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Abstract 8 
Deep-seated landslides, becoming increasingly frequent due to changing climate patterns, pose significant 9 
risks to human life and infrastructure. This research contributes to landslides have caused substantial 10 
damage to both human life and infrastructure in the past. Developing an early warning system for this type 11 
of disaster is crucial to reduce its impact on society. This research contributes to developing predictive 12 
early warning systems for deep-seated slope displacements by employing advanced computational models 13 
for environmental risk management. Our novel framework integrates machine learning, time series deep 14 
learning, and convolutional neural networks (CNN), enhanced by the Age of Exploration-Inspired 15 
Optimizer (AEIO) algorithm. Our approach demonstrates exceptional forecasting capabilities by utilizing 16 
eight years of comprehensive data—including displacement, groundwater levels, and meteorological 17 
information from the Lushan Mountain region in Taiwan. The AEIO-MobileNet model stands out for its 18 
precision is precise in predicting imminent slope displacements with a mean absolute percentage error 19 
(MAPE) of 2.81%. These advancements significantly enhance geohazard informatics by providing 20 
reliable and efficient landslide risk assessment and management tools. These safeguard road networks, 21 
construction projects, and infrastructure within vulnerable slope areas. 22 

Keywords: deep-seated landslide; displacement forecasting; landslide risk assessment; early warning 23 
system; machine learning; time-series deep learning; convolutional neural network; metaheuristic 24 
optimization. 25 

1. Introduction 26 
The 378 landslides recorded worldwide between 1997 and 2017 resulted in the deaths of 18,414 27 

people and left 4.8 million others injured, with associated costs estimated at around USD 8 billion 28 
(Ageenko et al., 2022) Landslides are among the most devastating natural disasters (Huang and Fan, 2013), 29 
claiming an average of over 4,000 lives annually worldwide between 2004 and 2010 (Petley, 2012). 30 
Landslides represent a global hazard, particularly in developing countries, where rapid urbanization, 31 
population growth, and significant land use changes occur (Caleca et al., 2024). The identification, 32 
management, and monitoring of landslides are made difficult by the diversity of their types (shallow slides, 33 

mailto:jschou@mail.ntust.edu.tw
mailto:huyphuong777@gmail.com
mailto:klwang@ncnu.edu.tw
mailto:jschou@mail.ntust.edu.tw


2 
 

deep-seated slides, rock falls, rock slides, debris flows) and the complexity of their categorization based 34 
on triggers, material composition, movement speed, and other characteristics (Das et al., 2022; Hungr et 35 
al., 2014). These issues are further exacerbated in countries with complex geological and climatic 36 
conditions. 37 

Deep-seated landslides, or gravitational deformations, involve slow movement of soil or rock at 38 
depths greater than 10m, impacting large areas and leading to significant debris flows (Dou et al., 2015). 39 
A deep-seated landslide involves the gradual and persistent displacement of a substantial amount of soil 40 
and rock, which can escalate into a sudden and devastating event (Kilburn and Petley, 2003; Geertsema 41 
et al., 2006; Chigira, 2009). Unlike shallow landslides, which typically affect surface layers to a few 42 
meters, deep-seated landslides extend deeper, often exceeding 10 meters, and can involve the movement 43 
of underlying bedrock (Lin et al., 2013). Predicting these events is challenging and costly (Thai Pham et 44 
al., 2019). Therefore, extensive efforts have been made to predict such disasters throughout history. One 45 
method that has been employed involves thoroughly examining the physical and geological characteristics 46 
of the mountainous areas at risk of landslides (Cotecchia et al., 2020). Furthermore, the level of 47 
groundwater has been shown by numerous studies in the past to influence the mechanisms behind 48 
landslide formation significantly (Miao and Wang, 2023; Preisig, 2020). Consequently, in this study, 49 
groundwater levels will serve as inputs for models designed to predict landslides. 50 

In pursuing a generalized approach to landslide forecasting, researchers have determined that the 51 
critical factors associated with slope instability exhibit temporal variability, necessitating using time series 52 
data (Chae et al., 2017). This approach combines slope deformation data collected through sensors drilled 53 
deep into the slope bed with data on the natural conditions of the monitoring area, which is collected 54 
simultaneously. Upon establishing that the data pertinent to landslide prediction falls within the category 55 
of time series data, a formidable challenge in research related to this type of disaster is devising a predictive 56 
model capable of forecasting the likelihood of such catastrophes based on related factors. 57 

One of the most effective solutions for constructing models to predict time series data involves 58 
applying data-driven techniques. The advancement of computational capabilities has driven the 59 
widespread adoption of data-driven machine-learning models over physics-based models. This shift is 60 
based on the premise that the data used for slope monitoring originates from nonlinear systems (Zhou et 61 
al., 2018). In contemporary times, An increasing array of novel data-driven solutions is being developed 62 
to overcome the constraints of traditional machine-learning approaches. Among these data-driven 63 
solutions, convolutional neural networks (CNN) have emerged as one of the most effective methods. 64 
These CNN models, which excel at automated feature extraction, can enhance efficiency in analyzing 65 
complex datasets and improve the accuracy of prediction results (Alzubaidi et al., 2021). 66 
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Moreover, there is a noteworthy recent trend in employing metaheuristic optimization algorithms to 67 
fine-tune the hyperparameters of artificial intelligence (AI) models, thereby augmenting their efficiency. 68 
This approach has found application in geological and construction studies and other fields, showcasing 69 
substantial effectiveness. Consequently, the fine-tuning of hyperparameters represents a potent avenue for 70 
elevating the efficiency of AI models in research focused on predicting deep-seated displacements. 71 

Leveraging the effective methodologies mentioned above, this study employs AI models optimized 72 
by an innovative metaheuristic optimization algorithm to predict deep-seated landslides displacement on 73 
the northern slope of Lushan Mountain in Ren’ai Ren'ai Township, Nantou County. The geological 74 
characteristics of this area have undergone extensive research (Wang et al., 2015; Lin et al., 2020). 75 
Previous studies have identified varying depths of the shear plane. Specifically, Lin et al. (2020) 76 
determined the depth of the shear plane is 85m and 106m based on inclinometer data. This research paper 77 
is firmly grounded in empirical evidence meticulously collected over eight years from extensometers at 78 
depths of 70 and 40 meters. Our analysis also considers the cumulative impact of storms and heavy rainfall 79 
on groundwater levels, utilizing data from four stations measuring groundwater levels in the study area 80 
and other weather conditions that potentially trigger landslides. The objectives of our research were as 81 
follows: 82 
1) To analyze the application of machine learning and deep learning methods to time series data to forecast 83 

short-term, deep-seated slope displacements across the Lushan Mountain area. 84 
2) To identify the optimal model and hyperparameters for accurately forecasting deep-seated 85 

displacements in the study area. 86 
3) To evaluate the role of metaheuristic optimization algorithms in fine-tuning the hyperparameters of AI 87 

models. 88 
This study represents the first instance of AI models being utilized to predict deep-seated landslides 89 

in Lushan Mountain. Additionally, it marks the inaugural application of AEIO for fine-tuning AI models 90 
in landslide-related research. Our findings provide a valuable resource for civil engineers, contractors, and 91 
inspectors involved in the planning and monitoring of construction projects in landslide-prone areas. 92 
Predicting the likelihood of landslide events can help minimize property loss, guide schedule adjustments, 93 
improve work safety, and ensure smooth traffic flow during critical periods. Additionally, understanding 94 
internal displacements provides engineers with precise data to evaluate the resilience of structures and 95 
infrastructure in vulnerable areas, enabling the issuance of prudent warnings. 96 
2. Literature Review 97 
2.1 Groundwater Levels and the Forecasting of Deep-Seated Displacements 98 

Landslide triggers can be attributed to loading, slope geometry, weather conditions, and 99 
hydrological conditions (Perkins et al., 2024; Van Natijne et al., 2023; Millán-Arancibia and Lavado-100 
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Casimiro, 2023; Jones et al., 2023). Among these, hydrological conditions, especially groundwater levels, 101 
have been one of the most critical elements considered in studies related to landslide prediction. Numerous 102 
studies have substantiated this point. For instance, research by Take et al. (2015) demonstrated that the 103 
distance and velocity of landslides triggered under high-antecedent groundwater conditions are 104 
significantly more significant compared to scenarios with drier conditions. Another study has shown that 105 
water accumulation at a soil-bedrock contact can develop positive pore water pressures, causing landslides 106 
(Matsushi and Matsukura, 2007) (see Figure 1). Moreover, studies on past landslide events have also 107 
demonstrated similar findings. exampleExamples of this research include the Tessina landslide in 108 
northeastern Italy, where groundwater conditions triggered movement (Petley et al., 2005). Additionally, 109 
the study by Keqiang et al. (2015) on water-induced landslides in the Three Gorges Reservoir project area 110 
highlights the significant impact of hydrological conditions on the likelihood of such disasters  (Keqiang 111 
et al., 2015). 112 

Similarly, Preisig (2020) developed a groundwater prediction model for analyzing the stability of a 113 
compound slide in the Jura Mountains  (Preisig, 2020). Additionally, Srivastava et al. (2020) explored 114 
machine learning algorithms to forecast rainfall and established thresholds for landslide probabilities  115 
(Srivastava et al., 2020). Although the research by Srivastava et al. did not directly rely on groundwater 116 
levels to predict landslides, it is evident that rainfall, a crucial factor in their study for landslide prediction, 117 
also influences hydrological conditions. Therefore, their research further underscores the importance of 118 
considering groundwater levels in landslide prediction. 119 

The northern slope in the Lushan area of central Taiwan, the region investigated in this study, 120 
exhibits significant gravitational slope deformation, making it prone to landslides during typhoons or 121 
heavy rainfall events. Lin et al. (2020) conducted in-depth studies on the mechanisms of landslide 122 
occurrence based on the geological conditions of the area (Lin et al., 2020). While successfully providing 123 
valuable insights into the evolution of deep-seated gravitational deformations, their research somewhat 124 
overlooked the importance of hydrological conditions and groundwater levels in landslide formation, their 125 
study focuses exclusively on employing traditional analytical methods in geological research, such as 126 
analyzing data from geotechnical instruments and conducting geological borehole analysis. 127 

Our research aims to adopt a novel approach compared to previous landslide studies at Lushan 128 
Mountain by utilizing AI models and metaheuristic optimization algorithms. This research will utilize To 129 
address the limitations of previous landslide research in the Lushan Mountain area, this study will explore 130 
using hydrological weather conditions and groundwater levels as inputs for AI models to predict deep-131 
seated displacement, thus aiding in landslide forecasting in this region. 132 
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 133 
Figure 1. Schematic illustration showing the effects of groundwater on deep-seated slope failure  134 

2.2 Forecasting Slope Displacements: Conventional Methods 135 
Several conventional methods are commonly employed to predict deep slope displacement. These 136 

methods primarily involve simulating factors affecting slope stability in landslide-prone areas using data 137 
collected from ground-based monitoring devices. An early approach to predicting deep-seated slope 138 
movements is geotechnical mapping. This technique characterizes rock and soil's strength, density, and 139 
porosity.  140 

For instance, Crosta and Agliardi (2003) analyzed the geology and rock mass behavior using 141 
Voight's semi-empirical failure criterion, incorporating time-dependent factors to generate velocity curves 142 
that indicate risk levels (Crosta and Agliardi, 2003). Recently, Xu et al. (2018) utilized real-time remote 143 
monitoring systems to measure internal stress, deep displacement, and surface strain. This data was used 144 
to formulate forecasting models to assess slope stability, particularly in railway construction (Xu et al., 145 
2018). However, a common challenge with this method is the instability and frequent changes in the terrain 146 
and geology of landslide-prone areas. This necessitates constant updates to the computational model, 147 
which can be time-consuming and labor-intensive. 148 

Moreover, physical-based numerical and laboratory modeling methods, which simulate phenomena 149 
at a laboratory scale, are also gaining traction in landslide research. These methods aim to maintain 150 
forecasts using various data types while reducing human workload and ensuring high accuracy. For 151 
example, Mufundirwa et al. conducted a laboratory study to examine the effectiveness of the inverse 152 
velocity model in predicting rock mass destruction resulting from landslides at depths of 2m and 4m along 153 
the sliding plane. This study utilized historically recorded data from Asamushi, Japan, and the Vaiont 154 
reservoir in Italy (Mufundirwa et al., 2010). Meanwhile, Wu (2010) employed the numerical 155 
discontinuous deformation analysis method to simulate a blocky assembly's post-failure behavior, 156 
incorporating earthquake seismic data  (Wu, 2010). Meanwhile Another study follows this trend by Jiang 157 
et al. (2011), who utilized the fluid-solid coupling theory to simulate displacement and capture capturing 158 
the interaction between fluid and solid materials  (Jiang et al., 2011). However, both numerical models 159 
and laboratory modeling methods require substantial effort from researchers. These approaches demand 160 
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deep expertise and the development of complex models. More importantly, they rely heavily on 161 
assumptions during the simulation process and may not accurately reflect real-world conditions, leading 162 
to significant errors. 163 

Stability analysis is another commonly used method related to physics, which evaluates the forces 164 
acting on a slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear 165 
Hoek-Brown shear strength reduction, determining the correlation between normal and shear stress based 166 
on the Hoek-Brown criterion (Fu and Liao, 2010). Subsequently, the micro-units (microscopic 167 
components of the rock mass) instantaneous friction angle and cohesive strength under specific stress 168 
conditions are calculated. Although this approach effectively addresses cost and labor issues, it still 169 
heavily relies on the researcher’s researcher's assumptions and is limited by the ability to utilize only a 170 
small portion of data from the research area. 171 

However, in landslide studies, monitoring data is constantly updated, generating large volumes daily 172 
with a temporal relationship (Peternel et al., 2022; Corominas et al., 2014). Hence, conventional methods 173 
have shown limited success in handling big data, especially in identifying highly intricate samples that 174 
require analysis of time series relationships or complex nonlinear associations. As previously mentioned, 175 
using conventional methods in landslide research presents numerous challenges whenever data changes 176 
or gets updated. In contrast, AI models can overcome these difficulties by automatically learning to 177 
identify connections between input and output data. AI models can be updated to incorporate additional 178 
input variables and handle increasing amounts of data flexibly in response to real-world conditions. 179 
Therefore, AI models will be utilized in this research instead of conventional methods. 180 
2.3 Forecasting Slope Displacements: Machine Learning and Deep Learning 181 

In studies employing machine learning and deep learning models for landslide research, a plethora 182 
of research utilizes discrete data to train AI models to predict the probability of landslides or to construct 183 
maps depicting landslide susceptibility. For instance, Margarint et al. (2013) employed a logistic 184 
regression model to predict landslides based on discrete data in four regions of Romania  (Margarint et al., 185 
2013). The logistic regression model yielded promising predictions, with an AUC value (area under the 186 
curve) ranging between 0.851 and 0.94 for the validation dataset. Subsequently, these results were utilized 187 
to construct a map of landslide susceptibility in the study area. In a similar study, Pham et al. (2016) used 188 
multiple AI models, including support vector machines (SVM), logistic regression (LR), Fisher’s Fisher's 189 
linear discriminant analysis (FLDA), Bayesian network (BN), and naïve Bayes (NB), for landslide 190 
susceptibility assessment in a region within the Uttarakhand state of India  (Pham et al., 2016). The SVM 191 
model yielded the best prediction results among the models used. 192 

In addition to discrete data, many landslide studies utilize time series data. When it comes to 193 
technical forecasting using time series data, machine learning regression prediction models, such as 194 



7 
 

extreme learning machine (ELM) (Li et al., 2018),  least squares support vector machine (LSSVM) (Liu 195 
et al., 2019), dynamic neural network (DNN) (Aggarwal et al., 2020), random forests (RFs) (Hu et al., 196 
2021),  SVM (Zhang et al., 2021), and Gaussian process regression (GPR) (Hu et al., 2019), have proven 197 
highly effective at yielding reliable results. These models also provide scalability and the ability to handle 198 
larger datasets. However, it is essential to note that machine learning models are sensitive to the white 199 
noise typical of time series features. This can pose challenges in capturing subtle behaviors and complex 200 
interrelationships, mainly when data availability is limited (Zhang et al., 2020). Finally, feature 201 
engineering (the process of selecting and transforming input variables to enhance the performance of the 202 
models) is computationally intensive and labor-intensive, limiting its applicability when rapid forecasting 203 
is required. 204 

Given that slope profiles and soil parameters are one-dimensional variables, Alongside the 205 
aforementioned machine learning models, a range of neural network models, from simpler ones like 206 
Artificial Neural Networks (ANN) to more advanced approaches such as Deep Neural Networks (DNNs) 207 
and CNN can are also be employed in research related to landslide (Kumar et al., 2017; Zheng et al., 2022) 208 
to uncover the relationship between slope stability and input parameters with minimal computational 209 
overhead (Fu et al., 2022). Notably, CNN models have become increasingly popular and are widely used 210 
in research related to this disaster. CNN models often yield superior predictive results than other models 211 
in landslide susceptibility assessment and displacement prediction (He et al., 2024). Additionally, CNN 212 
models have been used in studies of this disaster. While CNN was initially designed for image processing, 213 
its input and internal architecture are tailored for two-dimensional matrices, including the convolution 214 
kernel and feature map. To address the one-dimensional nature of slope profiles and soil physical and 215 
mechanical parameters, Pei, Meng, & Zhu developed a 1D-CNN model with dynamic inputs to account 216 
for time-varying trigger factors (Pei et al., 2021). Their approach demonstrated superior performance to 217 
conventional machine learning models regarding accuracy and robustness. However, it's worth noting that 218 
this approach has yet to gain widespread adoption. 219 

Moreover, another research trend in landslide forecasting involves the use of time series deep 220 
learning models such as Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 221 
Gated Recurrent Units (GRUs), which use previous information to generate current outputs and provide 222 
state feedback (Yang et al., 2019; Xu et al., 2022; Yang et al., 2022; Zhang et al., 2022). These time-series 223 
deep learning models can effectively capture patterns of changes over time, making them highly suitable 224 
for time-series data in landslide-related studies. However, there has yet to be a comprehensive study that 225 
employs a combination of machine learning methods, time-series deep learning, and CNN models to 226 
compare and determine the most suitable model for predicting landslide displacement prediction. 227 
Therefore, our research aims to address this gap. 228 



8 
 

 Another noteworthy research trend involves using AI models to predict landslides based on spatial-229 
temporal data. For instance, Dahal et al. (2024) utilized spatial-temporal data to pinpoint where landslides 230 
may occur and predict when they might happen and the expected landslide area density per mapping unit  231 
(Dahal et al., 2024). The Ensemble Neural Network employed in this research yielded promising 232 
predictions, demonstrating its potential for forecasting landslides in Nepal's areas affected by the Gorkha 233 
Earthquake. However, our study only managed to gather temporal data. Consequently, the AI models 234 
developed in our research will be trained to learn and forecast time-series data. 235 
2.4 Hybrid metaheuristic optimization algorithm and AI models in landslide prediction 236 

In landslide-related research, numerous studies have employed hybrid models, wherein metaheuristic 237 
optimization algorithms optimize the hyperparameters of AI models. For example, Balogun et al. (2021) 238 
studied landslide susceptibility mapping in Western Serbia (Balogun et al., 2021). This research collected 239 
14 different condition factors to serve as input data for the Support Vector Regression (SVR) model to 240 
predict landslide occurrences. The study results indicate that SVR models, with hyperparameters fine-241 
tuned by optimization algorithms such as gray wolf optimization (GWO), bat algorithm (BA), and cuckoo 242 
optimization algorithm (COA), all yielded better prediction results compared to using a single model. 243 

Hakim et al. (2022) conducted a study utilizing CNN models optimized by the GWO and imperialist 244 
competitive algorithm (ICA) for landslide susceptibility mapping from geo-environmental and topo-245 
hydrological factors in Incheon, Korea (Hakim et al., 2022). This research demonstrates that GWO and 246 
ICA effectively fine-tuned the CNN model, resulting in a highly accurate landslide susceptibility map. 247 

Jaafari et al. (2022) employed an AI model known as the group method of data handling (GMDH) 248 
for classification purposes, optimizing it using the cuckoo search algorithm (CSA) and the whale 249 
optimization algorithm (WOA). In northwest Iran, they aimed to predict landslides based on various 250 
factors, including topographical, geomorphological, and other environmental factors (Jaafari et al., 2022). 251 
After training and testing, the GMDH-CSA model produced superior prediction results compared to the 252 
GMDH-WOA and the standalone GMDH model.  253 

It is evident from numerous past studies on landslides that the application of metaheuristic 254 
optimization algorithms significantly enhances the predictive effectiveness of AI models. Therefore, this 255 
study also incorporates this approach to ensure the model's accuracy in landslide prediction. This study 256 
will also employ a recently developed metaheuristic algorithm, including a clustering algorithm. This 257 
algorithm is promising in yielding favorable results in fine-tuning hyperparameters for AI models. 258 
3. Methodology 259 
3.1 Convolutional Neural Networks 260 

In 1998, LeCun introduced a novel type of DNN known as the CNN, specifically designed for 261 
processing data with a grid-like structure, such as images. The complex, layered system of CNN facilitates 262 
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the automated extraction of features without extensive preprocessing, making it ideal for object 263 
recognition, image classification, and segmentation tasks. The detailed mechanism of the CNN model can 264 
be found in Appendix A. The architecture of a typical CNN, as illustrated in Figure 2, comprises an input 265 
layer (to receive image data), followed by hidden layers (including convolutional, pooling, and fully 266 
connected layers), and concludes with the output layers. As depicted in Figure 2, the complexity of CNN 267 
progressively increases from the convolutional layer to the fully connected (FC) layer. This design enables 268 
CNN to recognize relatively simple patterns (lines, curves, etc.) before progressing to capture more 269 
intricate features (faces, objects, etc.), with the ultimate aim of extracting relevant information for accurate 270 
pattern identification. 271 

 272 
Figure 2. Structure of basic CNN. 273 

As illustrated in Figure 3, the convolutional layer is responsible for most computations in the network. 274 
This involves extracting local features from an image using a set of learnable filters known as kernels. 275 
The behavior of the filter in the convolutional layer is influenced by two main factors: stride and padding. 276 
Stride refers to the pixel shift of the filter across the image, while padding aims to preserve information at 277 
the corners. In each iteration, a portion of the image is convolved with a filter to generate a dot product of 278 
pixels within its receptive field. This process is replicated across the entire image to produce a feature 279 
map. The convolution operation is defined as follows: 280 

𝐶𝐶𝑖𝑖 = 𝑏𝑏𝑖𝑖 + ∑ 𝐼𝐼𝑗𝑗 ∗ 𝐹𝐹𝑖𝑖𝑗𝑗
𝑑𝑑𝑖𝑖
𝑗𝑗=1 , 𝑖𝑖 = 1 …𝑑𝑑𝑐𝑐                                                                                     (1) 281 

where 𝐶𝐶𝑖𝑖 is the output of the convolutional layer or feature map, 𝑏𝑏𝑖𝑖  is the bias, 𝑑𝑑𝑖𝑖 is the depth of input, 𝐼𝐼𝑗𝑗  282 

is the input image, 𝐹𝐹𝑖𝑖𝑗𝑗 is the filter, and 𝑑𝑑𝑐𝑐 is the depth of the convolutional layer. 283 

The multiplicative operations are usually followed by an activation function (the final element in the 284 
convolutional layer), which introduces nonlinearity and creates intricate mappings between network 285 
inputs and outputs. The activation function can be defined as follows: 286 
𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝐶𝐶𝑖𝑖)                      (2) 287 
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where, 𝑌𝑌𝑖𝑖  is the output of the convolutional layer after the activation function, and f is the activation 288 
function. 289 

A rectified linear unit ReLU is a nonlinear CNN function with output ƒ(x) = max(0, x). A ReLU 290 
converts all negative values to zero or returns the original input values if the input exceeds zero. ReLU is 291 
only one of many activation functions; however, it has proven to be the most effective overall. 292 

 293 
Figure 3. Processing flow in convolution layer. 294 

Pooling layers after the convolution layer can down-sample feature maps by summarizing features 295 
within the coverage area of a 2-D filter to reduce sensitivity to feature location, thereby improving 296 
resilience to changes in the position of features. Pooling layers also decrease the dimensions of the feature 297 
map, reducing the number of parameters to be dealt with, thereby decreasing computational overhead. 298 
Output dimensions from the pooling layer are computed as follows: 299 
𝑐𝑐𝑤𝑤−𝑓𝑓𝑤𝑤+1

𝑠𝑠
∗ 𝑐𝑐ℎ−𝑓𝑓ℎ+1

𝑠𝑠
∗ 𝑐𝑐𝑛𝑛                 (3) 300 

where 𝑐𝑐𝑛𝑛 is the number of channels in the feature map and 𝑓𝑓𝑤𝑤 ∗  𝑓𝑓ℎ indicate the width and height of the 301 
filter. 302 

Max pooling and average pooling are commonly used in CNN. Max pooling accentuates salient 303 
features by selecting the maximum value within the filter's coverage area. In contrast, average pooling 304 
calculates the mean value within the exact location, providing a representative feature value. Illustrations 305 
of max pooling and average pooling are presented in Figure 4. 306 

The final stage of a CNN comprises a series of fully connected (FC) layers. After the convolution 307 
and pooling operations, the feature map is flattened into a one-dimensional vector that connects to the FC 308 
layers, resembling an ANN. FC layers identify specific features, each represented by a neuron. In 309 
regression tasks, each neuron in the FC layer corresponds to a feature contributing to the final numerical 310 
output. The value transmitted by each neuron indicates its significance toward the regression result. FC 311 
layers are designed to predict the best continuous value for the target variable by combining and processing 312 
these neuron outputs. Figure 5 illustrates the structure of an FC layer. 313 
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 314 
Figure 4. Max Pooling and Average Pooling. 315 

 316 
Figure 5. Structure of fully connected layer. 317 

This study will use various CNN models to predict deep-seated slope displacement. The CNN models 318 
employed in this research include VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), 319 
Inception (Szegedy et al., 2015), Xception (Chollet, 2016), MobileNet (Howard et al., 2017), DenseNet 320 
(Huang et al., 2017), and NASNet (Zoph et al., 2018). To clarify, the term "standard CNN models" will 321 
refer to models with structures that can be user-defined, while "retrained CNN models" will denote those 322 
with architectures that have been researched and developed by other scientists and have been proven to 323 
be highly effective. 324 

CNN models are typically used for image processing tasks. However, the input data for this study is 325 
in numerical and vector form. Therefore, several transformation steps are required to convert this 326 
numerical and vector data into image data suitable for CNN input. Detailed information about these 327 
transformation steps can be found in the study by Chou and Nguyen 2023 (Chou and Nguyen, 2023). 328 
3.2 Deep Learning Models for Time Series  329 

RNN was introduced by Elman in 1990 (Elman, 1990). This model makes predictions based on 330 
sequential data, crucial for language modeling, document classification, and time series analysis. The 331 
architecture of an RNN model can be found in Appendix B. 332 

 333 
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 The architecture of an RNN includes an input layer, a hidden layer with a variable number of RNN 334 
cells, and an output layer designed for label identification based on future displacement values. Figure 6 335 
illustrates the structure of simple RNNs.  336 

Each cell in an RNN acts as a memory cell, which is interconnected to enable the sequential transfer 337 
of time-dependent input information within a sliding window. This makes it possible to consider temporal 338 
correlations between events that may be widely separated in the time dimension. The following formula 339 
presents the hidden unit of standard RNNs at time t:  340 
ℎ𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥 ∗ 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ ∗ ℎ𝑡𝑡−1 + 𝑏𝑏)                                                                                          (4) 341 
where xt is the input vector at time t; ht is the output vectors of hidden units for 342 
time t; Wx and Wh respectively indicate the input and interconnected weight matrices for the output of the 343 
hidden layer; b is the bias term; and tanh() represents the hyperbolic tangent activation function, i.e., 344 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 1−𝑒𝑒2𝑥𝑥

1+𝑒𝑒2𝑥𝑥
 . The mechanism of learning over time steps, stored within cells, enables RNNs to 345 

capture complex relationships between cells and time sequences effectively. However, as the duration of 346 
dependencies increases, RNN models are susceptible to issues related to vanishing gradients (Bengio et 347 
al., 1994). Therefore, RNNs are well-suited to learning time series involving short-term dependencies. 348 

 349 
Figure 6. Structure of basic RNNs. 350 

In this study, advanced models of RNN, such as LSTM [54] and GRU [55], are also utilized, and 351 
their effectiveness in predicting deep-seated landslides will be compared. 352 
3.3 Machine Learning 353 
 In addition to the aforementioned deep learning models, as elucidated earlier, machine learning 354 
models will be employed to predict deep-seated slope displacements in this research. The machine 355 
learning models utilized will encompass the following: linear regression (LR) (Stanton, 2001), ANN 356 
(Mcculloch and Pitts, 2021), SVR (Drucker et al., 1996), classification and regression tree (CART) 357 
(Breiman, 1984), radial basis function neural network (RBFNN) (Han et al., 2010), extreme gradient 358 
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boosting (XGBoost) (Chen; and Guestrin). These machine learning models will be used to make 359 
predictions and will be compared with other deep learning models. 360 
3.4 Model Validation and Performance Metrics 361 
3.4.1 Evaluation and Validation 362 

To obtain reliable (i.e., generalizable) evaluation and validation results, it is crucial that the data 363 
used for testing does not include the data used for training. Therefore, a dataset must be divided into 364 
training, validation, and testing subsets before training the AI model. Training data is used to learn patterns; 365 
testing data is used to assess model performance and identify errors; and validation data is used to fine-366 
tune the hyperparameters. In the current study, we opted to refrain from employing cross-validation, which 367 
tends to be time-consuming. Instead, we adopted the holdout approach to manage our large dataset with 368 
well-represented target variables (Figure 2). A 90:10 ratio is generally used to split datasets into learning 369 
and testing data (Di Nunno et al., 2023). When implementing the holdout method during hyperparameter 370 
optimization, 20% of the learning data is used for validation, and the remaining 80% is used for training. 371 

 372 
Figure 2. Data are splitting under the proposed Holdout scheme. 373 

3.4.2 Performance Metrics  374 
This study utilized four widely recognized performance measures to assess the model’s model's 375 

effectiveness in prediction accuracy (Chou and Nguyen, 2023). The measures included mean absolute 376 
error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). 377 

MAE represents the mean of absolute errors, calculated as the average of the absolute 378 

differences between actual and predicted values. Its advantage lies in its simplicity, which 379 

provides a straightforward measure of average prediction error. However, a drawback of MAE is 380 

its insensitivity to more significant errors, so it may not effectively highlight differences between 381 

models when significant errors are present. It is defined as: 382 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1              (1) 383 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith 384 

actual value. 385 
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MAPE quantifies the average absolute error ratio to the actual value derived from the 386 

differences between actual and forecasted values. It provides a clear metric in percentage terms, 387 

facilitating straightforward interpretation across various datasets. However, MAPE's limitation 388 

arises from its sensitivity to zero values in the actual data, which can become undefined or 389 

impractical to compute, limiting its utility in scenarios involving zero or near-zero actual values. 390 

The expression for MAPE is as follows: 391 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
�𝑛𝑛

𝑖𝑖=1             (2) 392 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith 393 

actual value. 394 

RMSE represents the square root of the average squared error between actual and forecasted 395 

values and is widely used for its ability to indicate the dispersion of errors. This method captures 396 

the magnitude and direction of errors, making it practical for assessing overall prediction accuracy. 397 

However, RMSE tends to be more sensitive to outliers and significant errors than MAE due to its 398 

squaring of errors during computation. This sensitivity can disproportionately affect its evaluation 399 

in datasets with extreme values. The expression for RMSE is as follows: 400 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1            (3) 401 

where n is the number of predictions, yi is the ith forecasted value, and 𝑦𝑦�𝑖𝑖 is the corresponding ith 402 

actual value.  403 
3.5 Age of Exploration-Inspired Optimizer 404 

This study employs a range of AI models to forecast deep-seated displacement in mountainous 405 
regions. To enhance the prediction accuracy of these AI models, the study incorporates a novel 406 
metaheuristic optimization algorithm known as the Age of Exploration-Inspired Optimizer (AEIO). 407 
Developed by Chou and Nguyen in 2024, this algorithm has demonstrated high effectiveness in fine-408 
tuning the hyperparameters of AI models. This algorithm treats each particle in the search domain as an 409 
explorer. The movement of particles toward regions with higher fitness values parallels the exploratory 410 
activities of the Age of Exploration, where explorers sought ideal locations for establishing colonies. In 411 
this study, each particle represents a set of hyperparameters, with the ultimate goal of the search process 412 
being to identify the optimal particle or hyperparameter set that minimizes prediction error for AI models. 413 
Figure 3 illustrates the AEIO algorithm. 414 

The strength of the AEIO algorithm lies in its ability to develop specific strategies for particles based 415 
on their positions, enabling faster convergence to the optimal point. Using density-based spatial clustering 416 
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of applications with noise (DBSCAN) for particle clustering, the AEIO determines whether particles are 417 
in favorable or unfavorable positions, reminiscent of explorers during the Age of Exploration. The 418 
proximity (within clusters) allows explorers to gather information and move toward optimal locations, 419 
thereby enhancing their ability to establish new colonies. In contrast, explorers far apart (outside clusters) 420 
adopt different strategies, relying on limited peer guidance or general trends in their quest for new 421 
territories. 422 

 423 
Figure 3. Illustration of Age of Exploration-Inspired Optimizer 424 

In each iteration, explorers forecast their next move. If it promises a better position, they relocate. 425 
Otherwise, if the new spot is less favorable for colony establishment, they stay put and await the next 426 
iteration. The algorithm employs specific mathematical formulas to calculate the movement step of 427 
explorers or particles in the AEIO. The exploratory steps of an explorer in the AEIO algorithm will 428 
continuously iterate until the stop condition is satisfied. 429 
 Explorers follow general trends 430 

The explorer choosing this movement type will calculate the distance from their location 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) to 431 

the center of all other explorers (𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡)), then attempt to move towards that central point in the 432 
hope of finding a better location with the potential to establish a new colony. The following formula 433 
determines the explorer's position after the movement: 434 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + 𝛼𝛼 ∗ �𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) × 𝑅𝑅    (4) 435 
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𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) =
𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+⋯+𝑥𝑥𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃,𝑑𝑑(𝑡𝑡)

𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃
          (5) 436 

where 𝑑𝑑 = 1,2, …𝐷𝐷 ; 𝐷𝐷  is the number of dimensions; 𝑖𝑖 = 1,2, …𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 ; 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃  is the total number of 437 

explorers; 𝑡𝑡 = 1,2, …𝑀𝑀𝑡𝑡𝑥𝑥𝐼𝐼𝑡𝑡 is the number of iterations; 𝑀𝑀𝑡𝑡𝑥𝑥𝐼𝐼𝑡𝑡 is the maximum value of iteration; 𝛼𝛼 is a 438 
parameter for adjusting the particle’s movement toward the centroid position (usually equals 3). 439 
𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) is the centroid of all particles in dimension d. 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) is the random number in the range 440 
[0,1]. 𝑅𝑅 : a number that equals 1 or 2 depending on the value of rand(0, 1) per the equation. 𝑅𝑅 =441 
𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑(1 + 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) × 1), 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) is the location of particle 𝑖𝑖 in iteration 𝑡𝑡, 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) is the location 442 

of particle 𝑖𝑖 in iteration (𝑡𝑡 + 1). 443 
 Explorers follow three other peers 444 

Explorers employing this movement method will calculate the average position of three randomly 445 

selected other explorers �𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+𝑥𝑥3,𝑑𝑑(𝑡𝑡)
3

�  and then move toward this newly calculated average 446 

position. The explorer's new position is computed using the following formula: 447 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝑥𝑥1,𝑑𝑑(𝑡𝑡)+𝑥𝑥2,𝑑𝑑(𝑡𝑡)+𝑥𝑥3,𝑑𝑑(𝑡𝑡)
3

− 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)�× 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) × 𝑅𝑅 (6) 448 

where: 𝑥𝑥1,𝑑𝑑(𝑡𝑡), 𝑥𝑥2,𝑑𝑑(𝑡𝑡) and 𝑥𝑥3,𝑑𝑑(𝑡𝑡) are three random explorers in dimension d at iteration t, 𝑑𝑑 = 1,2, …𝐷𝐷; 449 

𝐷𝐷 is the number of dimensions; 𝑖𝑖 = 1,2, …𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃; 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃 is the total number of explorers; 𝑡𝑡 = 1,2, …𝑀𝑀𝑡𝑡𝑥𝑥𝐼𝐼𝑡𝑡 450 

is the number of iterations; 𝑀𝑀𝑡𝑡𝑥𝑥𝐼𝐼𝑡𝑡 is the maximum value of iteration. 451 
 Explorers follow the best one 452 

According to this strategy, the explorer (𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)) will move closer to the position of another explorer 453 

currently holding the best position (𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡)), as determined by the following formula: 454 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) × 𝑅𝑅       (7) 455 

where: 𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡) represents the position of the particle with the best fitness in dimension d at iteration t, 456 
the parameters 𝑑𝑑 and 𝑡𝑡 hold the same significance as defined in Equation 10. 457 
 Explorers follow guidance from another one 458 

Explorers in favorable positions with access to information can execute this movement strategy. In 459 
this scenario, explorers (𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡)) will consult with each other another explorer. The consulted explorer will 460 

compare their direction and distance to the best individual, who holds the most favorable position 461 
(𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡)) and guide the inquirer. This algorithm assumes that the inquirer can be any explorer, i.e., a 462 
random explorer (𝑥𝑥1,𝑑𝑑(𝑡𝑡) ). The following formula describes how to calculate the new position of the 463 

explorer following this strategy: 464 

𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡 + 1) =  𝑥𝑥𝑖𝑖,𝑑𝑑(𝑡𝑡) + �𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡) − 𝑥𝑥1,𝑑𝑑(𝑡𝑡)� × 𝑟𝑟𝑡𝑡𝑡𝑡𝑑𝑑(0,1) × 𝑅𝑅        (8) 465 

where: 𝑥𝑥1,𝑑𝑑(𝑡𝑡) is a random explorer in dimension d at iteration t. the parameters 𝑑𝑑 and 𝑡𝑡 hold the same 466 

significance as defined in Equation 10. 467 
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 Crowd control mechanism 468 
To enhance the efficiency of AEIO in transitioning between exploration and exploitation, a 469 

mechanism is employed to adjust the parameters of DBSCAN throughout each cycle, according to the 470 
following formula: 471 

𝜀𝜀𝑑𝑑 = �0.1 + 𝑡𝑡
𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡

� × (𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑑𝑑(𝑡𝑡) − 𝐵𝐵𝑀𝑀𝐵𝐵𝑡𝑡𝑑𝑑(𝑡𝑡))           (9) 472 

𝑀𝑀𝑖𝑖𝑡𝑡𝑀𝑀𝑡𝑡𝐵𝐵 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑑𝑑 �1 + 𝑡𝑡
𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝑡𝑡

× 10�              (10) 473 

 The exploratory steps in the AEIO algorithm begin by classifying positions using the DBSCAN 474 
algorithm. Subsequently, the explorers update the crowd control mechanism according to equations (13) 475 
and (14), and move according to various strategies defined by equations (8), (10), (11), and (12). This 476 
process is conducted iteratively until the maximum number of iterations is reached. 477 
 To fine-tune the hyperparameters of AI models, the AEIO algorithm treats each hyperparameter as 478 
a variable. Furthermore, the objective function of the AEIO algorithm seeks to minimize the prediction 479 
error of AI models, which is quantified by an evaluation metric (MAPE). Figure 4 presents a flowchart 480 
illustrating the process by which the AEIO algorithm aids in fine-tuning hyperparameters for AI models. 481 
3.6 Experiment Setup 482 
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Begin

Initialize hyperparameter of AI models

Iteration: i = 1

Update parameter of DBSCAN according to current iteration using Eq.13 and Eq.14

Explorer locate outside the crowd
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Rand(0,1) ≥ 0.5 Rand(0,1) ≥ 0.5
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Explorer follows 
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The new position is 
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Explorer follows 
three other peers
The new position is 
defined by Eq. 10

Explorer follows 
the best one
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defined by Eq. 11
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defined by Eq. 12

Check boundary condition

New location better than the previous one
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Yes No
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No

Location status of particles determined

Yes
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i = MaxIt
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Output the optimal hyperparameter

End
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explorers

Calculate MAPE of AI models (objective function)

Dataset

Prepare data for 
prediction

Calculate 
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Calculate 
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AI model 
operation

AEIO algorithm operation

 483 
Figure 4. Flowchart of the fine-tuning process of AI models by the AEIO algorithm 484 

3.6.1 Research Area 485 
 486 
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 487 
Image source: Imagery ©2022 CNES/Airbus, Maxar Technologies, Map data ©2022 Google 488 

Figure 5. Locations of measurement devices 489 

 490 
Figure 6. Illustration of geological drilling survey 491 

The current study focuses on the northern slope of Lushan hot spring in Ren'ai Township, Nantou 492 
County (Figure 5), with Nenggao Mountain to the east, Hehuan Peaks to the north, Zhuoshe Mountain to 493 
the south, and Puli Basins to the west. The terrain features rugged mountain ranges, youthful valleys, and 494 
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notable river erosion (Lee and Chi, 2011). Lushan Hot Springs is located below the hill, and the main 495 
access roads for nearby settlements and hot spring sites include Provincial Highway 14 and County 496 
Highway 87.   497 

In an early study of deep landslides in this area, Lin et al. (Lin et al. (2020) reported that the Lushan 498 
slope exhibits large-scale deep-seated gravitational slope deformation, characterized by a steep scarp, a 499 
gently inclined head, and a curving river at its base. Figure 6 illustrates the geological details of the 500 
research area and shows the distribution of four survey boreholes (G20, G21, G18, and G25) along the 501 
slope. Regolith, slate, and meta-sandstone are three distinct lithological units revealed through drilling. 502 
Additionally, the study by Lin et al. identified the depths of failure planes in these survey boreholes. 503 
Specifically, boreholes G18 and G25 did not record any failure planes, while boreholes G20 and G21 504 
recorded failure planes at depths of 85 meters and 106 meters, respectively. These failure planes were 505 
identified based on inclinometer data from the corresponding study (Lin et al., 2020). 506 

Initially, the thickness of the topmost regolith layer was found to be less than 10 meters. Secondly, 507 
slate predominated, exhibiting a notable presence with sporadic evidence of weathering that resulted in 508 
brecciated patterns. This composition frequently broke into breccia and gouges, particularly along 509 
cleavage planes and thin shear zones, indicating its susceptibility to collapse. This geological layer is 510 
identified as the area's primary cause of landslide risk. Finally, meta-sandstone appeared intermittent 511 
compared to the more prevalent lithological units, characterized by its fragility and fractures and occurring 512 
less frequently in the drilled samples. 513 

Previous research has detected signs of brittle deformation in the area. These indications include 514 
chevron folds within cleavages, visible cracks, and intricate jigsaw puzzle-like patterns at the head of the 515 
rock formations. Overturned and flexural toppling cleavages are prevalent towards the toe of the slope. 516 
Additionally, kink bands are observable on cleavages fractures that have recently undergone recently 517 
undergoing flexural folding along the eastern boundary. Notably, horizontal cleavages near the toe region 518 
also exhibit inter-cleavage gouges. Further details on this geological information can be found in the study 519 
by Lin et al. (2020). These instances highlight the potential for significant geological changes and 520 
landslide risk in this region. 521 
3.6.2 Data Collection and Preprocessing 522 

In this study, hourly data of deep-seated displacement and groundwater level were collected by the 523 
Department of Civil Engineering, College of Science and Technology, at the National Chi Nan University 524 
research group over eight years from July 2009 to June 2017, yielding 68,317 data points. The installation 525 
time points and locations are presented in Table 1 and Figure 5, respectively. 526 

The data used in this study were collected using an in-hole telescopic gauge (E-2), a multidirectional 527 
shape acceleration array sensor (SAA) with an underground displacement gauge, and four groundwater 528 
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level gauges (A-17, A-18-2, A-20, and A-24). The transmission, storage, and processing of data are 529 
described in detail in the research of Lau et al. in 2023 Lau et al. (2023). 530 

The operation of the in-hole extensometer entailed the installation of a borehole through the sliding 531 
surface. One end of a steel cable was anchored at the bottom, and a displacement gauge was placed at the 532 
free end to measure deformations automatically. The fixed stops for E-2 and SAA were situated at depths 533 
of 70 meters and 40 meters below the surface, respectively. In addition to groundwater level data, 534 
information regarding significant rainfall events in this area was also measured and is presented in Table 535 
2. 536 
Table 1. Device installation timepoints 537 

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 
Groundwater 

level gauge 
A-17 

No data A-18-2 
No data A-20 
No data A-24 

Extensometer No data E-2 
No data SAA 

 538 
Table 2. Heavy rainfall events in the study area 539 

No. Rain onset 
(month/day/year hour: 

minute) 

Rain end time 
(month/day/year 

hour: minute) 

Accumulating 
rainfall 
(mm) 

Drop rain 
hour 
(hr) 

Event 

1 7/17/2008 14:00 7/19/2008 21:00 418 55 Kameiji typhoon 
2 9/112008 16:00 9/15/2008 12:00 943.5 92 Pungentmusc typhoon 
3 9/28/2008 1:00 9/30/2008 10:00 523.5 57 Rose honey typhoon 
4 8/4/2009 3:00 8/12/2009 20:00 931 209 Mopull typhoon 
5 6/8/2012 13:00 6/17/2012 16:00 1029 219 Torrential rain 
6 7/30/2012 7:00 8/3/2012 11:00 370 100 Supull typhoon 
7 5/10/2013 16:00 5/25/2013 1:00 597 345 Torrential rain 
8 7/12/2013 19:00 7/15/2013 23:00 330 76 Suprofit typhoon 
9 9/20/2013 22:00 9/23/2013 18:00 347 68 Usagi typhoon 
10 5/9/2014 5:00 5/22/2014 3:00 326.5 310 Torrential rain 
11 7/22/2014 14:00 7/24/2014 0:00 321.5 34 Madham typhoon 
12 6/1/2017 11:00 6/4/2017 21:00 897 82 Torrential rain 
13 6/11/2017 17:00 6/19/2017 3:00 638.5 178 Torrential rain 

Based on the collected data, analyses have examined the correlation between groundwater levels 540 
and deep-seated displacement at Lushan Mountain. To observe this correlation, graphs illustrating the 541 
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precipitation of recorded heavy rainfall (Figure 7A), variations in displacement (Figure 7B and Figure 542 
7C), and groundwater levels (Figure 7D) over time have been plotted. 543 

544 

 545 

 546 

 547 
Figure 7. Unified timeline visualization of data in this study. 548 

A) Precipitation of recorded heavy rainfall in the studied area; B) Measured displacements from extensometer SAA C) 549 
Measured displacements from extensometer E_2; D) Groundwater levels at stations A-17, A-18-2, A-20, and A-24. 550 
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The graphs above show that the displacement values at both stations often exhibit significant 551 
increases coinciding with periods of pronounced fluctuations in groundwater levels. Specifically, in June 552 
2012, there was a notable surge in groundwater levels attributed to heavy rainfall from June 8, 2012, to 553 
June 17, 2012, totaling 1029 mm over 219 hours (as indicated in Table 2 and Figure 7A). The abnormal 554 
rise in groundwater levels caused a structural alteration in the area's soil, consequently amplifying deep-555 
seated displacement at both stations, namely E_2 and SAA, as evidenced in Figure 7B and Figure 7C. 556 
 Similar events occurred in November 2017. Heavy rainfall totaling 638.5 mm over 178 hours during 557 
this period also caused a sudden alteration in groundwater levels, resulting in significant deep-seated 558 
displacement. Through comparison, it is apparent that there were up to 13 instances of anomalous heavy 559 
rainfall during the study period. However, not every example of heavy rain resulted in significant 560 
fluctuations in groundwater levels, leading to substantial displacement. Hence, data regarding 561 
groundwater level elevation will be used to predict deep-seated landslides rather than rainfall data. 562 
 In addition to groundwater level data, weather factors such as temperature and humidity are also 563 
utilized as input data for the prediction model. This study includes temperature as an input variable for AI 564 
models to predict deep-seated displacement due to its impact on soil structure. Elevated temperatures can 565 
cause thermal expansion of soil particles, which can increase pore water pressure and reduce effective 566 
frictional resistance forces (Pinyol et al., 2018). Additionally, previous research has shown a relationship 567 
between temperature and the likelihood of landslides in clay-rich soils, which are also present in the 568 
geological composition of Lushan Mountain (Shibasaki et al., 2017; Loche and Scaringi, 2023).These 569 
factors significantly impact the soil structure and can trigger substantial displacement or landslides. 570 

This study collected groundwater level and displacement data on-site using sensors. Furthermore, 571 
temperature and humidity data were obtained from the website https://power.larc.nasa.gov. This dataset 572 
is part of the Prediction of Worldwide Energy Resource (POWER) project, developed by the National 573 
Aeronautics and Space Administration (NASA) of the United States. The POWER solar data derives from 574 
satellite observations, which are used to infer surface insolation values. Meteorological parameters are 575 
sourced from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-576 
2) assimilation model. The primary solar data is available with a global resolution of 1° x 1° 577 
latitude/longitude, while the meteorological data is provided at a finer resolution of ½° x ⅝° 578 
latitude/longitude. Users can download the data hourly, daily, or monthly through this website. 579 
 Table 3 displays the input and output variables for AI models to predict deep-seated displacement at 580 
Lushan Mountain. Two datasets will be generated: one for predicting displacement at the E_2 station and 581 
another for indicating displacement at the SAA station. Table 4 outlines the number of data points for each 582 
dataset and illustrates how the data is divided into training and testing sets. 583 

https://power.larc.nasa.gov/
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Table 3. Input and output variables of a model predicting deep-seated displacement. 584 
 Attributes 

group 
Attributes 

Variable 
ID 

Dataset of 
E_2 station 

Dataset of 
SAA station 

Output 
variables 

Deep-seated 
displacement 
measures 

Displacement 
extensometer at station 
E_2 (mm) 

Y1  - 

Displacement 
extensometer at station 
SAA (mm) 

Y2 -  

Input 
variables 

Groundwater 
level data 

Groundwater level at 
station A-17 (m) X1   

Groundwater level at 
station A-18-2 (m) X2   

Groundwater level at 
station A-20 (m) X3   

Groundwater level at 
station A-24 (m) 

X4   

Weather data 

Temperature at 2 meters 
(oC) 

X5   

Specific humidity at 2 
meters (g/kg) 

X6   

Table 4. Number of data points 585 
Quantity of data points Dataset of the E-2 station Dataset of SAA station 

Total data samples 68312 51679 

Count of training samples 

(90% of the total sample) 

61477 

(2009/07/15-2016/09/07) 

46523 

(2011/07/13 – 2016/11/16) 

Count of testing samples 

(10% of the total sample) 

6835 

(2016/09/07-2017/06/20) 

5156 

(2016/11/16-2017/06/20) 

3.6.3 Data Preprocessing 586 
Firstly, the data in this study will undergo a normalization process to scale all features to a consistent 587 

range (typically between 0 and 1). This step is essential to ensure that the model considers the importance 588 
of each feature, thereby enhancing overall prediction accuracy (Han et al., 2006). 589 

In the current study, the sliding window technique is implemented after data normalization to 590 
organize data according to a specific time frame. This involves using historical data from previous steps 591 
to predict the output for subsequent steps (Chou and Ngo, 2016). The forecasting horizon refers to the 592 
length of time into the future for which output forecasts are made. 593 
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The basic process of the sliding window technique is illustrated in Figure 8. To train AI models, this 594 
study opts for a window size of one week (equivalent to 168 hours). This fixed window size is utilized 595 
exclusively for single AI models. Subsequently, the hybrid model's AEIO algorithm and other 596 
hyperparameters will fine-tune the window size to determine the most suitable settings. 597 

 598 
Figure 8. Sliding window technique 599 

This study focuses on predicting deep displacement values at two distinct time intervals: 1 day ahead 600 
(+24 hours) and seven days ahead (+168 hours). These forecast horizons are strategically chosen to 601 
provide timely information, enabling management departments to make accurate decisions regarding 602 
evacuating people and assets from areas prone to landslides. 603 

Specifically, for valuable assets and machinery that require time for relocation from landslide-prone 604 
areas, having advance knowledge of the landslide event one week ahead of relocation is crucial. 605 
Furthermore, for humans, animals, or other assets that can be evacuated more swiftly, predicting the 606 
landslide one day in advance is sufficient to ensure safety. 607 

The predicted outputs are quantified in mm/day, facilitating decision-making for administrators 608 
according to the TGS-SLOPEM106 standard (Ruitang et al., 2017). Table 5 outlines suggested actions 609 
corresponding to different degrees of deep displacement as per the TGS-SLOPEM106 standard issued by 610 
the Taiwan government. 611 
Table 5. Recommendations are taken from TGS-SLOPEM106 for addressing displacement values in the 612 
early stages of deep sliding.  613 

Classification of 
the displacement 

value 
Attention value Warning value Action value 

Corresponding 
displacement value 

2 mm/month 0.5 mm/day 10 mm/day 
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Classification of 
the displacement 

value 
Attention value Warning value Action value 

Condition of 
slopes 

The slope started to slip or 
slowly move 

The hill is undergoing 
constant-velocity descent. 

The rate of slope 
movement is 
increasing, elevating 
the risk of collapse. 

Recommendations 
on monitoring 
activities 

- Inspect the monitoring 
system for any 
irregularities and consider 
increasing the frequency 
of visual inspections 

- Enhance the frequency 
of the automated 
monitoring system 

- Implement a 
rigorous monitoring 
system frequency 

Countermeasures 

- Conduct a slope stability 
investigation and 
assessment - Develop a 
reinforcement and 
improvement plan to 
enhance slope stability 

- Execute emergency 
slope reinforcement 
procedures 
- Develop an emergency 
response plan for 
individuals and vehicles 
within the landslide area 

- Evacuate people 
and vehicles from the 
landslide area 

4. Model Establishment and Analysis Results 614 
4.1 Model Establishment 615 

Predicting deep-seated displacement landslides at Lushan Mountain is undoubtedly highly 616 
challenging, given that such landslides depend on numerous factors. Therefore, multiple methods will be 617 
employed simultaneously to identify the optimal AI model for prediction. These methods include single 618 
machine learning, time series deep learning, CNN, and hybrid models…. 619 

This study will conduct a testing process to systematically identify the optimal model capable of 620 
accurately predicting deep-seated landslides. An illustration of this process can be found in Figure 9. 621 
Initially, the study will sequentially employ various single numerical AI models, such as machine learning 622 
models (LR, ANN, SVR, CART, RBFNN, XGBoost) and time series deep learning models (RNN, R-623 
RNN, LSTM, R-LSTM, GRU, R-GRU), to forecast displacement. 624 
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Single 
numerical 

model

Machine learning models

LR, ANN, SVR, CART, 
RBFNN, XGBoost

Time series deep learning 
models

RNN, R-RNN, LSTM, 
R-LSTM, GRU, R-GRU

Hybrid 
numerical 

model

Hybrid numerical model - 
AEIO

Find the best numerical 
models

Optimal parameter

Use AEIO algorithm to 
finetune hyperparameter of 

numerical models Prediction accuracy

Single CNN 
model-

Optimization 
algorithm

CNN models

VGG, ResNet, Inception, 
Xception, MobileNet, 
DenseNet, NASNet

Find the best CNN model

Hybrid CNN 
model-

Optimization 
algorithm

Hybrid CNN model - AEIO

Use AEIO algorithm to 
finetune hyperparameter of 

CNN models

Optimal parameter

Prediction accuracy

Use optimal 
model for 
prediction

Compare models by 
evaluation metrics Best model Prediction

 625 
Figure 9. Diagram depicting the steps of choosing the optimal AI model to predict deep-seated landslide 626 

displacement 627 
Subsequently, the model with the highest prediction accuracy will be selected for integration with 628 

the AEIO algorithm, forming a hybrid model. In this hybrid model, the hyperparameters of the best 629 
numerical AI model will be fine-tuned by the AEIO algorithm to enhance prediction accuracy. 630 

In addition to the numerical AI models, this study employs individual CNN models for predicting 631 
deep-seated displacement. Subsequently, similar to the approach above, the best CNN model with the 632 
highest displacement prediction capability will be fine-tuned by the AEIO algorithm within a hybrid 633 
model. In the final step, a comparison process between the two hybrid models— one comprising the best 634 
numerical model and the other involving the best CNN model fine-tuned by AEIO— will be conducted 635 
to select the optimal model for this study. 636 
4.2 Analysis Results 637 
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This section will present the experimental results of the steps outlined in Figure 9, along with relevant 638 
metrics and analysis. 639 
4.2.1 AI Models 640 
a. Machine Learning Models 641 

Initially, single machine learning models will be employed to predict deep-seated displacement. In 642 
this phase, machine learning models will utilize default hyperparameters, as detailed in research of Chou 643 
and Nguyen's research in 2023 Chou and Nguyen (2023). The prediction results of these models at both 644 
E-2 and SAA stations are displayed in Table 6. These results show that most machine learning models 645 
demonstrate a relatively good predictive capability for displacement, particularly the XGBoost model, 646 
which exhibits MAPE values ranging from 8.14% to 9.58%. Following closely, CART also produces 647 
favorable prediction results, with MAPE ranging from 8.53% to 9.76%. Regarding prediction accuracy, 648 
XGBoost and CART models outperform LR, ANN, SVR, and RBFNN models. 649 
Table 6. Performance results of machine learning models for predicting deep-seated displacement. 650 

Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

E-2-station 

LR 10.70 11.22 22.61 21.32 28.17 31.96 0.0001 0.003 

ANN 12.31 13.31 22.19 24.92 26.56 32.54 129.80 212.83 

SVR 12.46 12.47 21.98 22.56 26.27 28.05 162.55 174.44 

CART 8.53 8.67 15.67 16.87 25.16 27.81 1.50 2.57 

RBFNN 15.13 15.19 23.81 22.56 28.42 31.96 2.32 4.10 

XGBoost 8.14 8.36 14.80 14.68 23.07 23.92 1.58 3.28 

SAA-station 

LR 11.18 12.11 11.51 11.64 17.26 16.07 0.01 0.01 

ANN 10.91 10.93 9.43 10.45 16.55 15.92 116.78 190.69 

SVR 10.55 10.94 10.87 9.18 15.64 13.42 136.01 346.30 

CART 10.57 10.76 7.11 7.30 13.51 10.63 0.91 1.59 

RBFNN 14.51 14.95 11.38 12.68 17.13 19.06 4.20 8.76 

XGBoost 9.17 9.58 8.43 7.83 16.36 16.97 1.12 2.29 

Moreover, the results in Table 6 also indicate that there is not a significant difference in the prediction 651 
errors of the machine learning models at both E-2 and SAA stations, as the error values for both stations 652 
are nearly equal across all machine learning models. Regarding the running time, the LR model 653 
demonstrates the shortest duration, ranging from 0.001 to 0.1 seconds for all runs. However, the prediction 654 
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accuracy of this model could be higher, as mentioned earlier. In this case, the machine learning model 655 
with the longest running time is SVR, ranging from 136.01 to 346.3 seconds. This, combined with the low 656 
MAPE score, indicates that the SVR model operates inefficiently with the dataset in this study. After 657 
reviewing the results of the machine learning models in this section, it is observed that XGBoost is the 658 
most suitable machine learning model for predicting deep-seated landslides, exhibiting both high 659 
prediction accuracy and a short running time. The following section will compare this model with the best 660 
time series deep learning model to select the optimal numerical model for fine-tuning. 661 
b. Time series deep learning models 662 
 Similar to the machine learning models, in this section, the time series deep learning models will 663 
also be trained with default hyperparameters, as found in the research of Chou and Nguyen's research in 664 
2023 Chou and Nguyen (2023). The performance results of these models are shown in Table 7. Overall, 665 
akin to the machine learning models, the time series deep learning models also demonstrate fairly good 666 
prediction accuracy, especially the best model - R-GRU model, with MAPE ranging from 7.95 to 9.13%. 667 

The performance of the R-GRU model surpasses that of the GRU model because the R-GRU model 668 
learns patterns from time series data in both forward and backward directions on the timeline, thereby 669 
capturing more patterns. Furthermore, the R-GRU model produces significantly better prediction results 670 
with a more complex learning mechanism than other time series deep learning models. However, due to 671 
its complex operational mechanism, the R-GRU model also requires more processing time than other time 672 
series deep learning models. From the results of Table 7, it is observed that the operating time of the R-673 
GRU model ranges from 79.81 to 212.75 seconds. 674 

From the conducted analyses, R-GRU has been identified as the best time series deep learning model, 675 
owing to its excellent prediction performance. Compared to the best machine learning model, XGBoost 676 
(with MAPE ranging from 8.14% to 9.58%), the R-GRU model (with MAPE ranging from 7.90 to 9.13%) 677 
demonstrates higher prediction accuracy. Therefore, the R-GRU model will be chosen as the best 678 
numerical AI model. R-GRU will undergo fine-tuning in the following section using the AEIO algorithm, 679 
further enhancing this model's accuracy. 680 
Table 7. Performance results of time series deep learning models for predicting deep-seated displacement 681 

Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

E-2-station 

RNN 12.72 12.92 23.61 24.75 31.18 29.62 83.24 177.53 

R-RNN 12.31 12.84 22.88 21.97 30.20 34.42 91.47 114.33 

LSTM 8.42 8.57 17.87 16.31 21.41 22.98 123.10 151.91 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (s) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

R-LSTM 8.13 8.75 16.63 17.84 22.85 24.67 148.56 161.14 

GRU 8.43 10.15 16.06 19.38 22.46 26.75 141.50 164.26 

R-GRU 7.90 8.16 15.09 15.69 20.84 23.32 156.97 172.96 

SAA-station 

RNN 11.92 13.98 17.61 12.65 25.71 23.19 36.77 60.31 

R-RNN 14.60 14.73 18.77 13.85 26.19 24.97 49.26 59.06 

LSTM 10.64 10.94 12.73 12.25 29.21 29.57 62.84 113.76 

R-LSTM 10.14 10.35 11.77 11.60 26.10 27.48 70.94 87.48 

GRU 9.32 9.28 18.05 18.11 25.26 22.41 69.56 211.77 

R-GRU 8.03 9.13 18.84 17.85 21.57 21.86 79.81 212.75 

4.2.2 Best AI Model Finetuned by AEIO Algorithm 682 
This section will focus on fine-tuning the hyperparameters of the numerical model to enhance its 683 

performance in predicting deep-seated landslides displacement. The AEIO algorithm will fine-tune the 684 
hyperparameters of the study's best numerical AI model, the R-GRU model. Details regarding the names 685 
and search ranges of the hyperparameters are outlined in Table 8. The objective function of the AEIO 686 
algorithm during the fine-tuning process is to minimize the MAPE value of the R-GRU model. 687 

Table 9 illustrates the results of the fine-tuning process. From this table, it is observed that the AEIO 688 
algorithm has successfully identified the optimal hyperparameters of the R-GRU model, significantly 689 
improving the prediction accuracy of this model. For instance, the MAPE in predicting 1-day-ahead 690 
displacement of R-GRU before fine-tuning was 7.9%, but this number decreased to only 3.03% after fine-691 
tuning. All other predictions similarly show a decreasing trend. 692 

Fine-tuning the R-GRU model using AEIO will maximize its potential, minimizing the prediction 693 
error to the lowest possible level. Therefore, the results obtained in this section reflect the actual quality 694 
of the dataset as well as the level of difficulty in prediction. Specifically, based on the results in Table 9, 695 
it is observed that the predictions for one-day ahead displacement (with MAPE of 3.03% and 3.94%) 696 
consistently outperform those for seven-days ahead displacement (with MAPE of 6.38% and 7.96%). 697 

One-day-ahead predictions have a shorter time horizon, making them less affected by environmental 698 
fluctuations and making changes more accessible to predict. Conversely, in the case of seven-day-ahead 699 
displacement prediction, this timeframe is long enough for various factors, such as weather conditions and 700 
human interventions, to occur, increasing uncertainty and volatility in the predicted figures. 701 
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Additionally, Table 9 indicates that predictions from the dataset of the E-2 station consistently 702 
outperform those of the SAA station. Specifically, the displacement prediction at the E-2 station is 3.03% 703 
and 6.38%, better than the corresponding numbers for the SAA station, which are 3.94% and 7.96%, 704 
respectively. This is attributed to the dataset collected by the E-2 station being more comprehensive and 705 
gathered over a more extended period than the SAA station (as shown in Table 4). 706 

Table 10 presents the optimal hyperparameters identified by the AEIO algorithm. Furthermore, in 707 
terms of running time, most models, after fine-tuning, exhibit longer running times compared to the 708 
original model. However, this increase is entirely acceptable since the additional running time is minimal, 709 
and the benefits of fine-tuning are significant, as mentioned above, aiding in the model’s model's more 710 
efficient operation. 711 
Table 8. Search ranges of the hyperparameters of the optimal hybrid numerical models (Chou and Nguyen, 712 
2023). 713 
Hybrid model Hyperparameter Search range 

AEIO-R-GRU Window size [1-720] 

Number of hidden units [1-400] 

Learning rate [0.0001, 0.5] 

Dropout [0.00, 0.99] 

Number of epochs [10, 120] 

Batch size [32, 64] 

Table 9. Performance results of hybrid time-series deep learning model with AEIO in deep-seated 714 
landslide prediction 715 

 Model MAPE (%) MAE (mm) RMSE (mm) Time (s) 
One-day-

ahead 
displacement 

prediction 

E-2-station 
AEIO-R-GRU 3.03 6.89 17.98 196 

SAA-station 
AEIO-R-GRU 3.94 4.16 11.20 184 

Seven-day-
ahead of 

displacement 
prediction 

  E-2-station   
AEIO-R-GRU 6.38 10.02 18.05 261 
  SAA-station   
AEIO-R-GRU 7.96 12.49 7.82 248 

 716 
Table 10. Optimal hyperparameter of time series deep learning model found by AEIO algorithm 717 
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Model Window 
size 

Number 
of 

hidden 
units 

Dropout 
rate 

Learning 
rate 

Number 
of 

epochs 

Batch 
size 

One-day-
ahead 

displacement 
prediction 

E-2-station 
AEIO-R-GRU 41 81 0.27 0.7 18 64 

SAA- station 
AEIO-R-GRU 54 145 0.19 0.46 32 32 

Seven-day-
ahead of 

displacement 
prediction 

E-2- station 
AEIO-R-GRU 97 164 0.24 0.61 20 32 

SAA- station 
AEIO-R-GRU 69 147 0.28 0.31 17 32 

4.2.3 CNN Models 718 
This section presents the results of utilizing CNN models, including VGG, ResNet, Inception, 719 

Xception, DenseNet, and NASNet, to predict deep-seated landslide displacement. The CNN models in 720 
this part use the default settings (Chou and Nguyen, 2023). Table 11 displays the prediction error results 721 
of the CNN models for one-day-ahead and seven-day-ahead forecasts for both E-2 and SAA stations. 722 

The prediction results demonstrate that most CNN models produce highly accurate predictions. 723 
Specifically, predictions made by VGG, ResNet, MobileNet, DenseNet, and Inception exhibit MAPE 724 
values below 5%. Among these, MobileNet and DenseNet201 emerge as the two models with the highest 725 
accuracy. For one-day-ahead prediction, the best model for predicting displacement at the E-2 station is 726 
MobileNet, with a MAPE of 4.11%, and the best model for predicting displacement at the SAA station is 727 
DenseNet201, with a MAPE of 6.36%. For seven-day-ahead prediction, the best model for predicting 728 
displacement at the E-2 station is DenseNet201, with a MAPE of 5.3%, and the best model for predicting 729 
displacement at the SAA station is MobileNet, with a MAPE of 6.8%. These models will be selected 730 
accordingly for fine-tuning in the subsequent section. 731 

Regarding running time, the CNN models in this section exhibit significantly longer running times 732 
compared to the numerical models in the previous sections. For example, the running time of the best 733 
CNN model to predict one-day-ahead displacement at the E-2 station—MobileNet—is 1.21 hours. In 734 
contrast, the running time of the best single numerical model for predicting this index is 159.97 seconds. 735 

While CNN models yield better prediction results, considering their extended running times, users 736 
need to weigh practical considerations before opting for this type of model. For instance, CNN models 737 
should be employed in cases requiring accurate predictions for research and measurement purposes. 738 
Conversely, numerical models like R-GRU are more suitable for real-time predictions and computations 739 
on low-performance devices. 740 
Table 11. Performance results of the CNN models for deep-seated displacement prediction 741 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-

day-

ahead 

E-2- station 

VGG16 4.58 7.38 12.73 13.97 26.54 35.69 3.03 3.31 

VGG19 4.47 6.30 12.53 15.11 25.74 32.82 3.14 2.82 

ResNet50V2 4.87 7.68 15.28 12.52 31.82 27.19 2.99 3.44 

ResNet101V2 4.61 6.60 9.81 9.08 34.67 32.74 2.24 2.96 

ResNet152V2 4.71 6.46 7.26 12.60 21.13 19.08 2.94 2.05 

InceptionV3 4.99 7.30 11.18 11.65 32.97 34.92 2.43 3.27 

InceptionRestNetV2 13.32 15.78 22.51 27.08 76.75 61.11 3.22 3.08 

Xception 5.27 7.34 11.60 10.20 35.86 30.68 2.94 3.29 

MobileNet 4.11 8.92 12.22 13.62 47.43 31.72 1.21 1.44 

DenseNet121 11.15 11.13 16.30 21.49 37.68 46.51 3.32 3.99 

DenseNet169 4.74 7.86 11.44 12.20 17.09 36.28 3.02 3.52 

DenseNet201 4.66 5.30 8.11 7.44 21.82 10.39 2.09 2.29 

NASNetMobile 13.82 15.91 31.00 19.52 46.07 55.65 2.53 3.13 

NASNetLarge 13.20 34.23 20.46 61.81 61.52 75.39 3.89 3.93 

SAA- station 

VGG16 5.76 7.90 6.07 12.76 9.48 8.95 3.14 3.36 

VGG19 5.95 7.32 9.14 13.45 11.68 7.03 3.55 3.20 

ResNet50V2 9.87 9.35 12.43 13.81 15.71 9.75 4.57 3.83 

ResNet101V2 8.48 17.68 10.56 19.36 11.47 21.94 3.54 3.40 

ResNet152V2 9.43 11.42 12.32 10.35 14.91 13.27 3.35 3.88 

InceptionV3 10.96 8.11 12.73 9.13 14.48 12.71 3.80 3.18 

InceptionRestNetV2 9.86 11.08 13.51 16.75 18.04 21.59 3.23 2.91 

Xception 7.42 7.28 7.82 7.08 10.13 10.47 3.48 3.60 

MobileNet 7.12 6.80 8.28 9.92 11.58 13.83 1.43 2.13 

DenseNet121 8.69 11.69 8.56 14.39 12.54 15.76 3.93 3.42 

DenseNet169 6.55 9.56 6.16 9.61 11.08 15.51 3.60 3.76 

DenseNet201 6.36 10.45 7.46 11.62 9.37 14.51 2.51 3.13 

NASNetMobile 10.31 22.12 13.86 62.04 18.95 43.51 3.56 2.88 
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Model 

MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-day-

ahead 

1-day-

ahead 

7-

day-

ahead 

NASNetLarge 10.25 13.69 11.20 14.05 15.95 19.09 3.18 3.34 

4.2.4 Best CNN Models Finetuned by AEIO Algorithm 742 
In this section, as analyzed in part 4.2.3, the AEIO algorithm will sequentially fine-tune CNN models 743 

to enhance prediction accuracy. Table 12 illustrates the search range of hyperparameters for the CNN 744 
models to be fine-tuned. Table 13 presents the performance results of the CNN models after being fine-745 
tuned. 746 

However, a challenge in this section is that CNN models primarily analyze and learn from image 747 
data. Therefore, numerical data must be converted into image data before training. This poses a challenge 748 
because current computer hardware may need to be fully capable of efficiently converting numerical data 749 
into images for each computation. Hence, this study utilizes the optimal window sizes previously 750 
identified for fine-tuning numerical models (Table 10) for this scenario and employs these fixed window 751 
sizes for CNN models. 752 

The results of the fine-tuning process demonstrate that the AEIO has successfully identified the 753 
optimal hyperparameters for the CNN models, enhancing their accuracy. For instance, in the case of the 754 
MobileNet model used for one-day-ahead prediction at the E-2 station, the fine-tuning process reduced 755 
the MAPE of this model from 4.11% to 2.81%. A similar trend is also observed in the remaining prediction 756 
scenarios. 757 

Furthermore, similar to the case of AEIO-R-GRU, the CNN models exhibit the same trend, where 758 
one-day-ahead predictions are more accurate than seven-day-ahead predictions. Similarly, forecasts at the 759 
E-2 station demonstrate higher accuracy than predictions at the SAA station. The rationale for this has 760 
been explained in section 4.2.2. Lastly, the optimal hyperparameters of each CNN model, identified by 761 
the AEIO algorithm, are presented in Table 14. Compared to models in previous sections, CNN models 762 
with optimal hyperparameters obtained in this section exhibit the most minor errors, indicating that these 763 
are the most effective models in this study for predicting deep-seated displacement landslide occurrences. 764 
Table 12. Search ranges of the hyperparameters of the optimal hybrid numerical models (Chou and 765 
Nguyen, 2023). 766 
Hybrid model Hyperparameter Search range 

AEIO-CNN Learning rate [0.00, 0.1] 

Decay [0.00, 0.1] 
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Hybrid model Hyperparameter Search range 

Momentum [0.00, 0.99] 

Epsilon [1.0e-7, 0.001] 

Dropout [0.00, 0.99] 

Epochs [10, 120] 

 Batch size [32, 64] 

Table 13. Performance results of best CNN models with AEIO in deep-seated landslide prediction 767 
 Model MAPE (%) MAE (mm) RMSE (mm) Time (hour) 

One-day-

ahead 

displacement 

prediction 

E-2-station 

AEIO-MobileNet 2.81 5.09 11.92 1.25 

SAA-station 

AEIO-DenseNet201 3.30 6.32 15.65 3.48 

Seven-day-

ahead of 

displacement 

prediction 

  E-2-station   

AEIO-DenseNet201 4.30 5.32 15.65 3.48 

  SAA-station   

AEIO-MobileNet 5.63 9.35 14.27 3.39 

 768 
Table 14. Optimal hyperparameter of CNN models found by AEIO algorithm 769 

 
Model 

Learning 

rate 
Decay Momentum Epsilon Dropout Epochs 

Batch 

size 

One-day-

ahead 

displacement 

prediction 

E-2-station 

AEIO-

MobileNet 

0.0011 0.00095 0.00001 3.0e-7 0.56 15 64 

SAA-station 

AEIO-

DenseNet201 

0.00012 0.0012 0.00011 1.0e-7 0.49 16 64 

Seven-day-

ahead of 

displacement 

prediction 

E-2-station 

AEIO-

DenseNet201 

0.0012 0.0011 0.00022 1.0e-7 0.51 15 64 

SAA-station 

AEIO-

MobileNet 

0.00014 0.00098 0.00011 2.0e-7 0.50 14 64 
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Figure 10 illustrates the differences between typical AI models' actual and predicted deep-seated 770 
displacement. Specifically, Figure 10a compares the performance of single models against the predicted 771 
values, while Figure 10b does the same for hybrid models. The chart shows hybrid models demonstrate 772 
superior predictive capability for deep-seated landslides compared to single models. This is evident from 773 
the displacement line of the hybrid models in Figure 10b, which closely aligns with the actual deep-seated 774 
displacement and significantly outperforms the single models depicted in Figure 10a. 775 

 776 
a) Prediction results of deep-seated displacement by single AI models. 777 

 778 
b) Prediction results of deep-seated displacement by AI models optimized using the AEIO algorithm. 779 

Figure 10. Graph comparing the real and predicted deep-seated displacement. 780 
4.3 Discussion 781 

This study centers on landslides in Lushan Mountain, Taiwan, adopting a fundamentally different 782 
approach than previous research. While past studies primarily focused on constructing AI models for 783 
classification, calculating the probability of landslide occurrences, and generating landslide susceptibility 784 
maps (Balogun et al., 2021; Hakim et al., 2022; Jaafari et al., 2022), our study is oriented towards 785 
predicting displacement to provide warnings about potential landslide hazards. 786 
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As utilized in our calculations, computing deep-seated displacement offers several benefits. Firstly, 787 
understanding internal displacements provides accurate information for engineers to assess the resilience 788 
of structures and infrastructure in at-risk areas, facilitating the issuance of sensible warnings. Secondly, 789 
forecasting deep-seated displacement offers insights into the severity of the disaster, aiding in effective 790 
evacuation and rescue planning. 791 

Moreover, unlike AI models in previous studies (Balogun et al., 2021; Hakim et al., 2022; Jaafari et 792 
al., 2022), our research incorporates machine learning, time series deep learning, and CNN models, 793 
utilizing metaheuristic optimization algorithms to fine-tune their hyperparameters. However, the novelty 794 
of our study lies in adopting pre-trained models, such as MobileNet, DenseNet, Inception, and VGG, 795 
rather than conventional standard CNN models. The practicality of employing these pre-trained models 796 
has demonstrated effectiveness in predicting displacement in this research. 797 

By employing various AI models, this study identifies the most effective model for predicting deep-798 
seated landslides and offers a comprehensive overview of the performance of different AI models. Initially, 799 
machine learning models exhibited relatively high prediction errors, with MAPE ranging from 8.14% to 800 
15.19%. This performance was generally lower than time-series deep learning models, which showed 801 
MAPEs ranging from 7.9% to 14.73%. The superior performance of the time series deep learning models 802 
is attributed to their ability to process sequential data and retain information from previous steps. This 803 
enables them to learn patterns from the dataset more effectively than traditional machine learning models. 804 

However, compared to CNN models, the results of the time series deep learning models are not as 805 
strong. This disparity is attributed to CNN's superior learning mechanism. The convolutional and pooling 806 
layers in CNN enable robust feature extraction from the input data. Convolutional layers are particularly 807 
effective at identifying complex patterns and subtle features within time series data, primarily when spatial 808 
correlations exist. This capability allows CNN to uncover essential features that other models might 809 
overlook. 810 

The models developed in this study demonstrate predictive solid capabilities for deep-seated 811 
displacement. Among them, the AEIO-MobileNet model is the most effective, achieving predictions with 812 
deficient error, indicated by a MAPE of 2.81%. However, these models' practical applicability in real-813 
world scenarios must be improved due to the time-consuming processes involved in data collection, 814 
processing, and AI model operation, making timely predictions challenging. Meanwhile, there have been 815 
studies that successfully built real-time landslide detection systems (Wang et al., 2023; Das et al., 2020; 816 
C. et al., 2021). We acknowledge this limitation of our study. Therefore, future research endeavors will 817 
aim to address this issue. 818 

The input data used for the AI models were selected because they significantly influence the 819 
likelihood of deep-seated landslides, as detailed in Section 3.6. However, a limitation of this study is that 820 
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it does not evaluate the relative importance of each input data type on prediction accuracy. Future research 821 
should explore the impact of different combinations of input data on AI model performance. This could 822 
help identify the significance of each input type and potentially reveal the optimal combination of inputs 823 
to enhance prediction accuracy further.    824 
5. Conclusion and Recommendations 825 

This study addresses the persistent threat of landslides, a primary concern due to their severe impact 826 
on lives and property. Employing various AI models, such as machine learning, time series deep learning, 827 
CNN models, and metaheuristic optimization algorithms, the research focuses on predicting deep-seated 828 
landslides at Lushan Mountain in Ren'ai Township, Nantou County. The study aims to enhance early 829 
prediction accuracy by utilizing eight years of displacement and groundwater level data from Lushan 830 
Mountain and weather data from the POWER project. The predictions cover one-day and seven-day 831 
intervals, serving diverse purposes in landslide forecasting for timely evacuation. The research explores 832 
single and hybrid AI models to determine the most effective approach. The following conclusions are 833 
drawn from this research: 834 
(a). CNN models optimized by the novel AEIO algorithm yield the best prediction results. In particular, 835 
AEIO-MobileNet predicts one-day-ahead displacement at the E-2 station with a MAPE score of only 836 
2.81%, demonstrating high accuracy. 837 
(b). While CNN models boast high prediction accuracy, their computational time is also considerable. 838 
Therefore, decisions regarding their usage should also consider real-world constraints. 839 
(c). The AEIO-R-GRU model also yields reasonably good prediction results, although not on par with 840 
CNN models. The best result achieved by the AEIO-R-GRU model is a MAPE of 3.03% for one-day-841 
ahead prediction at the E-2 station. 842 
(d). The AEIO algorithm has successfully fine-tuned hyperparameters for AI models. Especially in the 843 
case of predicting one-day-ahead displacement, it has aided the MobileNet model in improving its 844 
predictive capability by 31.6%, enabling this model to provide more accurate predictions. 845 
(e). The prediction results from the E-2 station consistently outperform those from the SAA station. This 846 
is attributed to the fact that data from the E-2 station has been collected over a longer and more 847 
comprehensive period. 848 
(f). The study results demonstrate that AI models can accurately predict deep-seated displacement, which 849 
can be implemented in real-world scenarios. 850 
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