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Abstract 8 
Deep-seated landslides have caused substantial damage to both human life and infrastructure in the past. 9 
Developing an early warning system for this type of disaster is crucial to reduce its impact on society. 10 
This research contributes to developing predictive early warning systems for deep-seated landslide 11 
displacement by employing advanced computational models for environmental risk management. Our 12 
novel framework integrates machine learning, time series deep learning, and convolutional neural 13 
networks (CNN), enhanced by the Age of Exploration-Inspired Optimizer (AEIO) algorithm. Our 14 
approach demonstrates exceptional forecasting capabilities by utilizing eight years of comprehensive 15 
data—including displacement, groundwater levels, and meteorological information from the Lushan 16 
Mountain region in Taiwan. The AEIO-MobileNet model precisely predicts imminent deep-seated 17 
landslide displacement with a mean absolute percentage error (MAPE) of 2.81%. These advancements 18 
significantly enhance geohazard informatics by providing reliable and efficient landslide risk assessment 19 
and management tools. These safeguard road networks, construction projects, and infrastructure within 20 
vulnerable slope areas. 21 

Keywords: deep-seated landslide; displacement forecasting; landslide risk assessment; early warning 22 
system; machine learning; time-series deep learning; convolutional neural network; metaheuristic 23 
optimization. 24 

1. Introduction 25 
Landslides are among the most devastating natural disasters (Huang and Fan, 2013), claiming an 26 

average of over 4,000 lives annually worldwide between 2004 and 2010 (Petley, 2012). Landslides 27 
represent a global hazard, particularly in developing countries, where rapid urbanization, population 28 
growth, and significant land use changes occur (Caleca et al., 2024). The identification, management, and 29 
monitoring of landslides are made difficult by the diversity of their types (shallow slides, deep-seated 30 
slides, rock falls, rock slides, debris flows) and the complexity of their categorization based on triggers, 31 
material composition, movement speed, and other characteristics (Das et al., 2022; Hungr et al., 2014). 32 
These issues are further exacerbated in countries with complex geological and climatic conditions. 33 
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A deep-seated landslide involves the gradual and persistent displacement of a substantial amount of 34 
soil and rock, which can escalate into a sudden and devastating event (Kilburn and Petley, 2003; 35 
Geertsema et al., 2006; Chigira, 2009). Unlike shallow landslides, which typically affect surface layers to 36 
a few meters, deep-seated landslides extend deeper, often exceeding 10 meters, and can involve the 37 
movement of underlying bedrock (Lin et al., 2013). Predicting these events is challenging and costly (Thai 38 
Pham et al., 2019). Therefore, extensive efforts have been made to predict such disasters throughout 39 
history (Corominas and Moya, 2008; David and Raymond, 1989; Aleotti and Chowdhury, 1999). One 40 
method that has been employed involves thoroughly examining the physical and geological characteristics 41 
of the mountainous areas at risk of landslides (Cotecchia et al., 2020). Furthermore, the level of 42 
groundwater has been shown by numerous studies in the past to influence the mechanisms behind 43 
landslide formation significantly (Miao and Wang, 2023; Preisig, 2020; Iverson and Major, 1987). 44 

In pursuing a generalized approach to landslide forecasting, researchers have determined that the 45 
critical factors associated with slope instability exhibit temporal variability, necessitating using time series 46 
data (Chae et al., 2017). This approach combines slope deformation data collected through sensors drilled 47 
deep into the slope bed with data on the natural conditions of the monitoring area, which is collected 48 
simultaneously. Upon establishing that the data pertinent to landslide prediction falls within the category 49 
of time series data, a formidable challenge in research related to this type of disaster is devising a predictive 50 
model capable of forecasting the likelihood of such catastrophes based on related factors. 51 

One of the most effective solutions for constructing models to predict time series data involves 52 
applying data-driven techniques. The advancement of computational capabilities has driven the 53 
widespread adoption of data-driven machine-learning models over physics-based models. This shift is 54 
based on the premise that the data used for slope monitoring originates from nonlinear systems (Zhou et 55 
al., 2018). However, a significant drawback of traditional machine learning models, such as Random 56 
Forest and Support Vector Machines, is their difficulty handling spatiotemporal data. These models need 57 
help to capture the sequential relationships necessary for landslide prediction, resulting in lower 58 
performance (Zhang et al., 2022a; Tehrani et al., 2022). 59 

An increasing array of novel data-driven solutions is being developed to overcome the constraints 60 
of traditional machine-learning approaches. Among these data-driven solutions, convolutional neural 61 
networks (CNN) have emerged as one of the most effective methods. These CNN models, which excel at 62 
automated feature extraction, can enhance efficiency in analyzing complex datasets and improve the 63 
accuracy of prediction results (Alzubaidi et al., 2021). 64 

Moreover, there is a noteworthy recent trend in employing metaheuristic optimization algorithms to 65 
fine-tune the hyperparameters of artificial intelligence (AI) models, thereby augmenting their efficiency. 66 
This approach has found application in geological and construction studies and other fields, showcasing 67 
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substantial effectiveness. Consequently, the fine-tuning of hyperparameters represents a potent avenue for 68 
elevating the efficiency of AI models in research focused on predicting deep-seated landslide displacement. 69 

Leveraging the effective methodologies mentioned above, this study employs AI models optimized 70 
by an innovative metaheuristic optimization algorithm to predict deep-seated landslide displacement on 71 
the northern slope of Lushan Mountain in Ren'ai Township, Nantou County, Taiwan. The geological 72 
characteristics of this area have undergone extensive research (Wang et al., 2015; Lin et al., 2020). 73 
Previous studies have identified varying depths of the shear plane. Specifically, Lin et al. (2020) 74 
determined that the depth of the shear plane is 85m and 106m based on inclinometer data. This research 75 
paper is firmly grounded in empirical evidence meticulously collected over eight years from 76 
extensometers at depths of 70 and 40 meters. Our analysis also considers the cumulative impact of storms 77 
and heavy rainfall on groundwater levels, utilizing data from four stations measuring groundwater levels 78 
in the study area and other weather conditions that potentially trigger landslides. The objectives of our 79 
research were as follows: 80 
1) To analyze the application of machine learning and deep learning methods to time series data to forecast 81 

short-term, deep-seated landslide displacement across the Lushan Mountain area. 82 
2) To identify the optimal model and hyperparameters for accurately forecasting deep-seated landslide 83 

displacement in the study area. 84 
3) To evaluate the role of metaheuristic optimization algorithms in fine-tuning the hyperparameters of AI 85 

models. 86 
This study represents the first instance of AI models being utilized to predict deep-seated landslides 87 

in Lushan Mountain. Additionally, it marks the inaugural application of AEIO for fine-tuning AI models 88 
in landslide-related research. Our findings serve as a valuable resource for civil engineers, contractors, 89 
and inspectors involved in the planning and overseeing of construction projects in landslide-prone areas. 90 
Predicting the likelihood of landslide events can help minimize property loss, guide schedule adjustments, 91 
improve work safety, and ensure smooth traffic flow during critical periods. Additionally, understanding 92 
internal displacement provides engineers with precise data to evaluate the resilience of structures and 93 
infrastructure in vulnerable areas, enabling the issuance of prudent warnings. 94 
2. Literature Review 95 
2.1 Groundwater Levels and the Forecasting of Deep-seated Landslide Displacement 96 

Landslide triggers can be attributed to loading, slope geometry, weather conditions, and 97 
hydrological conditions (Perkins et al., 2024; Van Natijne et al., 2023; Millán-Arancibia and Lavado-98 
Casimiro, 2023; Jones et al., 2023). Among these, hydrological conditions, especially groundwater levels, 99 
have been one of the most critical elements considered in studies related to landslide prediction. Numerous 100 
studies have substantiated this point. For instance, research by Take et al. (2015) demonstrated that the 101 
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distance and velocity of landslides triggered under high-antecedent groundwater conditions are 102 
significantly more significant compared to scenarios with drier conditions. Another study has shown that 103 
water accumulation at a soil-bedrock contact can develop positive pore water pressures, causing landslides 104 
(Matsushi and Matsukura, 2007) (see Figure 1). Moreover, studies on past landslide events have also 105 
demonstrated similar findings. Examples of this research include the Tessina landslide in northeastern 106 
Italy, where groundwater conditions triggered movement (Petley et al., 2005). Additionally, the study by 107 
Keqiang et al. (2015) on water-induced landslides in the Three Gorges Reservoir project area highlights 108 
the significant impact of hydrological conditions on the likelihood of such disasters. 109 

 110 
Figure 1. Schematic illustration showing the effects of groundwater on deep-seated slope failure. 111 

Similarly, Preisig (2020) developed a groundwater prediction model for analyzing the stability of a 112 
compound slide in the Jura Mountains. Additionally, Srivastava et al. (2020) explored machine learning 113 
algorithms to forecast rainfall and established thresholds for landslide probabilities. Although the research 114 
by Srivastava et al. did not directly rely on groundwater levels to predict landslides, it is evident that 115 
rainfall, a crucial factor in their study for landslide prediction, also influences hydrological conditions. 116 
Therefore, their research further underscores the importance of considering groundwater levels in 117 
landslide prediction. 118 

The northern slope in the Lushan area of central Taiwan, the region investigated in this study, 119 
exhibits significant gravitational slope deformation, making it prone to landslides during typhoons or 120 
heavy rainfall events. Lin et al. (2020) conducted in-depth studies on the mechanisms of landslide 121 
occurrence based on the geological conditions of the area. While successfully providing valuable insights 122 
into the evolution of deep-seated gravitational deformations, their study focuses exclusively on employing 123 
traditional analytical methods in geological research, such as analyzing data from geotechnical 124 
instruments and conducting geological borehole analysis. 125 

Our research aims to adopt a novel approach compared to previous landslide studies at Lushan 126 
Mountain by utilizing AI models and metaheuristic optimization algorithms. This research will utilize 127 
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temperature, humidity, and groundwater levels as input data for AI models to predict deep-seated landslide 128 
displacement, thus aiding in landslide forecasting in this region. 129 
2.2 Forecasting Slope Displacements: Conventional Methods 130 

Several conventional methods are commonly employed to predict deep slope displacement. These 131 
methods primarily involve simulating factors affecting slope stability in landslide-prone areas using data 132 
collected from ground-based monitoring devices. An early approach to predicting deep-seated slope 133 
movements is geotechnical mapping. This technique characterizes rock and soil's strength, density, and 134 
porosity.  135 

For instance, Crosta and Agliardi (2003) analyzed the geology and rock mass behavior using 136 
Voight's semi-empirical failure criterion, incorporating time-dependent factors to generate velocity curves 137 
that indicate risk levels. Recently, Xu et al. (2018) utilized real-time remote monitoring systems to 138 
measure internal stress, deep displacement, and surface strain. This data was used to formulate forecasting 139 
models to assess slope stability, particularly in railway construction. However, a common challenge with 140 
this method is the instability and frequent changes in the terrain and geology of landslide-prone areas. 141 
This necessitates constant updates to the computational model, which can be time-consuming and labor-142 
intensive. 143 

Moreover, physically based numerical and laboratory modeling methods are also gaining traction in 144 
landslide research. These methods aim to maintain forecasts using various data types while reducing 145 
human workload and ensuring high accuracy. For example, Mufundirwa et al. conducted a laboratory 146 
study to examine the effectiveness of the inverse velocity model in predicting rock mass destruction 147 
resulting from landslides at depths of 2m and 4m along the sliding plane. This study utilized historically 148 
recorded data from Asamushi, Japan, and the Vaiont reservoir in Italy (Mufundirwa et al., 2010).  149 

Meanwhile, Wu (2010) employed the numerical discontinuous deformation analysis method to 150 
simulate a blocky assembly's post-failure behavior, incorporating earthquake seismic data. Another study 151 
follows this trend by Jiang et al. (2011), who utilized the fluid-solid coupling theory to simulate 152 
displacement and capture the interaction between fluid and solid materials. However, both numerical 153 
models and laboratory modeling methods require substantial effort from researchers. These approaches 154 
demand deep expertise and the development of complex models. More importantly, they rely heavily on 155 
assumptions during the simulation process and may need to reflect real-world conditions, leading to 156 
significant errors accurately. 157 

Stability analysis is another commonly used method related to physics, which evaluates the forces 158 
acting on slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear Hoek-159 
Brown shear strength reduction, determining the correlation between normal and shear stress based on the 160 
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Hoek-Brown criterion. Subsequently, the micro-units (microscopic components of the rock mass) 161 
instantaneous friction angle and cohesive strength under specific stress conditions are calculated.  162 

Although this approach effectively addresses cost and labor issues, it still heavily relies on the 163 
researcher's assumptions and is limited by the ability to utilize only a small portion of data from the 164 
research area. Additionally, there are several other limitations. For instance, Mebrahtu et al. (2022) 165 
indicated that stability analyses become less reliable in seismic load scenarios. Safaei et al. (2011) also 166 
noted that stability analysis necessitates a substantial amount of detailed input data obtained from 167 
laboratory tests and field measurements, thereby limiting the areas that can be effectively assessed. 168 

As previously mentioned, using conventional methods poses significant challenges, as their 169 
application requires a deep understanding of both the physics involved and the complex behavior of soil. 170 
In addition, traditional methods require specific types of input data, highlighting the rigidity and lack of 171 
flexibility inherent in these approaches (Safaei et al., 2011). In contrast, AI models can overcome these 172 
difficulties by automatically learning to identify mapping functions between input and output data, 173 
eliminating users needing specialized knowledge of soil behavior and physics. Additionally, AI models 174 
can be updated to incorporate new input variables, offering flexibility to leverage available data based on 175 
real-world conditions. Therefore, AI models will be utilized in this research instead of conventional 176 
methods. 177 
2.3 Forecasting Slope Displacements: Machine Learning and Deep Learning 178 

In studies employing machine learning and deep learning models for landslide research, a plethora 179 
of research utilizes discrete data to train AI models to predict the probability of landslides or to construct 180 
maps depicting landslide susceptibility. For instance, Pradhan and Lee (2010) used a Geographic 181 
Information System (GIS), remote sensing, and a neural network model to analyze landslide susceptibility 182 
in Cameron Highlands, Malaysia. Ten factors, including topographic slope and drainage distance, were 183 
processed to generate a susceptibility map. The model achieved 83% accuracy in predicting landslide 184 
locations. In a similar study, Pham et al. (2016) used multiple AI models, including support vector 185 
machines (SVM), logistic regression (LR), Fisher's linear discriminant analysis (FLDA), Bayesian 186 
network (BN), and naïve Bayes (NB), for landslide susceptibility assessment in a region within the 187 
Uttarakhand state of India. The SVM model yielded the best prediction results among the models used. 188 

In addition to discrete data, many landslide studies utilize time series data. When it comes to 189 
technical forecasting using time series data, machine learning regression prediction models, such as 190 
extreme learning machine (ELM) (Li et al., 2018),  least squares support vector machine (LSSVM) (Liu 191 
et al., 2019), dynamic neural network (DNN) (Aggarwal et al., 2020), random forests (RFs) (Hu et al., 192 
2021),  SVM (Zhang et al., 2021), and Gaussian process regression (GPR) (Hu et al., 2019), have proven 193 
highly effective at yielding reliable results. These models also provide scalability and the ability to handle 194 
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larger datasets. However, it is essential to note that machine learning models are sensitive to the white 195 
noise typical of time series features. This can pose challenges in capturing subtle behaviors and complex 196 
interrelationships, mainly when data availability is limited (Zhang et al., 2020). Finally, feature 197 
engineering (the process of selecting and transforming input variables to enhance the performance of the 198 
models) is computationally intensive and labor-intensive, limiting its applicability when rapid forecasting 199 
is required. 200 

Alongside the machine learning models mentioned above, a range of neural network models, from 201 
simpler ones like Artificial Neural Networks (ANN) to more advanced approaches such as Deep Neural 202 
Networks (DNNs) and CNN, are also employed in research related to landslide (Kumar et al., 2017; Zheng 203 
et al., 2022). Notably, CNN models have become increasingly popular and are widely used in research 204 
related to this disaster. CNN models often yield superior predictive results than other models in landslide 205 
susceptibility assessment and displacement prediction (He et al., 2024).  206 

Moreover, another research trend in landslide forecasting involves the use of time series deep 207 
learning models such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 208 
Gated Recurrent Units (GRUs), which use previous information to generate current outputs and provide 209 
state feedback (Yang et al., 2019; Xu et al., 2022; Yang et al., 2022; Zhang et al., 2022b). These time-210 
series deep learning models can effectively capture patterns of changes over time, making them highly 211 
suitable for time-series data in landslide-related studies. However, there has yet to be a comprehensive 212 
study that employs a combination of machine learning methods, time-series deep learning, and CNN 213 
models to compare and determine the most suitable model for predicting landslide displacement. 214 
Therefore, our research aims to address this gap. 215 
 Another noteworthy research trend involves using AI models to predict landslides based on spatial-216 
temporal data. For instance, Dahal et al. (2024) utilized spatial-temporal data to pinpoint where landslides 217 
may occur and predict when they might happen and the expected landslide area density per mapping unit. 218 
The Ensemble Neural Network employed in this research yielded promising predictions, demonstrating 219 
its potential for forecasting landslides in Nepal's areas affected by the Gorkha Earthquake. However, our 220 
study only managed to gather temporal data. Consequently, the AI models developed in our research will 221 
be trained to learn and forecast time-series data. 222 
2.4 Hybrid metaheuristic optimization algorithm and AI models in landslide prediction 223 

In landslide-related research, numerous studies have employed hybrid models, wherein metaheuristic 224 
optimization algorithms optimize the hyperparameters of AI models. For example, Balogun et al. (2021) 225 
studied landslide susceptibility mapping in Western Serbia. This research collected 14 different condition 226 
factors to serve as input data for the Support Vector Regression (SVR) model to predict landslide 227 
occurrences. The study results indicate that SVR models, with hyperparameters fine-tuned by optimization 228 



8 
 

algorithms such as gray wolf optimization (GWO), bat algorithm (BA), and cuckoo optimization 229 
algorithm (COA), all yielded better prediction results compared to using a single model. 230 

Hakim et al. (2022) conducted a study utilizing CNN models optimized by the GWO and imperialist 231 
competitive algorithm (ICA) for landslide susceptibility mapping from geo-environmental and topo-232 
hydrological factors in Incheon, Korea. This research demonstrates that GWO and ICA effectively fine-233 
tuned the CNN model, resulting in a highly accurate landslide susceptibility map. 234 

Jaafari et al. (2022) employed an AI model known as the group method of data handling (GMDH) 235 
for classification purposes, optimizing it using the cuckoo search algorithm (CSA) and the whale 236 
optimization algorithm (WOA). In northwest Iran, they aimed to predict landslides based on various 237 
factors, including topographical, geomorphological, and other environmental factors. After training and 238 
testing, the GMDH-CSA model produced superior prediction results compared to the GMDH-WOA and 239 
the standalone GMDH model.  240 

It is evident from numerous past studies on landslides that the application of metaheuristic 241 
optimization algorithms significantly enhances the predictive effectiveness of AI models. Therefore, this 242 
study also incorporates this approach to ensure the model's accuracy in landslide prediction. This study 243 
will employ a recently developed metaheuristic algorithm that includes a clustering technique, which 244 
shows promise in effectively fine-tuning hyperparameters for AI models. 245 
3. Methodology 246 
3.1 Machine Learning 247 
 In addition to the aforementioned deep learning models, as elucidated earlier, machine learning 248 
models will be employed to predict deep-seated landslide displacement in this research. The machine 249 
learning models utilized will encompass the following: linear regression (LR) (Stanton, 2001), ANN 250 
(Mcculloch and Pitts, 2021), SVR (Drucker et al., 1996), classification and regression tree (CART) 251 
(Breiman, 1984), radial basis function neural network (RBFNN) (Han et al., 2010), extreme gradient 252 
boosting (XGBoost) (Chen; and Guestrin). These machine learning models will be used to make 253 
predictions and will be compared with other deep learning models. 254 
3.2 Deep Learning Models for Time Series Data 255 

RNN was introduced by Elman in 1990 (Elman, 1990). This model makes predictions based on 256 
sequential data, crucial for language modeling, document classification, and time series analysis. The 257 
architecture of an RNN model can be found in Appendix A. In this study, advanced models of RNN, such 258 
as LSTM and GRU, are also utilized, and their effectiveness in predicting deep-seated landslides will be 259 
compared. 260 
3.3 Convolutional Neural Networks 261 
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In 1998, LeCun introduced a novel type of DNN known as the CNN, specifically designed for 262 
processing data with a grid-like structure, such as images. The complex, layered system of CNN facilitates 263 
the automated extraction of features without extensive preprocessing, making it ideal for object 264 
recognition, image classification, and segmentation tasks. The detailed mechanism of the CNN model can 265 
be found in Appendix B.  266 

This study will use various CNN models to predict deep-seated slope displacement. The CNN models 267 
employed in this research include VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), 268 
Inception (Szegedy et al., 2015), Xception (Chollet, 2016), MobileNet (Howard et al., 2017), DenseNet 269 
(Huang et al., 2017), and NASNet (Zoph et al., 2018). To clarify, the term "standard CNN models" will 270 
refer to models with structures that can be user-defined, while "retrained CNN models" will denote those 271 
with architectures that have been researched and developed by other scientists and have been proven to 272 
be highly effective. 273 

CNN models are typically used for image processing tasks. However, the input data for this study is 274 
in numerical and vector form. Therefore, several transformation steps are required to convert this 275 
numerical and vector data into image data suitable for CNN input. Detailed information about these 276 
transformation steps can be found in the study by Chou and Nguyen 2023 (Chou and Nguyen, 2023). 277 
3.4 Data Management and Performance Analysis 278 
3.4.1 Data Splitting and Evaluation Strategy 279 

To obtain reliable (i.e., generalizable) evaluation and validation results, it is crucial that the data 280 
used for testing does not include the data used for training. Therefore, a dataset must be divided into 281 
training, validation, and testing subsets before training the AI model. Training data is used to learn patterns; 282 
testing data is used to assess model performance and identify errors; and validation data is used to fine-283 
tune the hyperparameters. In the current study, we opted to refrain from employing cross-validation, which 284 
tends to be time-consuming. Instead, we adopted the holdout approach to manage our large dataset with 285 
well-represented target variables (Figure 2). A 90:10 ratio is generally used to split datasets into learning 286 
and testing data (Di Nunno et al., 2023). When implementing the holdout method during hyperparameter 287 
optimization, 20% of the learning data is used for validation, and the remaining 80% is used for training. 288 

 289 
Figure 2. Data are splitting under the proposed Holdout scheme. 290 

3.4.2 Performance Evaluation Metrics  291 
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This study utilized four widely recognized performance measures to assess the model's effectiveness 292 
in prediction accuracy (Chou and Nguyen, 2023). The measures included mean absolute error (MAE), 293 
mean absolute percentage error (MAPE), and root mean square error (RMSE). 294 

MAE represents the mean of absolute errors, calculated as the average of the absolute differences 295 
between actual and predicted values. Its advantage lies in its simplicity, which provides a straightforward 296 
measure of average prediction error. However, a drawback of MAE is its insensitivity to more significant 297 
errors, so it may not effectively highlight differences between models when significant errors are present. 298 
It is defined as: 299 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1              (1) 300 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith actual 301 
value. 302 

MAPE quantifies the average absolute error ratio to the actual value derived from the differences 303 
between actual and forecasted values. It provides a clear metric in percentage terms, facilitating 304 
straightforward interpretation across various datasets. However, MAPE's limitation arises from its 305 
sensitivity to zero values in the actual data, which can become undefined or impractical to compute, 306 
limiting its utility in scenarios involving zero or near-zero actual values. The expression for MAPE is as 307 
follows: 308 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
�𝑛𝑛

𝑖𝑖=1             (2) 309 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith actual 310 
value. 311 

RMSE represents the square root of the average squared error between actual and forecasted values 312 
and is widely used for its ability to indicate the dispersion of errors. This method captures the magnitude 313 
and direction of errors, making it practical for assessing overall prediction accuracy. However, RMSE 314 
tends to be more sensitive to outliers and significant errors than MAE due to its squaring of errors during 315 
computation. This sensitivity can disproportionately affect its evaluation in datasets with extreme values. 316 
The expression for RMSE is as follows: 317 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 318 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith actual 319 
value.  320 
3.5 Age of Exploration-Inspired Optimizer 321 

This study employs a range of AI models to forecast deep-seated landslide displacement in 322 
mountainous regions. To enhance the prediction accuracy of these AI models, the study incorporates a 323 
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novel metaheuristic optimization algorithm known as the Age of Exploration-Inspired Optimizer (AEIO). 324 
Developed by Chou and Nguyen in 2024, this algorithm has demonstrated high effectiveness in fine-325 
tuning the hyperparameters of AI models. This algorithm treats each particle in the search domain as an 326 
explorer. The movement of particles toward regions with higher fitness values parallels the exploratory 327 
activities of the Age of Exploration, where explorers sought ideal locations for establishing colonies. In 328 
this study, each particle represents a set of hyperparameters, with the ultimate goal of the search process 329 
being to identify the optimal particle or hyperparameter set that minimizes prediction error for AI models. 330 
Figure 3 illustrates the AEIO algorithm. 331 

 332 
Figure 3. Illustration of Age of Exploration-Inspired Optimizer. 333 

The strength of the AEIO algorithm lies in its ability to develop specific strategies for particles based 334 
on their positions, enabling faster convergence to the optimal point and using density-based spatial 335 
clustering of applications with noise (DBSCAN) for particle clustering. DBSCAN is an unsupervised 336 
clustering method that organizes data points by their spatial closeness in high-dimensional spaces (Ester 337 
et al., 1996). This algorithm is particularly effective at detecting clusters of different shapes and densities. 338 
It relies on two primary parameters: ε (the radius of the neighborhood) and MinPts (the minimum number 339 
of points required to form a dense area). Clusters are created by locating neighboring points with enough 340 
surrounding points, while those that do not belong to any cluster are classified as noise or outliers. 341 

Using the DBSCAN algorithm, the AEIO determines whether particles are in favorable or 342 
unfavorable positions, reminiscent of explorers during the Age of Exploration. The proximity (within 343 
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clusters) allows explorers to gather information and move toward optimal locations, thereby enhancing 344 
their ability to establish new colonies. In contrast, explorers far apart (outside clusters) adopt different 345 
strategies, relying on limited peer guidance or general trends in their quest for new territories. 346 

In each iteration, explorers forecast their next move. If it promises a better position, they relocate. 347 
Otherwise, if the new spot is less favorable for colony establishment, they stay put and await the next 348 
iteration. The algorithm employs specific mathematical formulas to calculate the movement step of 349 
explorers or particles in the AEIO. The exploratory steps of an explorer in the AEIO algorithm will 350 
continuously iterate until the stop condition is satisfied. 351 
 Explorers follow general trends 352 

The explorer choosing this movement type will calculate the distance from their location 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) to 353 

the center of all other explorers (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡)), then attempt to move towards that central point in the 354 
hope of finding a better location with the potential to establish a new colony. The following formula 355 
determines the explorer's position after the movement: 356 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + 𝛼𝛼 ∗ �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × 𝑅𝑅    (4) 357 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) =
𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+⋯+𝑥𝑥𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃,𝑑𝑑(𝑡𝑡)

𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃
          (5) 358 

where 𝑑𝑑 = 1,2, …𝐷𝐷 ; 𝐷𝐷  is the number of dimensions; 𝑖𝑖 = 1,2, …𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 ; 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃  is the total number of 359 

explorers; 𝑡𝑡 = 1,2, …𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the number of iterations; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum value of iteration; 𝛼𝛼 is a 360 
parameter for adjusting the particle’s movement toward the centroid position (usually equals 3). 361 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) is the centroid of all particles in dimension d. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) is the random number in the range 362 
[0,1]. 𝑅𝑅 : a number that equals 1 or 2 depending on the value of rand(0, 1) per the equation. 𝑅𝑅 =363 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × 1), 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) is the location of particle 𝑖𝑖 in iteration 𝑡𝑡, 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) is the location 364 

of particle 𝑖𝑖 in iteration (𝑡𝑡 + 1). 365 
 Explorers follow three other peers 366 

Explorers employing this movement method will calculate the average position of three randomly 367 

selected other explorers �𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+𝑥𝑥3,𝑑𝑑(𝑡𝑡)
3

�  and then move toward this newly calculated average 368 

position. The explorer's new position is computed using the following formula: 369 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+𝑥𝑥3,𝑑𝑑(𝑡𝑡)
3

− 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)�× 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × 𝑅𝑅 (6) 370 

where: 𝑥𝑥1,𝑑𝑑(𝑡𝑡), 𝑥𝑥2,𝑑𝑑(𝑡𝑡) and 𝑥𝑥3,𝑑𝑑(𝑡𝑡) are three random explorers in dimension d at iteration t, 𝑑𝑑 = 1,2, …𝐷𝐷; 371 

𝐷𝐷 is the number of dimensions; 𝑖𝑖 = 1,2, …𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃; 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 is the total number of explorers; 𝑡𝑡 = 1,2, …𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 372 

is the number of iterations; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum value of iteration. 373 
 Explorers follow the best one 374 
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According to this strategy, the explorer (𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)) will move closer to the position of another explorer 375 

currently holding the best position (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡)), as determined by the following formula: 376 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × 𝑅𝑅       (7) 377 

where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡) represents the position of the particle with the best fitness in dimension d at iteration t, 378 
the parameters 𝑑𝑑 and 𝑡𝑡 hold the same significance as defined in Equation 6. 379 
 Explorers follow guidance from another one 380 

Explorers in favorable positions with access to information can execute this movement strategy. In 381 
this scenario, explorers (𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)) will consult with another explorer. The consulted explorer will compare 382 

their direction and distance to the best individual, who holds the most favorable position (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡)) and 383 
guide the inquirer. This algorithm assumes that the inquirer can be any explorer, i.e., a random explorer 384 
(𝑥𝑥1,𝑑𝑑(𝑡𝑡) ). The following formula describes how to calculate the new position of the explorer following 385 

this strategy: 386 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡) − 𝑥𝑥1,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) × 𝑅𝑅        (8) 387 

where: 𝑥𝑥1,𝑑𝑑(𝑡𝑡) is a random explorer in dimension d at iteration t. the parameters 𝑑𝑑 and 𝑡𝑡 hold the same 388 

significance as defined in Equation 6. 389 
 Crowd control mechanism 390 

To enhance the efficiency of AEIO in transitioning between exploration and exploitation, a 391 
mechanism is employed to adjust the parameters of DBSCAN throughout each cycle, according to the 392 
following formula: 393 

𝜀𝜀𝑑𝑑 = �0.1 + 𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

� × (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑑𝑑(𝑡𝑡))           (9) 394 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �1 + 𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

× 10�              (10) 395 

 The exploratory steps in the AEIO algorithm begin by classifying positions using the DBSCAN 396 
algorithm. Subsequently, the explorers update the crowd control mechanism according to equations (9) 397 
and (10), and move according to various strategies defined by equations (4), (6), (7), and (8). This process 398 
is conducted iteratively until the maximum number of iterations is reached. 399 
 To fine-tune the hyperparameters of AI models, the AEIO algorithm treats each hyperparameter as 400 
a variable. Furthermore, the objective function of the AEIO algorithm seeks to minimize the prediction 401 
error of AI models, which is quantified by an evaluation metric (MAPE). Figure 4 presents a flowchart 402 
illustrating the process by which the AEIO algorithm aids in fine-tuning hyperparameters for AI models. 403 
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Begin

Initialize hyperparameters of AI model, t = 0

Update the parameters of DBSCAN according to current iteration using Eq. 9 and Eq. 10.

Explorer is located outside the crowd

Rand(0,1) ≥ 0.5 Rand(0,1) ≥ 0.5

Explorers follow 
general trends.
The new location is 
defined by Eq. 4.

Explorers follow 
three other peers.
The new location is 
defined by Eq. 6.

Explorers follow 
the best one.
The new location is 
defined by Eq. 7.

Explorers follow 
guidance from 
another one.
The new location is 
defined by Eq. 8.

Check boundary condition

New location better than the previous one

Explorers accept and move to the new 
locations. The best explorer is determined.

Explorers reject the new locations and 
remain unchanged in the current iteration. 
The best explorer is determined.

t = t + 1

The location status of explorers is determined.

Stop criteria reached
t = MaxIt

No

Output the fine-tuned hyperparameters for the optimal AI model.

End

Use density-based spatial clustering of application with noise (DBSCAN) for clustering all 
explorers.

Calculate MAPE of AI model (objective function)

Dataset

Prepare data for 
prediction

Obtain 
hyperparameters of 

AI model

Train and validate 
model

Calculate 
evaluation metrics

AI model 
development

AEIO algorithm operation

Yes No

Yes No

Yes

Yes No Yes No

 404 
Figure 4. Flowchart of the fine-tuning process of AI models by the AEIO algorithm. 405 

4. Lushan Hot Springs: Geography and Geology 406 
4.1 Research Area 407 
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The current study focuses on the northern slope of the Lushan hot spring in Ren'ai Township, Nantou 408 
County, Taiwan (Figure 5), with Nenggao Mountain to the east, Hehuan Peaks to the north, Zhuoshe 409 
Mountain to the south, Puli Basins to the west. The terrain features rugged mountain ranges, incipient 410 
valleys, and notable river erosion (Lee and Chi, 2011). Lushan Hot Springs is located below the hill, and 411 
the main access roads for nearby settlements and hot spring sites include Provincial Highway 14 and 412 
County Highway 87.   413 

 414 
Figure 5. Locations of measurement devices (Image source: Imagery ©2022 CNES/Airbus, Maxar 415 

Technologies, Map data ©2022 Google). 416 
In an early study of deep landslides in this area, Lin et al. (2020) reported that the Lushan slope 417 

exhibits large-scale deep-seated gravitational slope deformation, characterized by a steep scarp, a gently 418 
inclined head, and a curving river at its base. Figure 6 illustrates the geological details of the research area 419 
and shows the distribution of four survey boreholes (G20, G21, G18, and G25) along the slope. Regolith, 420 
slate, and meta-sandstone are three distinct lithological units revealed through drilling. Additionally, the 421 
study by Lin et al. identified the depths of failure planes in these survey boreholes. Specifically, boreholes 422 
G18 and G25 did not record any failure planes, while boreholes G20 and G21 recorded failure planes at 423 
depths of 85 meters and 106 meters, respectively. These failure planes were identified based on 424 
inclinometer data from the corresponding study (Lin et al., 2020). 425 
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 426 
Figure 6. Illustration of geological drilling survey. 427 

Initially, the topmost regolith layer's thickness was less than 10 meters. Secondly, slate 428 
predominated, exhibiting a notable presence with sporadic evidence of weathering that resulted in 429 
brecciated patterns. This composition frequently broke into breccia and gouges, particularly along 430 
cleavage planes and thin shear zones, indicating its susceptibility to collapse. This geological layer is 431 
identified as the area's primary cause of landslide risk. Finally, meta-sandstone appeared intermittent 432 
compared to the more prevalent lithological units, characterized by its fragility and fractures and occurring 433 
less frequently in the drilled samples. 434 

Previous research has detected signs of brittle deformation in the area. These indications include 435 
chevron folds within fractures, visible cracks, and intricate jigsaw puzzle-like patterns at the head of the 436 
rock formations. Overturned and flexural toppling fractures are prevalent toward the toe of the slope. 437 
Additionally, kink bands are observable on fractures recently undergoing flexural folding along the eastern 438 
boundary. Notably, horizontal fractures near the toe region also exhibit inter-fracture gouges. Further 439 
details on this geological information can be found in the study by Lin et al. (2020). These instances 440 
highlight the potential for significant geological changes and landslide risk in this region. 441 
4.2 Data Collection 442 

In this study, hourly data of deep-seated landslide displacement and groundwater level were 443 
collected by the Department of Civil Engineering, College of Science and Technology, at the National 444 
Chi Nan University research group over eight years from July 2009 to June 2017, yielding 68,317 data 445 
points. The installation time points and locations are presented in Table 1 and Figure 5, respectively. 446 
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The data used in this study were collected using an in-hole telescopic gauge (E-2), a multidirectional 447 
shape acceleration array sensor (SAA) with an underground displacement gauge, and four groundwater 448 
level gauges (A-17, A-18-2, A-20, and A-24). The transmission, storage, and processing of data are 449 
described in detail in the research of Lau et al. (2023). 450 

The operation of the in-hole extensometer entailed the installation of a borehole through the sliding 451 
surface. One end of a steel cable was anchored at the bottom, and a displacement gauge was placed at the 452 
free end to measure deformations automatically. The fixed stops for E-2 and SAA were situated at depths 453 
of 70 meters and 40 meters below the surface, respectively. In addition to groundwater level data, 454 
information regarding significant rainfall events in this area was also measured and is presented in Table 455 
2. 456 
Table 1. Device installation time points. 457 

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 
Groundwater 

level gauge 
A-17 

No data A-18-2 
No data A-20 
No data A-24 

Extensometer No data E-2 
No data SAA 

 458 
Based on the collected data, analyses have examined the correlation between groundwater levels 459 

and deep-seated landslide displacement at Lushan Mountain. To observe this correlation, graphs 460 
illustrating the precipitation of recorded heavy rainfall (Figure 7A), variations in displacement (Figure 7B 461 
and Figure 7C), and groundwater levels (Figure 7D) over time have been plotted. 462 

 463 
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464 

   465 

 466 

 467 
Figure 7. Unified timeline visualization of data in this study: A) Precipitation of recorded heavy rainfall in the studied area; 468 
B) Measured displacements from extensometer SAA C) Measured displacements from extensometer E_2; D) Groundwater 469 

levels at stations A-17, A-18-2, A-20, and A-24. 470 
The graphs above show that the displacement values at both stations often exhibit significant 471 

increases coinciding with periods of pronounced fluctuations in groundwater levels. Specifically, in June 472 
2012, there was a notable surge in groundwater levels attributed to heavy rainfall from June 8, 2012, to 473 
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June 17, 2012, totaling 1029 mm over 219 hours (as indicated in Table 2 and Figure 7A). The abnormal 474 
rise in groundwater levels led to increased pore water pressure, which triggered deep-seated landslide 475 
displacement at both stations, namely E_2 and SAA, as evidenced in Figure 7B and Figure 7C. 476 
Table 2. Heavy rainfall events in the study area. 477 

No. Rain onset 
(month/day/year hour: 

minute) 

Rain end time 
(month/day/year 

hour: minute) 

Accumulating 
rainfall 
(mm) 

Drop rain 
hour 
(hr) 

Event 

1 7/17/2008 14:00 7/19/2008 21:00 418 55 Kameiji typhoon 
2 9/112008 16:00 9/15/2008 12:00 943.5 92 Pungentmusc typhoon 
3 9/28/2008 1:00 9/30/2008 10:00 523.5 57 Rose honey typhoon 
4 8/4/2009 3:00 8/12/2009 20:00 931 209 Mopull typhoon 
5 6/8/2012 13:00 6/17/2012 16:00 1029 219 Torrential rain 
6 7/30/2012 7:00 8/3/2012 11:00 370 100 Supull typhoon 
7 5/10/2013 16:00 5/25/2013 1:00 597 345 Torrential rain 
8 7/12/2013 19:00 7/15/2013 23:00 330 76 Suprofit typhoon 
9 9/20/2013 22:00 9/23/2013 18:00 347 68 Usagi typhoon 
10 5/9/2014 5:00 5/22/2014 3:00 326.5 310 Torrential rain 
11 7/22/2014 14:00 7/24/2014 0:00 321.5 34 Madham typhoon 
12 6/1/2017 11:00 6/4/2017 21:00 897 82 Torrential rain 
13 6/11/2017 17:00 6/19/2017 3:00 638.5 178 Torrential rain 

 478 
 Similar events occurred in November 2017. Heavy rainfall totaling 638.5 mm over 178 hours during 479 
this period also caused a sudden alteration in groundwater levels, resulting in significant deep-seated 480 
landslide displacement. Through comparison, it is apparent that there were up to 13 instances of 481 
anomalous heavy rainfall during the study period. However, not every example of heavy rain resulted in 482 
significant fluctuations in groundwater levels, leading to substantial displacement. Hence, data regarding 483 
groundwater level elevation will be used to predict deep-seated landslides rather than rainfall data. 484 
 In addition to groundwater level data, weather factors such as temperature and humidity are also 485 
utilized as input data for the prediction model. This study includes temperature as an input variable for AI 486 
models to predict deep-seated landslide displacement due to its impact on soil structure. Elevated 487 
temperatures can cause thermal expansion of soil particles, which can increase pore water pressure and 488 
reduce effective frictional resistance forces (Pinyol et al., 2018). Additionally, previous research has 489 
shown a relationship between temperature and the likelihood of landslides in clay-rich soils, which are 490 
also present in the geological composition of Lushan Mountain (Shibasaki et al., 2017; Loche and Scaringi, 491 
2023). 492 
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This study collected groundwater level and displacement data on-site using sensors. Furthermore, 493 
temperature and humidity data were obtained from the website https://power.larc.nasa.gov. This dataset 494 
is part of the Prediction of Worldwide Energy Resource (POWER) project, developed by the National 495 
Aeronautics and Space Administration (NASA) of the United States. The POWER solar data derives from 496 
satellite observations, which are used to infer surface insolation values. Meteorological parameters are 497 
sourced from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-498 
2) assimilation model. The primary solar data is available with a global resolution of 1° x 1° 499 
latitude/longitude, while the meteorological data is provided at a finer resolution of ½° x ⅝° 500 
latitude/longitude. Users can download the data hourly, daily, or monthly through this website. 501 
 Table 3 displays the input and output variables for AI models to predict deep-seated landslide 502 
displacement at Lushan Mountain. Two datasets will be generated: one for predicting displacement at the 503 
E_2 station and another for indicating displacement at the SAA station. Table 4 outlines the number of 504 
data points for each dataset and illustrates how the data is divided into training and testing sets. 505 
Table 3. Input and output variables of a model predicting deep-seated landslide displacement. 506 

 Attributes 
group 

Attributes 
Variable 

ID 
Dataset of 

E_2 station 
Dataset of 

SAA station 

Output 
variables 

Deep-seated 
landslide 
displacement 
measures 

Displacement 
extensometer at station 
E_2 (mm) 

Y1  - 

Displacement 
extensometer at station 
SAA (mm) 

Y2 -  

Input 
variables 

Groundwater 
level data 

Groundwater level at 
station A-17 (m) X1   

Groundwater level at 
station A-18-2 (m) X2   

Groundwater level at 
station A-20 (m) X3   

Groundwater level at 
station A-24 (m) 

X4   

Weather data 

Temperature at 2 meters 
(oC) 

X5   

Specific humidity at 2 
meters (g/kg) 

X6   

https://power.larc.nasa.gov/
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Table 4. Number of data points. 507 
Quantity of data points Dataset of the E-2 station Dataset of SAA station 

Total data samples 68312 51679 

Count of training samples 

(90% of the total sample) 

61477 

(2009/07/15-2016/09/07) 

46523 

(2011/07/13 – 2016/11/16) 

Count of testing samples 

(10% of the total sample) 

6835 

(2016/09/07-2017/06/20) 

5156 

(2016/11/16-2017/06/20) 

4.3 Data Preprocessing 508 
Firstly, the data in this study will undergo a normalization process to scale all features to a consistent 509 

range (typically between 0 and 1). This step is essential to ensure that the model considers the importance 510 
of each feature, thereby enhancing overall prediction accuracy (Han et al., 2006). 511 

In the current study, the sliding window technique is implemented after data normalization to 512 
organize data according to a specific time frame. This involves using historical data from previous steps 513 
to predict the output for subsequent steps (Chou and Ngo, 2016). The forecasting horizon refers to the 514 
length of time into the future for which output forecasts are made. 515 

The basic process of the sliding window technique is illustrated in Figure 8. To train AI models, this 516 
study opts for a window size of one week (equivalent to 168 hours). This fixed window size is utilized 517 
exclusively for single AI models. Subsequently, the hybrid model's AEIO algorithm and other 518 
hyperparameters will fine-tune the window size to determine the most suitable settings. 519 

 520 
Figure 8. Sliding window technique. 521 

This study focuses on predicting deep displacement values at two distinct time intervals: 1 day ahead 522 
(+24 hours) and seven days ahead (+168 hours). These forecast horizons are strategically chosen to 523 
provide timely information, enabling management departments to make accurate decisions regarding 524 
evacuating people and assets from areas prone to landslides. 525 



22 
 

Specifically, for valuable assets and machinery that require time for relocation from landslide-prone 526 
areas, having advance knowledge of the landslide event one week ahead of relocation is crucial. 527 
Furthermore, for humans, animals, or other assets that can be evacuated more swiftly, predicting the 528 
landslide one day in advance is sufficient to ensure safety. 529 

The predicted outputs are quantified in mm/day, facilitating decision-making for administrators 530 
according to the TGS-SLOPEM106 standard (Ruitang et al., 2017). Table 5 outlines suggested actions 531 
corresponding to different degrees of deep displacement as per the TGS-SLOPEM106 standard issued by 532 
the Taiwan government. 533 
Table 5. Recommendations are taken from TGS-SLOPEM106 for addressing displacement values in the 534 
early stages of deep sliding.  535 

Classification of 
the displacement 

value 
Attention value Warning value Action value 

Corresponding 
displacement value 

2 mm/month 0.5 mm/day 10 mm/day 

Condition of 
slopes 

The slope started to slip or 
slowly move 

The hill is undergoing 
constant-velocity descent. 

The rate of slope 
movement is 
increasing, elevating 
the risk of collapse. 

Recommendations 
on monitoring 
activities 

- Inspect the monitoring 
system for any 
irregularities and consider 
increasing the frequency 
of visual inspections 

- Enhance the frequency 
of the automated 
monitoring system 

- Implement a 
rigorous monitoring 
system frequency 

Countermeasures 

- Conduct a slope stability 
investigation and 
assessment - Develop a 
reinforcement and 
improvement plan to 
enhance slope stability 

- Execute emergency 
slope reinforcement 
procedures 
- Develop an emergency 
response plan for 
individuals and vehicles 
within the landslide area 

- Evacuate people 
and vehicles from the 
landslide area 

5. Model Development and Analysis Results 536 
5.1 Model Development 537 

Predicting deep-seated landslide displacement at Lushan Mountain is undoubtedly highly 538 
challenging, given that such landslides depend on numerous factors. Therefore, multiple methods will be 539 
employed simultaneously to identify the optimal AI model for prediction. These methods include single 540 
machine learning, time series deep learning, CNN, and hybrid models. 541 
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This study will conduct a testing process to systematically identify the optimal model capable of 542 
accurately predicting deep-seated landslides. An illustration of this process can be found in Figure 9. 543 
Initially, the study will sequentially employ various single numerical AI models, such as machine learning 544 
models (LR, ANN, SVR, CART, RBFNN, XGBoost) and time series deep learning models (RNN, R-545 
RNN, LSTM, R-LSTM, GRU, R-GRU), to forecast displacement. 546 

Numerical 
model

Machine learning models

LR, ANN, SVR, CART, 
RBFNN, XGBoost

Time series deep learning 
models

RNN, R-RNN, LSTM, 
R-LSTM, GRU, R-GRU

Optimal 
numerical 

model

Hybrid numerical model - 
AEIO

Identify the best numerical 
model

Optimal parameters

Use AEIO algorithm to 
finetune hyperparameter of 

numerical models Prediction accuracy

CNN model

CNN models

VGG, ResNet, Inception, 
Xception, MobileNet, 
DenseNet, NASNet

Identify the best CNN models

Optimal 
CNN model

Hybrid CNN model - AEIO

Use AEIO algorithm to 
finetune hyperparameters of 

CNN models

Optimal parameters

Prediction accuracy

Optimal best 
model for 
prediction

Compare models by 
evaluation metrics Optimal best model Prediction

 547 
Figure 9. Diagram illustrating the steps for selecting the optimal AI model to predict deep-seated 548 

landslide displacement. 549 
Subsequently, the model with the highest prediction accuracy will be selected for integration with 550 

the AEIO algorithm, forming a hybrid model. In this hybrid model, the hyperparameters of the best 551 
numerical AI model will be fine-tuned by the AEIO algorithm to enhance prediction accuracy. 552 
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In addition to the numerical AI models, this study employs individual CNN models for predicting 553 
deep-seated landslide displacement. Subsequently, similar to the approach above, the best CNN model 554 
with the highest displacement prediction capability will be fine-tuned by the AEIO algorithm within a 555 
hybrid model. In the final step, a comparison process between the two hybrid models— one comprising 556 
the best numerical model and the other involving the best CNN model fine-tuned by AEIO— will be 557 
conducted to select the optimal model for this study. 558 
5.2 Analysis Results 559 

This section will present the experimental results of the steps outlined in Figure 9, along with relevant 560 
metrics and analysis. 561 
5.2.1 Numerical Models 562 
a. Machine Learning Models 563 

Initially, single machine learning models will predict deep-seated landslide displacement. In this 564 
phase, machine learning models will utilize default hyperparameters, as detailed in the research of Chou 565 
and Nguyen (2023). The prediction results of these models at both E-2 and SAA stations are displayed in 566 
Table 6. These results show that most machine learning models demonstrate a relatively good predictive 567 
capability for displacement, particularly the XGBoost model, which exhibits MAPE values ranging from 568 
8.14% to 9.58%. Following closely, CART also produces favorable prediction results, with MAPE 569 
ranging from 8.53% to 9.76%. Regarding prediction accuracy, XGBoost and CART models outperform 570 
LR, ANN, SVR, and RBFNN models. 571 
Table 6. Performance results of machine learning models for predicting deep-seated landslide 572 
displacement. 573 

Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

E-2-station 

LR 10.70 11.22 22.61 21.32 28.17 31.96 0.0001 0.003 

ANN 12.31 13.31 22.19 24.92 26.56 32.54 129.80 212.83 

SVR 12.46 12.47 21.98 22.56 26.27 28.05 162.55 174.44 

CART 8.53 8.67 15.67 16.87 25.16 27.81 1.50 2.57 

RBFNN 15.13 15.19 23.81 22.56 28.42 31.96 2.32 4.10 

XGBoost 8.14 8.36 14.80 14.68 23.07 23.92 1.58 3.28 

SAA-station 

LR 11.18 12.11 11.51 11.64 17.26 16.07 0.01 0.01 

ANN 10.91 10.93 9.43 10.45 16.55 15.92 116.78 190.69 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

SVR 10.55 10.94 10.87 9.18 15.64 13.42 136.01 346.30 

CART 10.57 10.76 7.11 7.30 13.51 10.63 0.91 1.59 

RBFNN 14.51 14.95 11.38 12.68 17.13 19.06 4.20 8.76 

XGBoost 9.17 9.58 8.43 7.83 16.36 16.97 1.12 2.29 

Moreover, the results in Table 6 also indicate that there is not a significant difference in the prediction 574 
errors of the machine learning models at both E-2 and SAA stations, as the error values for both stations 575 
are nearly equal across all machine learning models. Regarding the running time, the LR model 576 
demonstrates the shortest duration, ranging from 0.001 to 0.1 seconds for all runs. However, the prediction 577 
accuracy of this model could be higher, as mentioned earlier. In this case, the machine learning model 578 
with the longest running time is SVR, ranging from 136.01 to 346.3 seconds. This, combined with the low 579 
MAPE score, indicates that the SVR model operates inefficiently with the dataset in this study. After 580 
reviewing the results of the machine learning models in this section, it is observed that XGBoost is the 581 
most suitable machine learning model for predicting deep-seated landslides, exhibiting both high 582 
prediction accuracy and a short running time. 583 
b. Time series deep learning models 584 
 Similar to the machine learning models, in this section, the time series deep learning models will 585 
also be trained with default hyperparameters, as found in the research of Chou and Nguyen (2023). The 586 
performance results of these models are shown in Table 7. Overall, akin to the machine learning models, 587 
the time series deep learning models also demonstrate fairly good prediction accuracy, especially the best 588 
model - R-GRU model, with MAPE ranging from 7.95 to 9.13%. 589 
Table 7. Performance results of time series deep learning models for predicting deep-seated landslide 590 
displacement. 591 

Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

E-2-station 

RNN 12.72 12.92 23.61 24.75 31.18 29.62 83.24 177.53 

R-RNN 12.31 12.84 22.88 21.97 30.20 34.42 91.47 114.33 

LSTM 8.42 8.57 17.87 16.31 21.41 22.98 123.10 151.91 

R-LSTM 8.13 8.75 16.63 17.84 22.85 24.67 148.56 161.14 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

GRU 8.43 10.15 16.06 19.38 22.46 26.75 141.50 164.26 

R-GRU 7.90 8.16 15.09 15.69 20.84 23.32 156.97 172.96 

SAA-station 

RNN 11.92 13.98 17.61 12.65 25.71 23.19 36.77 60.31 

R-RNN 14.60 14.73 18.77 13.85 26.19 24.97 49.26 59.06 

LSTM 10.64 10.94 12.73 12.25 29.21 29.57 62.84 113.76 

R-LSTM 10.14 10.35 11.77 11.60 26.10 27.48 70.94 87.48 

GRU 9.32 9.28 18.05 18.11 25.26 22.41 69.56 211.77 

R-GRU 8.03 9.13 18.84 17.85 21.57 21.86 79.81 212.75 

 592 
The performance of the R-GRU model surpasses that of the GRU model because the R-GRU model 593 

learns patterns from time series data in both forward and backward directions on the timeline, thereby 594 
capturing more patterns. Furthermore, the R-GRU model produces significantly better prediction results 595 
with a more complex learning mechanism than other time series deep learning models. However, due to 596 
its complex operational mechanism, the R-GRU model also requires more processing time than other time 597 
series deep learning models. From the results of Table 7, it is observed that the operating time of the R-598 
GRU model ranges from 79.81 to 212.75 seconds. 599 

From the conducted analyses, R-GRU has been identified as the best time series deep learning model, 600 
owing to its excellent prediction performance. Compared to the best machine learning model, XGBoost 601 
(with MAPE ranging from 8.14% to 9.58%), the R-GRU model (with MAPE ranging from 7.90 to 9.13%) 602 
demonstrates higher prediction accuracy. Therefore, the R-GRU model will be chosen as the best 603 
numerical AI model. 604 
5.2.2 Best Numerical Model Finetuned by AEIO Algorithm 605 

This section will focus on fine-tuning the hyperparameters of the numerical model to enhance its 606 
performance in predicting deep-seated landslide displacement. The AEIO algorithm will fine-tune the 607 
hyperparameters of the study's best numerical AI model, the R-GRU model. Details regarding the names 608 
and search ranges of the hyperparameters are outlined in Table 8. The objective function of the AEIO 609 
algorithm during the fine-tuning process is to minimize the MAPE value of the R-GRU model. 610 
Table 8. Search ranges of the hyperparameters of the optimal hybrid numerical models (Chou and Nguyen, 611 
2023). 612 
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Hybrid model Hyperparameter Search range 

AEIO-R-GRU Window size [1-720] 

Number of hidden units [1-400] 

Learning rate [0.0001, 0.5] 

Dropout [0.00, 0.99] 

Number of epochs [10, 120] 

Batch size [32, 64] 

 613 
Table 9 illustrates the results of the fine-tuning process. From this table, it is observed that the AEIO 614 

algorithm has successfully identified the optimal hyperparameters of the R-GRU model, significantly 615 
improving the prediction accuracy of this model. For instance, the MAPE in predicting 1-day-ahead 616 
displacement of R-GRU before fine-tuning was 7.9%, but this number decreased to only 3.03% after fine-617 
tuning. 618 
Table 9. Performance results of hybrid time-series deep learning model with AEIO in deep-seated 619 
landslide displacement prediction. 620 

 Model MAPE (%) MAE (mm) RMSE (mm) Time (s) 
One-day-

ahead 
displacement 

prediction 

E-2-station 
AEIO-R-GRU 3.03 6.89 17.98 196 

SAA-station 
AEIO-R-GRU 3.94 4.16 11.20 184 

Seven-day-
ahead of 

displacement 
prediction 

  E-2-station   
AEIO-R-GRU 6.38 10.02 18.05 261 
  SAA-station   
AEIO-R-GRU 7.96 12.49 7.82 248 

 621 
Fine-tuning the R-GRU model using AEIO will maximize its potential, minimizing the prediction 622 

error to the lowest possible level. Therefore, the results obtained in this section reflect the actual quality 623 
of the dataset as well as the level of difficulty in prediction. Specifically, based on the results in Table 9, 624 
it is observed that the predictions for one-day ahead displacement (with MAPE of 3.03% and 3.94%) 625 
consistently outperform those for seven-days ahead displacement (with MAPE of 6.38% and 7.96%). 626 

One-day-ahead predictions have a shorter time horizon, making them less affected by environmental 627 
fluctuations and making changes more accessible to predict. Conversely, in the case of seven-day-ahead 628 
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displacement prediction, this timeframe is long enough for various factors, such as weather conditions and 629 
human interventions, to occur, increasing uncertainty and volatility in the predicted figures. 630 

Additionally, Table 9 indicates that predictions from the dataset of the E-2 station consistently 631 
outperform those of the SAA station. Specifically, the displacement prediction at the E-2 station is 3.03% 632 
and 6.38%, better than the corresponding numbers for the SAA station, which are 3.94% and 7.96%, 633 
respectively. This is attributed to the dataset collected by the E-2 station being more comprehensive and 634 
gathered over a more extended period than the SAA station (as shown in Table 4). 635 

Table 10 presents the optimal hyperparameters identified by the AEIO algorithm. Furthermore, in 636 
terms of running time, most models, after fine-tuning, exhibit longer running times compared to the 637 
original model. However, this increase is entirely acceptable since the additional running time is minimal, 638 
and the benefits of fine-tuning are significant, as mentioned above, aiding in the model's more efficient 639 
operation. 640 
Table 10. Optimal hyperparameters of the time series deep learning model identified by the AEIO 641 
algorithm. 642 

 

Model Window 
size 

Number 
of 

hidden 
units 

Dropout 
rate 

Learning 
rate 

Number 
of 

epochs 

Batch 
size 

One-day-
ahead 

displacement 
prediction 

E-2-station 
AEIO-R-GRU 41 81 0.27 0.7 18 64 

SAA- station 
AEIO-R-GRU 54 145 0.19 0.46 32 32 

Seven-day-
ahead of 

displacement 
prediction 

E-2- station 
AEIO-R-GRU 97 164 0.24 0.61 20 32 

SAA- station 
AEIO-R-GRU 69 147 0.28 0.31 17 32 

 643 
5.2.3 Image-Based CNN Models 644 

This section presents the results of utilizing CNN models, including VGG, ResNet, Inception, 645 
Xception, DenseNet, and NASNet, to predict deep-seated landslide displacement. The CNN models in 646 
this part use the default settings (Chou and Nguyen, 2023). Table 11 displays the prediction error results 647 
of the CNN models for one-day-ahead and seven-day-ahead forecasts for both E-2 and SAA stations. 648 
Table 11. Performance results of the CNN models for deep-seated landslide displacement prediction. 649 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-

day-

ahead 

E-2- station 

VGG16 4.58 7.38 12.73 13.97 26.54 35.69 3.03 3.31 

VGG19 4.47 6.30 12.53 15.11 25.74 32.82 3.14 2.82 

ResNet50V2 4.87 7.68 15.28 12.52 31.82 27.19 2.99 3.44 

ResNet101V2 4.61 6.60 9.81 9.08 34.67 32.74 2.24 2.96 

ResNet152V2 4.71 6.46 7.26 12.60 21.13 19.08 2.94 2.05 

InceptionV3 4.99 7.30 11.18 11.65 32.97 34.92 2.43 3.27 

InceptionRestNetV2 13.32 15.78 22.51 27.08 76.75 61.11 3.22 3.08 

Xception 5.27 7.34 11.60 10.20 35.86 30.68 2.94 3.29 

MobileNet 4.11 8.92 12.22 13.62 47.43 31.72 1.21 1.44 

DenseNet121 11.15 11.13 16.30 21.49 37.68 46.51 3.32 3.99 

DenseNet169 4.74 7.86 11.44 12.20 17.09 36.28 3.02 3.52 

DenseNet201 4.66 5.30 8.11 7.44 21.82 10.39 2.09 2.29 

NASNetMobile 13.82 15.91 31.00 19.52 46.07 55.65 2.53 3.13 

NASNetLarge 13.20 34.23 20.46 61.81 61.52 75.39 3.89 3.93 

SAA- station 

VGG16 5.76 7.90 6.07 12.76 9.48 8.95 3.14 3.36 

VGG19 5.95 7.32 9.14 13.45 11.68 7.03 3.55 3.20 

ResNet50V2 9.87 9.35 12.43 13.81 15.71 9.75 4.57 3.83 

ResNet101V2 8.48 17.68 10.56 19.36 11.47 21.94 3.54 3.40 

ResNet152V2 9.43 11.42 12.32 10.35 14.91 13.27 3.35 3.88 

InceptionV3 10.96 8.11 12.73 9.13 14.48 12.71 3.80 3.18 

InceptionRestNetV2 9.86 11.08 13.51 16.75 18.04 21.59 3.23 2.91 

Xception 7.42 7.28 7.82 7.08 10.13 10.47 3.48 3.60 

MobileNet 7.12 6.80 8.28 9.92 11.58 13.83 1.43 2.13 

DenseNet121 8.69 11.69 8.56 14.39 12.54 15.76 3.93 3.42 

DenseNet169 6.55 9.56 6.16 9.61 11.08 15.51 3.60 3.76 

DenseNet201 6.36 10.45 7.46 11.62 9.37 14.51 2.51 3.13 

NASNetMobile 10.31 22.12 13.86 62.04 18.95 43.51 3.56 2.88 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-

day-

ahead 

NASNetLarge 10.25 13.69 11.20 14.05 15.95 19.09 3.18 3.34 

 650 
The prediction results demonstrate that most CNN models produce highly accurate predictions. 651 

Specifically, predictions made by VGG, ResNet, MobileNet, DenseNet, and Inception exhibit MAPE 652 
values below 5%. Among these, MobileNet and DenseNet201 emerge as the two models with the highest 653 
accuracy. For one-day-ahead prediction, the best model for predicting displacement at the E-2 station is 654 
MobileNet, with a MAPE of 4.11%, and the best model for predicting displacement at the SAA station is 655 
DenseNet201, with a MAPE of 6.36%. For seven-day-ahead prediction, the best model for predicting 656 
displacement at the E-2 station is DenseNet201, with a MAPE of 5.3%, and the best model for predicting 657 
displacement at the SAA station is MobileNet, with a MAPE of 6.8%. These models will be selected 658 
accordingly for fine-tuning in the subsequent section. 659 

Regarding running time, the CNN models in this section exhibit significantly longer running times 660 
compared to the numerical models in the previous sections. For example, the running time of the best 661 
CNN model to predict one-day-ahead displacement at the E-2 station—MobileNet—is 1.21 hours. In 662 
contrast, the running time of the best single numerical model for predicting this index is 159.97 seconds. 663 

While CNN models yield better prediction results, considering their extended running times, users 664 
need to weigh practical considerations before opting for this type of model. For instance, CNN models 665 
should be employed in cases requiring accurate predictions for research and measurement purposes. 666 
Conversely, numerical models like R-GRU are more suitable for real-time predictions and computations 667 
on low-performance devices. 668 
5.2.4 Best CNN Models Finetuned by AEIO Algorithm 669 

As analyzed in Section 5.2.3, the AEIO algorithm will sequentially fine-tune CNN models to enhance 670 
prediction accuracy. Table 12 illustrates the search range of hyperparameters for the CNN models to be 671 
fine-tuned. Table 12 presents the performance results of the CNN models after being fine-tuned. 672 
Table 12. Search ranges of the hyperparameters of the optimal hybrid numerical models (Chou and 673 
Nguyen, 2023). 674 
Hybrid model Hyperparameter Search range 

AEIO-CNN Learning rate [0.00, 0.1] 

Decay [0.00, 0.1] 
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Hybrid model Hyperparameter Search range 

Momentum [0.00, 0.99] 

Epsilon [1.0e-7, 0.001] 

Dropout [0.00, 0.99] 

Epochs [10, 120] 

 Batch size [32, 64] 

Table 13. Performance results of best CNN models with AEIO in deep-seated landslide displacement 675 
prediction. 676 

 Model MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

One-day-

ahead 

displacement 

prediction 

E-2-station 

AEIO-MobileNet 2.81 5.09 11.92 1.25 

SAA-station 

AEIO-DenseNet201 3.30 6.32 15.65 3.48 

Seven-day-

ahead of 

displacement 

prediction 

  E-2-station   

AEIO-DenseNet201 4.30 5.32 15.65 3.48 

  SAA-station   

AEIO-MobileNet 5.63 9.35 14.27 3.39 

 677 
However, a challenge in this section is that CNN models primarily analyze and learn from image 678 

data. Therefore, numerical data must be converted into image data before training. This poses a challenge 679 
because current computer hardware may need to be fully capable of efficiently converting numerical data 680 
into images for each computation. Hence, this study utilizes the optimal window sizes previously 681 
identified for fine-tuning numerical models (Table 10) for this scenario and employs these fixed window 682 
sizes for CNN models. 683 

The results of the fine-tuning process demonstrate that the AEIO has successfully identified the 684 
optimal hyperparameters for the CNN models, enhancing their accuracy. For instance, in the case of the 685 
MobileNet model used for one-day-ahead prediction at the E-2 station, the fine-tuning process reduced 686 
the MAPE of this model from 4.11% to 2.81%. A similar trend is also observed in the remaining prediction 687 
scenarios. 688 

Furthermore, similar to the case of AEIO-R-GRU, the CNN models exhibit the same trend, where 689 
one-day-ahead predictions are more accurate than seven-day-ahead predictions. Similarly, forecasts at the 690 
E-2 station demonstrate higher accuracy than predictions at the SAA station. The rationale for this has 691 
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been explained in Section 5.2.2. Lastly, the optimal hyperparameters of each CNN model, identified by 692 
the AEIO algorithm, are presented in Table 14. CNN models with optimal hyperparameters are the most 693 
effective models in this study for predicting deep-seated landslide displacement. 694 
Table 14. Optimal hyperparameters of the CNN models identified by the AEIO algorithm. 695 

 
Model 

Learning 

rate 
Decay Momentum Epsilon Dropout Epochs 

Batch 

size 

One-day-

ahead 

displacement 

prediction 

E-2-station 

AEIO-

MobileNet 

0.0011 0.00095 0.00001 3.0e-7 0.56 15 64 

SAA-station 

AEIO-

DenseNet201 

0.00012 0.0012 0.00011 1.0e-7 0.49 16 64 

Seven-day-

ahead of 

displacement 

prediction 

E-2-station 

AEIO-

DenseNet201 

0.0012 0.0011 0.00022 1.0e-7 0.51 15 64 

SAA-station 

AEIO-

MobileNet 

0.00014 0.00098 0.00011 2.0e-7 0.50 14 64 

Figure 10 illustrates the differences between typical AI models' actual and predicted deep-seated 696 
landslide displacement. Specifically, Figure 10a compares the performance of single models against the 697 
predicted values, while Figure 10b does the same for hybrid models. The chart shows that hybrid models 698 
demonstrate superior predictive capability for deep-seated landslides compared to single models. This is 699 
evident from the displacement line of the hybrid models in Figure 10b, which closely aligns with the actual 700 
deep-seated landslide displacement and significantly outperforms the single models depicted in Figure 701 
10a. 702 

 703 
 704 
 705 
 706 
 707 
 708 
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 709 

 710 
Figure 10. Graph comparing the real and predicted deep-seated landslide displacement: A) Prediction 711 

results of deep-seated landslide displacement by single AI models; B) Prediction results of deep-seated 712 
landslide displacement by AI models optimized using the AEIO algorithm. 713 

5.3 Discussion 714 
This study focuses on landslides in Lushan Mountain, Taiwan, intending to develop models to predict 715 

deep-seated landslide displacement for both 1-day and 7-day forecasts. These predictive models utilize 716 
input data such as the region's groundwater levels, temperature, and humidity. Accurately computing 717 
deep-seated landslide displacement offers several benefits. Firstly, it provides timely information for 718 
engineers to assess the resilience of structures and infrastructure in at-risk areas, facilitating the issuance 719 
of sensible warnings. Secondly, forecasting deep-seated landslide displacement offers insights into the 720 
severity of the disaster, aiding in effective evacuation and rescue planning. 721 

Moreover, unlike AI models in previous studies (Balogun et al., 2021; Hakim et al., 2022; Jaafari et 722 
al., 2022), our research incorporates machine learning, time series deep learning, and CNN models, 723 
utilizing metaheuristic optimization algorithms to fine-tune their hyperparameters. However, the novelty 724 
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of our study lies in adopting pre-trained models, such as MobileNet, DenseNet, Inception, and VGG, 725 
rather than standard CNN models. 726 

By employing various AI models, this study identifies the most effective model for predicting deep-727 
seated landslides and offers a comprehensive overview of the performance of different AI models. Initially, 728 
machine learning models exhibited relatively high prediction errors, with MAPE ranging from 8.14% to 729 
15.19%. This performance was generally lower than time-series deep learning models, which showed 730 
MAPEs ranging from 7.9% to 14.73%. The superior performance of the time series deep learning models 731 
is attributed to their ability to process sequential data and retain information from previous steps. This 732 
enables them to learn patterns from the dataset more effectively than traditional machine learning models. 733 

Although time series deep learning models perform well, they fall short compared to CNN models. 734 
This disparity can be attributed to CNN's more advanced learning mechanism. The convolutional and 735 
pooling layers in CNN enable robust feature extraction from input data, with convolutional layers 736 
particularly effective at identifying complex patterns and subtle features in time series data, especially 737 
when spatial correlations are present. This capability allows CNNs to uncover critical features that other 738 
models may overlook. 739 

The models developed in this study demonstrate predictive solid capabilities for deep-seated 740 
landslide displacement. Among them, the AEIO-MobileNet model is the most effective, achieving 741 
predictions with deficient error, indicated by a MAPE of 2.81%. However, these models' practical 742 
applicability in real-world scenarios must be improved due to the time-consuming processes involved in 743 
data collection, processing, and AI model operation, making timely predictions challenging. Meanwhile, 744 
there have been studies that successfully built real-time landslide detection systems (Wang et al., 2023; 745 
Das et al., 2020; C. et al., 2021). We acknowledge this limitation of our study. Therefore, future research 746 
endeavors will aim to address this issue. 747 

The input data used for the AI models were selected because they significantly influence the 748 
likelihood of deep-seated landslides, as detailed in Section 4.2. However, a limitation of this study is that 749 
it needs to evaluate the relative importance of each input data type on prediction accuracy. Future research 750 
should explore the impact of different combinations of input data on AI model performance. This could 751 
help identify the significance of each input type and reveal the optimal combination of inputs to enhance 752 
prediction accuracy further.    753 
6. Conclusion 754 

This study addresses the persistent threat of large, slow-moving landslides, a primary concern due to 755 
their severe impact on lives and property. Employing various AI models, such as machine learning, time 756 
series deep learning, CNN models, and metaheuristic optimization algorithms, the research focuses on 757 
predicting deep-seated landslides at Lushan Mountain in Ren'ai Township, Nantou County. The study 758 
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aims to enhance early prediction accuracy by utilizing eight years of displacement and groundwater level 759 
data from Lushan Mountain and weather data from the POWER project. The predictions cover one-day 760 
and seven-day intervals, serving diverse purposes in landslide forecasting for timely evacuation. The 761 
research explores single and hybrid AI models to determine the most effective approach. The following 762 
conclusions are drawn from this research: 763 
(a). CNN models optimized by the novel AEIO algorithm yield the best prediction results. In particular, 764 
AEIO-MobileNet predicts one-day-ahead displacement at the E-2 station with a MAPE score of only 765 
2.81%, demonstrating high accuracy. 766 
(b). While CNN models boast high prediction accuracy, their computational time is also considerable. 767 
Therefore, decisions regarding their usage should also consider real-world constraints. 768 
(c). The AEIO-R-GRU model also yields reasonably good prediction results, although not on par with 769 
CNN models. The best result achieved by the AEIO-R-GRU model is a MAPE of 3.03% for one-day-770 
ahead prediction at the E-2 station. 771 
(d). The AEIO algorithm has successfully fine-tuned hyperparameters for AI models. Especially in the 772 
case of predicting one-day-ahead displacement, it has aided the MobileNet model in improving its 773 
predictive capability by 31.6%, enabling this model to provide more accurate predictions. 774 
(e). The prediction results from the E-2 station consistently outperform those from the SAA station. This 775 
is attributed to the fact that data from the E-2 station has been collected over a longer and more 776 
comprehensive period. 777 
(f). The study results demonstrate that AI models can accurately predict deep-seated landslide 778 
displacement, which can be implemented in real-world scenarios. 779 
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Appendix A: Deep Learning Models for Time Series  1060 
The architecture of an RNN includes an input layer, a hidden layer with a variable number of RNN 1061 

cells, and an output layer designed for label identification based on future displacement values. Figure A1 1062 
illustrates the structure of simple RNNs.  1063 

 1064 
Figure A1. Structure of basic RNNs. 1065 

Each cell in an RNN acts as a memory cell, which is interconnected to enable the sequential transfer 1066 
of time-dependent input information within a sliding window. This makes it possible to consider temporal 1067 
correlations between events that may be widely separated in the time dimension. The following formula 1068 
presents the hidden unit of standard RNNs at time t:  1069 
ℎ𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ ∗ ℎ𝑡𝑡−1 + 𝑏𝑏)                                                                                          (A1) 1070 
where xt is the input vector at time t; ht is the output vectors of hidden units for 1071 
time t; Wx and Wh respectively indicate the input and interconnected weight matrices for the output of the 1072 
hidden layer; b is the bias term; and tanh() represents the hyperbolic tangent activation function, i.e., 1073 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 1−𝑒𝑒2𝑥𝑥

1+𝑒𝑒2𝑥𝑥
 . The mechanism of learning over time steps, stored within cells, enables RNNs to 1074 

effectively capture complex relationships between cells and time sequences. However, as the duration of 1075 
dependencies increases, RNN models are susceptible to issues related to vanishing gradients. Therefore, 1076 
RNNs are well-suited to learning time series involving short-term dependencies. 1077 
Appendix B: Convolutional Neural Networks 1078 

The architecture of a typical CNN, as illustrated in Figure B1, comprises an input layer (to receive 1079 
image data), followed by hidden layers (including convolutional, pooling, and fully connected layers), and 1080 
concludes with the output layers. As depicted in Figure B1, the complexity of CNN progressively 1081 
increases from the convolutional layer to the fully connected (FC) layer. This design enables CNN to 1082 
recognize relatively simple patterns (lines, curves, etc.) before progressing to capture more intricate 1083 
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features (faces, objects, etc.), with the ultimate aim of extracting relevant information for accurate pattern 1084 
identification. 1085 

 1086 
Figure B1. Structure of basic CNN. 1087 

As illustrated in Figure B2, the convolutional layer is responsible for most computations in the 1088 
network. This involves extracting local features from an image using a set of learnable filters known as 1089 
kernels. The behavior of the filter in the convolutional layer is influenced by two main factors: stride and 1090 
padding. Stride refers to the pixel shift of the filter across the image, while padding aims to preserve 1091 
information at the corners. In each iteration, a portion of the image is convolved with a filter to generate 1092 
a dot product of pixels within its receptive field. This process is replicated across the entire image to 1093 
produce a feature map. The convolution operation is defined as follows: 1094 

𝐶𝐶𝑖𝑖 = 𝑏𝑏𝑖𝑖 + ∑ 𝐼𝐼𝑗𝑗 ∗ 𝐹𝐹𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖
𝑗𝑗=1 , 𝑖𝑖 = 1 …𝑑𝑑𝑐𝑐                                                                                     (B1) 1095 

where 𝐶𝐶𝑖𝑖 is the output of the convolutional layer or feature map, 𝑏𝑏𝑖𝑖 R is the bias, 𝑑𝑑𝑖𝑖 is the depth of input, 𝐼𝐼𝑗𝑗 R 1096 

is the input image, 𝐹𝐹𝑖𝑖𝑖𝑖 is the filter, and 𝑑𝑑𝑐𝑐 is the depth of the convolutional layer. 1097 

 1098 
Figure B2. Processing flow in convolution layer. 1099 
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The multiplicative operations are usually followed by an activation function (the final element in the 1100 
convolutional layer), which introduces nonlinearity and creates intricate mappings between network 1101 
inputs and outputs. The activation function can be defined as follows: 1102 
𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝐶𝐶𝑖𝑖)                      (B2) 1103 
where, 𝑌𝑌𝑖𝑖  is the output of the convolutional layer after the activation function, and f is the activation 1104 
function. 1105 

A rectified linear unit ReLU is a nonlinear CNN function with output ƒ(x) = max(0, x). A ReLU 1106 
converts all negative values to zero or returns the original input values if the input exceeds zero. ReLU is 1107 
only one of many activation functions; however, it has proven to be the most effective overall. 1108 

Pooling layers after the convolution layer can down-sample feature maps by summarizing features 1109 
within the coverage area of a 2-D filter to reduce sensitivity to feature location, thereby improving 1110 
resilience to changes in the position of features. Pooling layers also decrease the dimensions of the feature 1111 
map, reducing the number of parameters to be dealt with, thereby decreasing computational overhead. 1112 
Output dimensions from the pooling layer are computed as follows: 1113 
𝑐𝑐𝑤𝑤−𝑓𝑓𝑤𝑤+1

𝑠𝑠
∗ 𝑐𝑐ℎ−𝑓𝑓ℎ+1

𝑠𝑠
∗ 𝑐𝑐𝑛𝑛                 (B3) 1114 

where 𝑐𝑐𝑛𝑛 is the number of channels in the feature map and 𝑓𝑓𝑤𝑤 ∗  𝑓𝑓ℎ indicate the width and height of the 1115 
filter. 1116 

Max pooling and average pooling are commonly used in CNN. Max pooling accentuates salient 1117 
features by selecting the maximum value within the filter's coverage area. In contrast, average pooling 1118 
calculates the mean value within the exact location, providing a representative feature value. Illustrations 1119 
of max pooling and average pooling are presented in Figure B3. 1120 

 1121 
Figure B3. Max Pooling and Average Pooling. 1122 

The final stage of a CNN comprises a series of fully connected (FC) layers. After the convolution 1123 
and pooling operations, the feature map is flattened into a one-dimensional vector that connects to the FC 1124 
layers, resembling an ANN. FC layers identify specific features, each represented by a neuron. In 1125 
regression tasks, each neuron in the FC layer corresponds to a feature contributing to the final numerical 1126 
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output. The value transmitted by each neuron indicates its significance toward the regression result. FC 1127 
layers are designed to predict the best continuous value for the target variable by combining and processing 1128 
these neuron outputs. Figure B4 illustrates the structure of an FC layer. 1129 

 1130 
Figure B4. Structure of fully connected layer. 1131 
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