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the re-submitted WORD file along with marked RED COLOR for the ease of the reviewer's

perusal.

Comments of the Reviewer

Authors' Summary of the Changes

I reviewed a previous version of this manuscript and
suggested major revisions. The authors have taken
care to address my suggestions point-by-point, and
their revised manuscript reflects well the efforts of
the authors to incorporate these suggestions. The
results shown herein are impactful, and | appreciate
the thorough investigation of models that can help
guide future researchers who may undertake similar
efforts. | therefore recommend publication of this
work in NHESS; however, | include some additional
line-by-line comments for the authors to address
below:

We, the authors of this study, would like to express
our sincere gratitude to the reviewer. The feedback
provided in the previous round has guided our
improvements. We strive to meet the expectations of
both the reviewer and the NHESS journal.

1 (Title): It is a good idea to insert the country name
here so people know where the Lushan mountains
are located

We fully agree with the reviewer's suggestion and
have added the country name to the title of this
manuscript to provide readers with more detailed
information about the study location.

1 Predicting Deep-Seated Landslide PisplacementsDisplacement in Faiwan’sTaiwan's Lushan

2 Mountain through the Integration of Convelutional Neural Networks and an Age of

3 Exploration-Inspired Optimizer

38-44: Much improved with the added context here!

We are glad our revisions have met the reviewer's
expectations in this section.

45: Should have references to support this

We have included additional references to support
the assertion that ‘critical factors associated with
slope instability exhibit temporal variability' as
requested by the reviewer.

39

a few meters, decp-scated landslides extend decper, often exceeding 10 meters, and can involve the
40  movement of underlying bedrock (Lin et al., 2013). Predicting these events is challenging and costly (Thai
41  Pham et al., 2019). Therefore, extensive efforts have been made to predict such disasters throughout
42 history (Corominas and Moya, 2008; David and Raymond, 1989; Aleotti and Chowdhury, 1999). One
43 method that has been employed involves thoroughly examining the physical and geological characteristics

44 of the mountainous areas at risk of landslides (Cotecchia et al., 2020). Furthermore, the level of

49: There are much older references than these, e.g.,
Iverson and Major (1985) and references therein

We acknowledge the value of the reference
recommended by the reviewer, which provides an
excellent explanation for the argument in question.




Notably, this reference was conducted some time
ago, indicating that the argument has been widely
accepted within the academic community for quite
some time. Consequently, we have incorporated this
reference as a citation in the relevant section.

43
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45
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method that has been employed involves thoroughly examining the physical and geological characteristics
of the mountainous areas at risk of landslides (Cotecchia et al., 2020). Furthermore, the level of

groundwater has been shown by numerous studies in the past to influence the mechanisms behind

63: It is not mentioned what the constraints are of
traditional machine-learning models

We

have added a discussion on the limitations of

machine learning in this section, as suggested by the
reviewer.

54
33

One of the most effective solutions for constructing models to predict time series data involves

1 bl

applying data-driven techni The ad of putati ies has driven the

widespread adoption of data-driven machinc-learning models over physics-based models. This shift is

based on the premise that the data used for slope monitoring originates from nonlinear systems (Zhou et

Rand

al., 2018). However, a majersignificant drawback of traditional machine learning modelsswel

Eorest-and Suppert Veet Aach: such as Random Forest and Support Vector Machines. is their

difficulty in-handling spatiotemporal data. These models struggle to capture the sequential relationships

necessary for landslide prediction. resulting in lower performance fleang et al., 2022a; Tehrani et al.,

2022).

73: A term to use throughout the manuscript would
be “deep-seated landslide displacement”

We

fully concur with the reviewer's insight and have

consistently utilized the term 'deep-seated landslide
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displacement' throughout this study.

ial effectiveness. C quently. the fine-tuning of hyperparameters represents a potent avenue for

elevating the efficiency of Al models in research focused on predicting deep-seated-displacementdeep-
seated landslide sdisplacement.

Leveraging the effective methodologics mentioned above, this study employs AT models optimized

by an innovative metaheuristic optimization algorithm to predict deep-seated-disp leep-seated

landslide displacement on the northern slope of Lushan Mountain in Ren'ai Township, Nantou County,

Taiwan. The geological characteristics of this arca have undergone extensive rescarch (Wang ct al., 2015;

1) To analyze the application of machine learning and deep learning methods to time series data to forecast
short-term, deep-seated slope-landslide displ lispl across the Lushan Mountain area.

2) To identify the optimal model and hyperparameters for accurately forecasting deep-seated

Lisnl Jeep-seated landslide sdispl in the study arca.

3) To evaluate the role of heuristic optimization algorithms in fine-tuning the hyperparameters of AI

models.

2. Literature Review

2.1 Groundwater Levels and the For ting of Peep-SeatedPispk Deep-seated landslide
sdisplacementlandslide Displacement

Our rescarch aims to adopt a novel approach compared to previous landslide studics at Lushan

Mountain by utilizing Al models and metaheuristic optimization algorithms. This research will utilize

ther 1 iperature. humidity. and groundwater levels as input datas for AT models to predict
Lo iyl tdeep-seated landslide displ nt, thus aiding in landslide forecasting in this
region.

3.83.5 Age of Exploration-Inspired Optimi:

This study employs a range of AT models to forecast deep-seated-displacementdecp-seated landslide
displacement in mountainous regions. To enhance the prediction accuracy of these AT models, the study
3.9:24.2 Data Collection-and Preproeessing

In this study, hourly data of deep-seateddisplacementdecp-seated landslide displacement and
groundwater level were collected by the Department of Civil Engineering, College of Science and

Technology, at the National Chi Nan University research group over eight years from July 2009 to June
Based on the collected data, analyses have examined the correlation between groundwater levels

and deep-seated-displ leep-seated landslide displ at Lushan Mountain. To observe this

correlation, graphs illustrating the precipitation of recorded heavy rainfall (Figure 7A), variations in
displacement (Figure 7B and Figure 7C), and groundwater levels (Figure 7D) over time have been plotted.
June 17, 2012, totaling 1029 mm over 219 hours (as indicated in Table 2 and Figure 7A). The abnormal

rise in d levels led ! 1 &l 4 h 's seil increased pore water
IESSUIE s ifying_which triggered d ted—displ deep-seated landslide
= P P

displacement at both stations, namely E_2 and SAA, as evidenced in Figure 7B and Figure 7C.




550 Similar events occurred in November 2017. Heavy rainfall totaling 638.5 mm over 178 hours during
551 this period also caused a sudden alteration in groundwater levels, resulting in significant deep-seated

552 displ ! ted |

Islide displ Through comparison, it is apparent that there were up

553 to 13 instances of anomalous heavy rainfall during the study period. However, not every example of heavy
557 In addition to groundwater level data, weather factors such as temperature and humidity are also
558  utilized as input data for the prediction model. This study includes temperature as an input variable for AT

-seated landslide displ

559  models to predict deep-seated-displ due to its impact on soil
560  structure. Elevated temperatures can cause thermal expansion of soil particles, which can increase pore

574 Table 3 displays the input and output variables for AI models to predict deep-seated
575 ! d

P

ted landslide displacement at Lushan Mountain. Two datasets will be generated: one

576 for predicting displacement at the E_2 station and another for indicating displacement at the SAA station.

579 Table 3. Input and output variables of a model predicting deep-seated disp} leep-seated landslide

580  displacement

Variable Dataset of  Dataset of
Attributes group Attributes . .
D E_2station SAA station
Deepsented Displacement
. 5 extensometer at station Y1 v -
Output ; <P g 2 (mm)
A seated landslide n
variables sl . Displacement
displacemen
extensometer at station Y2 - v
measures
SAA (mm)
612 Predicting deep-seated—displ d ted landslide displ at Lushan Mountain is

613 undoubtedly highly challenging. given that such landslides depend on numerous factors. Therefore,
614 multiple methods will be employed simultaneously to identify the optimal AT model for prediction. These
629 In addition to the numerical Al models, this study employs individual CNN models for predicting
630 deep-seated displ :
631  above, the best CNN model with the highest displacement prediction capability will be fine-tuned by the
638  4:2:15.2.1 Numerical ModelsATMedels

639  a. Machine Learning Models

640 Initially, single machine leamning models will be employed to predict deep-seated displacementdeep-
641  seated landslide displ In this phase, machi:
642 as detailed in the rescarch of Chou and Nguyen (2023). The prediction results of these models at both E-

elide disnl ant

-scated | ly, similar to the approach

learning models will utilize default hyperparameters,

74: Would insert the country name here as well

We have included information regarding the country
Taiwan to enhance the reader's understanding of the
studys geographical context.

by an innovative metaheuristic optimization algorithm to predict deep-seated-displacementdecp-scated

landslide displacement on the northern slope of Lushan Mountain in Ren'ai Township, Nantou County,

76

77  Taiwan. The geological characteristics of this area have undergone extensive research (Wang et al.. 2015;
78  Lin et al., 2020). Previous studies have identified varying depths of the shear plane. Specifically, Lin et

131: Specify which atmospheric variables will be
used instead of the term “weather conditions”

Specifying the wvariables related to weather
conditions undoubtedly enriches the information
presented and enhances the clarity and
comprehensibility of this study for readers.
Accordingly, we have incorporated this information
following the reviewer's suggestion.

132 Our research aims to adopt a novel approach compared to previous landslide studies at Lushan
133 Mountain by utilizing AT models and metaheuristic optimization algorithms. This research will utilize
134 sesther conditionstemperature, humidity. and groundwater levels as input datas for AT models to predict
135 ted-displ d g in this

P P

1elide disnl Telide o

-seated |

thus aiding in

136 region.

134 (Fig. 1): Why is the orange layer filled in on the
second panel and not the first? Why not the upper
layer too? Additionally, water tables typically
include an inverted triangle denoting their position.

We have revised Figure 1 to ensure color
consistency between the images on the left and right.
In the right image, only the water layer is filled with
color, while the soil and rock layers remain
uncolored. Additionally, we have added an inverted
triangle symbol to mark the location of the
groundwater.
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116 Figure 1. Schematic illustration showing the effects of groundwater on deep-seated slope failure.
149: change to “physically based” from “physical- | We have made the changes as per the reviewer's
based” suggestion.

153 Moreover, physically- based numerical and laboratory modeling methods are also gaining traction

154  in landslide research. These methods aim to maintain forecasts using various data types while reducing

164-171: There is a deep literature on this subject
and | encourage the authors to include some more
fundamental contributions to slope stability analysis
here. It does not need to be a substantially longer
paragraph as that is not the focus of this work.
However, some more foundational work should be
briefly referenced.

In response to the reviewer's request, we have
included additional citations of studies that employ
stability analysis in landslide assessments.

166 Stability analysis is another commonly used method related to physics, which evaluates the forces
167  acting on a-slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear
168  Hoek-Brown shear strength reduction, determining the correlation between normal and shear stress based
169  on the Hoek-Brown eriterioh. Subsequently, the micro-units (mieroscopic components of the rock mass)
170  instantaneous friction angle and cohesive strength under specific stress conditions are calculated.
171 Although this approach effectively addresses cost and labor issues, it still heavily relies on the researcher’s
172 assumptions and is limited by the ability to utilize only a small portion of data from the research area.
173 Additionally. there are several other limitations. For instance, Mebrahtu et al. (2022)_indicated that
174 stability analyses become less reliable in seenaries-invelving seismie-loadsseismic load scenarios. Safaei

175  etal (2011)_also noted that stability analysis necessitates a substantial amount of detailed input data

176  obtained from laboratory tests and field measurements. thereby limiting the areas that can be effectively

177  assessed

172-180: I’'m not sure I understand this paragraph.
Why are Al models better suited to incorporation of
new data than, say, deterministic models? I think the
advantage may be that most deterministic modeling
requires some knowledge of physics to predict
displacement, which can be exceedingly complex in
a large landslide, and these kinds of models rarely
can achieve predictive success of a few percent.

We greatly appreciate the reviewer's suggestion,
which allowed us to revise this section for greater
clarity. We have updated the passage to explain why
conventional methods were not used, as they require
users to have specialized knowledge in physics and
demand specific types of input data, making them
less flexible compared to Al models. Therefore,
given the advantages of Al models, they will be
utilized in this study.

178 _in landslide stud toring data updated ing lar: I dail
179 B t-al—2014)%—As previously mentioned,
180  using conventional methods oses significant challenges. as their application requires a dee
181  understanding of both the physics involved and the complex behavior of soilin-tandslide research presents
182 3 hall 1 data-chang {s-updated, In addition ltraditional method

183  require specific types of input data. highlighting the rigidity and lack of flexibility inherent in these
184 approaches (Safaei et al., 2011). In contrast, AI models can overcome these difficulties by automatically
185  learning to identify connections-mapping functions between input and output data, eliminating the need
186  forusersto-haveusers needing specialized knowledge of soil behavior and physics. Additionally. AT
187  models can be updated to incorporate new input variables. offering flexibility to leverage available data

dated toi dditionalinput variabl d
P P P

188  based on real-world conditions-AJ-tnedel b

It dlei H f s £l bl real cld o
189 s 4 ponse

Therefore, Al models will

190 be utilized in this research instead of conventional methods.

184-186: There is somewhat of a disconnect here
because the Margarint et al. paper does not appear to
utilize Al, it just presents an analysis using a
standard logistic regression model. The preceding
sentence should therefore be changed, or a more
appropriate example should be provided.

Based on the reviewer's comment, we reference a
different citation that employs Al models in
landslide research to align better with the core
content of this section.
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In studies employing machine learning and deep learning models for landslide research, a plethora

of research utilizes discrete data to train AI models to predict the probability of landslides or to construct

maps depicting landslide susceptibility. For instance,—Marg t—al—2043} ployed—a— it
del + redict landslid b d di rete datainfe - raoi fR i Tk 1 15t
P &
dal ialded 9 151 redicti itk e sal ( i derth
B d-0.94-for the validation-dataset Pradhan and Lee (2010) used Geographic Information

System (GIS). remote sensing, and a neural network model to analyze landslide susceptibility in Cameron

Highlands, Malaysia. Ten factors, including topographic slope and drainage distance, were processed to

generate a susceptibility map. The model achieved 83% accuracy in predicting landslide locations.

bsequently. t esult: tilizad-t p-of landshid ptibility-in the studs
In a similar study, Pham et al. (2016) used multiple AI models, including support vector machines (SVM),
logistic regression (LR), Fisher's linear discriminant analysis (FLDA), Bayesian network (BN), and naive
Bayes (NB), for landslide susceptibility assessment in a region within the Uttarakhand state of India. The

SVM model yielded the best prediction results among the models used.

474-477: The DBSCAN algorithm is not mentioned
previously to this point and thus it is confusing.
Furthermore, Equations 13 and 14 do not exist in the
manuscript. Some additional prior explanation is
needed here.

To explain the AEIO algorithm in this study, we
have added citations and a description of the
DBSCAN algorithm. We hope this addition will
enhance the reader's understanding of the algorithm.
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The strength of the AETO algorithm lies in itz ability to develop specific strategies for particles based
on their positions, enabling faster convergence to the optimal point—Usias. using density-based spatial

clustering of applications with noise (DBSCAN) for particle clustering. DBSCAN is an unsupervised
clustering method that organizes data points by their spatial closeness in high-dimensional spaces (Ester
etal  1996). This zlgorithm is particularly effective at detecting clusters of different shapes and densities.

It relies on two primary parameters: e (the radius of the nesghborhood) and [y ‘the minimum number

of points required to form a dense area) Clusters are created by locating neighboring points that have
i i i inte-with enough surrounding points. while those that do not

belong to any cluster are classified as noise or outliers

Using the DBSCAN algorithm.—+. the AFIO determines whether particles are in favorable or
unfavorable positions, reminiscent of explorers during the Age of Exploration. The proximity (within
clusters) allows explorers to gather information and move toward optimal locations, thereby enhancing

Additionally, we have rechecked the numbering of
the equations and made necessary corrections to
ensure their accuracy.

435
436
437
438

The exploratory steps in the AEIOQ algorithm begin by classifying positions using the DBSCAN
algorithm. Subsequently, the explorers update the crowd control mechanism according to equations (913)
and (1044), and move according to various strategies defined by equations (48), (620, (731), and (812).

This process is conducted iteratively uatil the maximum number of iterations is reached.

We have also updated the numbering of the
equations in the flowchart to facilitate easier
tracking for the readers.
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406
407 Figure 4. Flowchart of the fine-tuning process of Al models by the AEIO algorithm_

307 Figure 4. Flowchart of the fine-tuning process of Al models by the AEIO algorithm_

490 (Fig. 6): It would be useful to have the
approximate failure plane depths measured for G20
and G21 shown graphically here.

Incorporating the location of the failure plane is
undoubtedly essential, as it provides readers with a
clearer understanding of the geological conditions in
the area. Therefore, we have included this
information in Figure 6.
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476
#77 Figure 6. Iltustration of zeolopical drilling survey.

494: 1 think the term “youthful” is too colloquial
here

We agree with the reviewer's suggestion and will
replace 'youthful' with 'incipient." This term is more
academically appropriate and accurately reflects the
geological conditions of the area, where many
valleys are in the early stages of formation.

457 The current study focuses on the northern slope of the Lushan hot spring i Ren'ag Township, Nantou
458 County. Taiwan (Figure 3). with Nenggag Mountain to the east. Hehyan Peaks to the north, Zhugshe
450 Mountain to the south, and Puli Basins to the west. The terrain features rugged mountain ranges,
460  incipientyeuthfl valleys, and notable river erosion (Lee and Chi, 2011). Lushan Hot Springs is located
461  below the hill, and the main access roads for nearby settlements and hot spring sites include Provineial
462  Highway 14 and County Highway 87.




514-521: 1 don’t think my previous comment
regarding the definition of ‘“cleavages” was
sufficiently addressed here. Please specify what this
term means in this context, or utilize a different term
throughout

This revision has replaced the term 'cleavage’ with
‘fracture.’

485 Previous research has detected signs of brittle deformation in the area. These indicatiens include
486
487
488
489
490
491
492 changes and landslide risk in this region.

chevron folds within fractureeleavases, visible cracks, and intricate jigsaw puzzle-like patterns at the head
of the rock formations. Overturned and flexural toppling fractureeleavaszes are prevalent towards the toe
of the slope. Additionally. kink bands are observable on fractures recently undergoing flexural folding
along the eastern boundary. Notably, horizontal fracturecleawazes near the toe region also
exhibitexhibitsexhibit inter-fractureeleavage gouges. Further details on this geological information can be
found in the study by Lin et al. (2020). These instances highlight the potential for significant geological

546 (Fig. 7): This is much improved from the
previous figure, although there is an issue now in
that the timing does not appear to line up between
the plots. For example, the large displacement in
2012 appears to come before the rise in water levels
in (D).

The synchronization of events across all four charts
is vital, highlighting the interrelationship within the
dataset used in this study. This alignment forms a
solid basis for selecting input variables for the Al
models. We have carefully fine-tuned the data to
ensure that the events in all four charts are precisely

A) Precipitation of recorded heavy rainfall in studied area
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g%é Figure 7. Unified timeline visualization of data in this study:-
540 _A) Precipitation of recorded heavy rainfall in the studied area; B) Measured displacements from extensometer SAA C)
541 Measured displacements from extensometer E_2; D) Groundwater levels at stations A-17, A-18-2, A-20, and A-24.

554-556: Did a previous study show specifically that
a structural alteration in soil took place? Also, the
failure plane is well below the “soil” depth and the
landslide displacement should be insensitive to the
soil present at the landslide surface. | recommend re-
writing to say that, based on the temporal association
of rapid displacement with a rapid rise in
groundwater levels, it could be inferred that
enhanced pore water pressure lead to the onset of

In previous studies on the landslide in Lushan
Mountain, Taiwan, other authors did not specifically
demonstrate that a structural alteration in the soil
occurred. Therefore, based on the reviewer's analysis
in this comment, we have revised our explanation to
state that enhanced pore water pressure led to
motion onset.

542 The graphs above show that the displacement values at both stations often exhibit significant
543
544

increases coinciding with periods of pronounced fluctuations in groundwater levels. Specifically. in Tune

2012, there was a notable surge in groundwater levels attributed to heavy rainfall from June §, 2012, to

motion.




545 June 17, 2012, totaling 1029 mm over 219 hours (as indicated in Table 2 and Figure 7A). The abnormal

546  rise in groundwater levels led tocaused 1al 1h seil_increased pore water
247 pressure; T plifirins which triggered deep-seated—displacementdeep-seated landslide

548  displacement at both stations, namely E_2 and SAA, as evidenced in Figure 7B and Figure 7C.

616: “Deep-seated landslide displacement”

We have revised the terminology in this section and
throughout the manuscript to 'deep-seated landslide
displacement’ per the reviewer's suggestion.

611  45.Model Establishment and Analysis Results

612 4351 Model Establishment

613 Predicting deepseated—displacementdeep-seated landslide displacement at Lushan Mountain is
614 undoubtedly highly challenging, given that such landslides depend on numerous factors. Therefore,
615  multiple methods will be employed simultaneously to identify the optimal AT model for prediction. These

776 (Fig. 10). Why are the descriptions at (a) and (b)
above the introduction to Fig. 10? Second, in panel
(@) there are a bunch of confusing floating dots that
fall below the main plot and cover the legend. Third,
the dots in general are distracting because it is
difficult to see the subtle differences in each time
series. | would remove the dots and just show lines
for each model.

For the issues identified in Figure 10, we have made
several revisions per the reviewer's suggestions.
These revisions include the following:

- Move the descriptions of charts A and B below
the introduction of Figure 10.

- The floating dots appearing in the main plot and
covering the legend are due to an error during the
PDF export process. We will ensure this issue
does not occur in the subsequent sections.

- Remove the dots on each line to avoid confusion
and simplify the plots.
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801 Figure 10. Graph comparing the real and predicted deepseated displacementdeep-seated landslide
802 displacement: -A) Prediction results of deep-seated landslide displacement by single Al models: -
803 B) Prediction results of deep-seated landshde displacement by Al models optimized using the AEIO
804 algorithm.

783: This is not entirely fair as there are a number of
studies now that use Al to forecast landslide
displacement as a function of environmental
variables.

Other studies have indeed employed Al models to
forecast landslide displacement, and claiming this
approach as entirely novel is inaccurate.
Consequently, we have made several revisions in
this part. At the beginning of Section 4.3
(Discussion), we concisely summarized the study's




objectives and removed any misleading information
to ensure clarity for the readers.

806  4:45.3 Discussion

407 This study focuseseestess on landslides in Lushan Mountain, Tarwan, with—the ammof
308 mgintending to develop models to predict d ted landslide displacement for both 1-day and
809  7-day forecasts. These predictive models utilize input data such as lezale d
910  bussiditvsn theregionthe region's groundwater levels, temperature, and humidity. ~Accuratelvadepting
811 4 TR} pproach than previons research While p dies primarils—& 4
812 o AL models for classif _—calealating the probabilityof landslid 4
813 o landslid ptibility maps (Balogun et al.2021: Hal ¢ al_2022: Taafari et al 2027}
$14 tady is orientad towards predicting displ t to provide warnings about potestial landslid
815  haszasds:

816 Axutilized leulations: computing deep-seated displ deep-seated landslide
§17  displacement offers several benefits. Firstly, 4 e e it provides

$18  timely information for engineers to assess the resilience of structures and infrastructure in at-risk areas,
§19  facilitating the issuance of sensible warnings. Secondly, forecasting deep-seated
$20  landslide displacement offers insights into the severity of the disaster, aiding in effective evacuation and
821  rescue planning.

826: | would specify that this study addresses the
persistent threat of large, slow-moving landslides.

We are very grateful to the reviewer for this
suggestion, which helped clarify the type of
landslide most relevant to our study. We have made
the necessary revisions in line with the reviewer's
recommendation.

854  5:6.Conclusion
855 This study addresses the persistent threat of large. slow-moving landslides, a primary concern due to
856  their severe impact on lives and property. Employing various Al models, such as machine learning, time




