately reflects 

the standard processes involved in model development. 

 

Response: Thank you for your insightful observation. Figure 2 (now Figure 3) has been updated 

in the revised manuscript as follows, 
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Figure 3. Workflow for the prediction of volume of landslides due to rainfall. 

 

 

Comment 3: Line No. 104-107: I recommend that the authors use the acronyms for the different 

data-driven models here, as they have already been defined earlier in the 

manuscript. Consistent use of these acronyms throughout the manuscript will 

improve clarity and readability. 

 

Response: We appreciate the comment regarding the consistency in the use of acronyms in the 

manuscript to keep the clarity. The suggested consistency in the use of acronyms was adopted 

in the updated manuscript. 

 

 

Comment 4: Line No. 150-152: ‘Thus, planting vegetation is recommended as a better practice 

to improve soil cohesion and prevent potential landslides due to soil root 

interaction (Gong et al., 2017; Phillips et al., 2021)’. This is a recommendation, 

not a description. Please provide appropriate descriptions. 

 

Response: Thank you for your comment. We understand the misuse of English connectives. 

The sentence was modified in the revised manuscript as follows,  

“The absence of vegetation allows rainwater to seep away fine topsoil, causing shallow 

landslides (Gonzalez-Ollauri and Mickovski, 2017). On the contrary, vegetation improves soil 

cohesion and prevents potential shallow landslides due to soil-root interaction (Gong et al., 

2021; Phillips et al., 2021).” 
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Comment 5: Why did the authors use 70% of the inventory and 30% for the validation? Why 

not 50% for each? The authors should state in the methods section why they used 

these percentages. Further, the authors need to clarify whether training and testing 

data were chosen randomly or if any specific criteria were used for the analysis. 

 

Response: Thank you for your insightful suggestion. The training and testing were split 

randomly to train the model. The 10-fold cross-validation was performed to obtain an optimal 

model. This division aligns with common practices in machine learning, where a 70 (training): 

30 (test) ratio is frequently used to ensure adequate training data while reserving a sufficient 

amount for model testing. In addition, Nguyen et al. (2021) also highlighted that 0.7/0.3 is the 

optimal split for the data.  

 

 

Comment 6: Please review the references cited in the text, as there are frequent errors with the 

use of commas and semicolons between references. This issue occurs multiple 

times throughout the manuscript and needs correction for proper citation 

formatting. 

 

Response: We thank you for pointing out the mis-references in the manuscript. We understand 

the concern regarding improper citations, and we carefully read and corrected all 

misreferencing.   

 

Comment 7: Chen et al. (2015) is not cited correctly in the text. There are two different articles 

by Chen et al. (2015) listed in the references section. The authors need to 

distinguish between these references by specifying them as Chen et al. (2015a) 

and Chen et al. (2015b). The reference section and citation in the text should be 

updated accordingly to reflect these distinctions. 

 

Response:  We appreciate the observation regarding the two authors with the same name, and 

the correction has been done accordingly, as follows, 

 

Chen, Z., Luo, R., Huang, Z., Tu, W., Chen, J., Li, W., ... and Ai, Y. (2015a). Effects of 

different backfill soils on artificial soil quality for cut slope revegetation: Soil structure, 

soil erosion, moisture retention and soil C stock. Ecological engineering, 83, 5-12. 

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., ... and Zhou, T. (2015b). 

Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.   

 

Comment 8: Line 133 cites (Kafle, 2022), but this article is either missing from the reference 
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section or is not cited correctly. Please verify and ensure that this reference is 

properly included and formatted in the reference section. 

 

Response: The citation was mis-referenced. The citation has been corrected to "Kafle et al. 

(2022)" and is now properly included and formatted in the reference section of the revised 

manuscript. 

 

Kafle, L., Xu, W. J., Zeng, S. Y., & Nagel, T. (2022). A numerical investigation of slope 

stability influenced by the combined effects of reservoir water level fluctuations and 

precipitation: A case study of the Bianjiazhai landslide in China. Engineering Geology, 

297, 106508. 

 

Comment 9: Line no 215: Chowdhury (2023)- article not present in the reference section or not 

mentioned in the correct form. 

 

Response: Thank you for your comment. The reference has been updated to "Chowdhury et al. 

(2023)" in the revised manuscript, and it is now correctly included in the reference section as 

follows, 

 

Chowdhury, M. Z. I., Leung, A. A., Walker, R. L., Sikdar, K. C., O’Beirne, M., Quan, H., and 

Turin, T. C. (2023). A comparison of machine learning algorithms and traditional 

regression-based statistical modeling for predicting hypertension incidence in a 

Canadian population. Scientific Reports, 13(1), 13. 

 

Comment 10: Line no 236: (Team, 2022)- article is not present in the reference section or not 

mentioned in the correct form. 

 

Response: Thank you for pointing out the citation issue. The reference has been corrected to 

"R Core Team (2022)" in the revised manuscript. The updated reference is provided below: 

 

 “R core Team (2022). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org/>.” 

 

Comment 11: Line no 239: Jerome et al. (2012)- article not present in the reference section or 

not mentioned in the correct form. 

 

Response: We appreciate your observation regarding the mis-reference in line 239 of the 
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manuscript concerning Jerome et al. (2012). The reference was updated as “Jerome et al. 

(2010)” in the updated manuscript. The updated citation is as follows, 

  

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear 

models via coordinate descent. Journal of statistical software, 33, 1-22. 

URL:<https://www.jstatsoft.org/v33/i01/>.”   

 

Comment 12:  Please verify the unit of soil depth. Most landslide inventories presented in Table 

2 and Figure 1(d) suggest that the landslides are shallow-seated based on their 

volume distributions; the unit of soil depth does not seem to align with this 

observation. 

 

Response: We thank the reviewer for highlighting the mistake in the soil depth unit. The correct 

unit for soil depth is centimeters (cm). However, for consistency and clarity, we have 

transformed the soil depth data into meters (m) and updated the manuscript accordingly. 

 

Comment 13: I suggest adding a few lines in the discussion section to highlight the practical 

applicability of the proposed model. This would provide insight into how the 

model can be used in real-world scenarios and its potential impact on practice or 

policy. 

 

Response: Thank you for your suggestion regarding the practical applicability of our proposed 

model. In the revised discussion section, we included a few lines highlighting how the model 

can be utilized in real-world scenarios. 

We emphasized that the model’s ability to accurately predict landslide volumes can aid 

in disaster risk management by providing timely information for early warning systems. 

Additionally, the insights gained from the model can inform land-use planning and policy 

decisions, allowing stakeholders to identify high-risk areas and implement mitigation strategies 

effectively. By integrating the model into existing monitoring frameworks, agencies can 

enhance their response capabilities and better allocate resources during heavy rainfall events. 
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