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The authors appreciate the reviewer's valuable feedback. The summary of the changes based on
the reviewer’s recommendations & comments is listed below. All the revisions are TRACKED
in the re-submitted WORD file along with marked RED COLOR for the ease of the reviewer’s
perusal. Our colleague, a native English speaker of BLUE COLOR, has corrected grammatical

and writing style errors in the original version.

Recommendations and Comments of Reviewer

Authors’ Summary of the Changes

The manuscript can be an interesting contribution
for the methodology of use and interpretation of data
for the prediction of deep landslide movements.
However, it requires a substantial review in the text,
in the figures and in the production of additional
figures to show the final results. The list presented
below are the specific comments:

We are pleased to receive positive feedback from the
reviewer on this study. We also sincerely appreciate
the reviewer’s detailed comments, which have
identified the limitations of our research. We have
endeavored to revise the manuscript in response to
each of the reviewer’s comments. The details of
these revisions are outlined below.

1) Sections 3.1 and 3.2 should be in the text in more
synthetic form, placing much of the content in an
appendix

We completely agree with the reviewer's suggestion.
Excessive focus on the operational mechanisms of
the Al models could distract readers from the
primary objective of the study. Therefore, we have
moved this content to the appendix.

260 3.1 Convolutional Neural Networks

261 In 1998, LeCun introduced a novel type of DNN known as the CNN, specifically designed for
262 processing data with a grid-like structure, such as images. The complex, layered system of CNN facilitates
263 the automated extraction of features without extensive preprocessing, making it ideal for object
264 recognition, image classification, and segmentation tasks. The detailed mechanism of the CNN model can
265  be found in appendix A. Th L S
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329 3.2 Deep Learning Models for Time Series
330 RNN was introduced by Elman in 1990 (Elman, 1990). This model makes predictions based on

331  sequential data, crucial for language modeling, document classification, and time series analysis. The
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2 architecture of an RNN model can be found in appendix B.
APPENDIX

Appendix A. Convolutional Neural Networks

The architecture of a typical CNN, as illustrated in Figure A-1, comprises an input layer (to receive
image data), followed by hidden layers (including convolutional, pooling, and fully connected layers), and
concludes with the output layers. As depicted in Figure A-1, the complexity of CNN progressively
increases from the convolutional layer to the fully connected (FC) layer. This design enables CNN to
recognize relatively simple patterns (lines, curves, etc.) before progressing to capture more iniricate
features (faces, objects. etc.), with the ultimate aim of extracting relevant information for accurate pattern

identification.
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Figure A-1. Structure of basic CNN.
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12 As illustrated in Figure A-2, the convolutional layer is resp
13 network. This involves extracting local features from an image using a set of learnable filters known as
14 kernels. The behavior of the filter in the convolutional layer is influenced by two main factors: stride and
15  padding. Stride refers to the pixel shift of the filter across the image, while padding aims to preserve
16  information at the comers. In each iteration, a portion of the image is convolved with a filter to generate
17 a dot product of pixels within its receptive field. This process is replicated across the entire image to

18  produce a feature map. The convolution operation is defined as follows:

2) In section 3.4.2 the equation of the MAPE, MAE
and RSME objective function is not presented

We have revised Section 3.4.2, adding detailed
explanations of the calculations and the significance
of each evaluation metric. These explanations enable
readers to better understand the objective function
when these evaluation metrics are applied.

375 4 3.4.2 Performance Metrics

376 This study utilized four widely recognized performance measures to assess the medel’s model's
377  effectiveness in prediction accuracy (Chou and Nguyen, 2023). The measures included mean absolute
378 error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE).

379 MAE represents the mean of absolute errors, calculated as the average of the absolute
380  differences between actual and predicted values. Its advanthge lies in its simplicity, which
381  provides a straightforward measure of average prediction error. However, a drawback of MAE is
382  its insensitivity to more significant errors, so it may not effectively highlight differences between
383  models when significant errors are present. It is defined as:

384 MAE ='XLly - )

385  where n is the number of predictions, y; is the i forecasted value, and 7, is the corresponding i

386  actual value
387 MAPE quantifies the average absolute error ratio—derived from the differences between
388 actual and forecasted values—to the actual value. It provides a clear metric in percentage terms,

389
390
391
392

facilitating straightforward interpretation across various datasets. However, MAPE's limitation
arises from its sensitivity to zero values in the actual data, which can become undefined or
impractical to compute, limiting its utility in scenarios involving zero or near-zero actual values.
The expression for MAPE is as follows:
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394  where n is the number of predictions, y; is the i forecasted value, and J; is the corresponding 7t

395  actual value.
396 RMSE represents the square root of the average squared error between actual and forecasted
397  values and is widely used for its ability to indicate the dispersion of errors. This method captures

398 the magnitude and direction of errors, making it practical for assessing overall prediction

399  accuracy. However, RMSE tends to be more sensitive to outliers and significant errors than MAE
400  due to its squaring of errors during computation. This sensitivity can disproportionately affect its
401  evaluation in datasets with extreme values. The expression for RMSE is as follows:
JE—
[1 -
402 RMSE = [137,0~5)° @
403 where » is the number of predictions, y; is the it forecasted value, and §, is the corresponding it

404  actual value.

3) Section 3.5 - Chou and Nguyen in 2024 article
not present in the bibliography or not mentioned in
the correct form

The AEIO algorithm employed in this study was
developed in 2024. It has successfully undergone
testing on small, average, and large-scale benchmark
functions, as well as in optimizing the
hyperparameters of Al models. However, since the
algorithm is currently under review for publication
in a separate journal, we are unable to include it as a
reference in this manuscript. We kindly ask for the
reviewers' understanding regarding this limitation.

Although we have not added a citation for the AEIO
algorithm, we have provided a highly detailed
explanation of its usage to ensure that readers can
easily understand and apply it, as outlined below.
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3.5 Age of Exploration-Inspired Opti

This study employs a range of AT models to forecast deep-seated displacement in mountainous

regions. To enhance the prediction accuracy of these AI models, the study incorporates a novel
metaheuristic optimization algorithm known as the Age of Exploration-Inspired Optimizer (AEIO).
Developed by Chou and Nguyen in 2024, this algorithm has demonstrated high effectiveness in fine-
tuning the hyperparameters of Al models. This algorithm treats each particle in the search domain as an
cxplorer. The movement of particles toward regions with higher fitness values parallels the exploratory

activities of the Age of Exploration, where explorers sought ideal locations for establishi lonics. In
this study, each particle represents a set of hyperparameters, with the ultimate goal of the search process
being to identify the optimal particle or hyperparameter set that minimizes prediction error for AT models.
Figure 8 illustrates the AEIO algorithm.

The strength of the AEIO algorithm lies in its ability to develop specific strategies for particles based

on their positi bling faster to the optimal point. Using density-based spatial clustering
of applications with noise (DBSCAN) for particle clustering, the AEIO determines whether particles are
in favorable or unfavorable positions, reminiscent of explorers during the Age of Exploration. The

proximity (within clusters) allows explorers to gather information and move toward optimal locations,

thereby enhancing their ability to establish new colonies. In contrast, explorers far apart (outside clusters)
adopt different strategies, relying on limited peer guidance or general trends in their quest for new
territories.

Follow general trends Follow other peers

Choose strategy
to explore new

New colony found

Follow the best individual Follow guidance from
another explorer

Figure 8. Illustration of Age of Exploration-Inspired Optimizer
In each iteration, explorers forecast their next move. If it promises a better position, they relocate.
Otherwise, if the new spot is less favorable for colony establishment, they stay put and await the next
1 formulas to calculate the it step of

" "

iteration. The algorithm employs specific
explorers or particles in the AEIO. The exploratory steps of explorer in the AEIO algorithm will
continuously iterate until the stop condition is satisfied.

o  Explorers follow general trends

The explorer choosing this type will calculate the distance from their location x; 4(f) to

the center of all other explorers (Meanvl,(t)), then attempt to move towards that central point in the
hope of finding a better location with the potential to establish a new colony. The following formula
determines the explorer's position after the movement:

Xoat+1) = x(t) +ax (Metmvld(t) = %,q(®)) X rand(0,1) x R ®

1,460 g (g alE) ®

where d = 1,2, ...D: D is the number of dimensions: i = 1,2, ... pp: Mpyy is the total number of

Meanvly(t) =

TPop

explorers: t = 1,2, ... MaxIt is the number of iterations: Max/t is the maximum value of iteration: a is a
parameter for adjusting the particle’s movement toward the centroid pesition (usually equals 3).
Meanvly(t) is the centroid of all particles in dimension d. rand(0,1) is the random number in the range
[0,1]. R: a number that equals 1 or 2 depending on the value of rand(0, 1) per the equation. R =
round(1 +rand(0,1) X 1), x; 5(t) is the location of particle i in iteration ¢, x; 4(t + 1) is the location
of particle i in iteration (t + 1).

®  Explorers follow three other peers

Explorers employing this method will the average position of three randomly

selected other explorers (M) and then move toward this newly calculated average
position. The explorer's new position is computed using the following formula:

Xa(t+1) = x,4(0) + (M —x,4(t)) xTand(0.1) x R (10)

where: x; 4(1), X5 4(t) and X3 4(t) are three random explorers in dimension d at iteration . d = 1,2, ... D:
D is the number of dimensions; [ = 1.2, ...Tpop: Mpop, is the total number of explorers: ¢ = 1,2, ... MaxIt

is the number of iterations: MaxIt is the maximum value of iteration.




453 e  Explorers follow the best one

454 According to this strategy, the explorer (x; ;(t)) will move closer to the position of another explorer
455 currently holding the best position (Best;(t)). as determined by the following formula:

456 x,4(t+1) = x,4(t) + (Besty(t) —x,4(t)) X rand(0,1) x R (11)

457  where: Best,(t) represents the position of the particle with the best fitness in dimension d at iteration t.
458  the parameters d and t hold the same significance as defined in Equation 10.

459 e Explorers follow guidance from another one

460 Explorers in favorable positions with access to information can execute this movement strategy. In

461 this scenario, explorers (¥; ;(t)) will consult with eseh-other another explorer. The consulted explorer will
462  compare their direction and distance to the best individual, who holds the most favorable position

463 (Best,(t)) and guide the inquirer. This algorithm assumes that the inquirer can be any explorer, i.c., a
464  random explorer (x; 4(t) ). The following formula describes how to calculate the new position of the
465  explorer following this strategy:

466 x;4(t+1) = x,4(t) + (Besty(t) — x3,4(t)) X rand(0,1) x R (12)

467  where: x, 4(t) is a random explorer in dimension d at iteration ¢. the parameters d and t hold the same

468  significance as defined in Equation 10

469 & Crowd control mechanism
470 To enhance the efficiency of AEIO in fransitioning between exploration and exploitation, a
471 mechanism is employed to adjust the parameters of DBSCAN throughout each cycle. ding to the
472 following formula:

t
473 5= (n.1 + ) X (Meanvls (1) — Besty(r)) (13)
474 MinPts = Tuund(l +—x10) (14)

MaxIt

475 The exploratory steps in the AEIO algorithm begin by classifying positions using the DBSCAN

476  algorithm. Subsequently, the explorers update the crowd control mechanism according to equations (13)
defined by (8), (10), (11), and (12). This

number of iterations is reached.

477 and (14), and move according to various strategi

3

478  processis d iteratively, g until the

479 To fine-tune the hyperparameters of Al models, the AEIO algorithm treats each hyperparameter as
480  a variable. Furthermore, the objective function of the AEIO algorithm seeks to minimize the prediction
481  error of Al models, which is quantified by an evaluation metric (MAPE). Figure 4 presents a flowchart
482 illustrating the process by which the AEIO algorithm aids in fine-tuning hyperparameters for AT models.

Additionally, the AEIO algorithm demonstrated
strong  optimization  capabilities  for  the
hyperparameters of Al models in this study,
highlighting its effectiveness.

4) Section 3.5 - EQ. 10 and 11 - The meaning of the
Maxit and Mind parameters are not indicated

We acknowledge the error in our initial manuscript,
as pointed out by the reviewer’s suggestion. We
have now added annotations for the parameters d, D,
Npop, t, and MaxIt in Equation (10). Additionally, we
have clarified that these values hold the same
meaning in Equations (11) and (12).

445 e  Explorers follow three other peers
t method will cal
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446 Explorers employing this

late the average position of three randomly
) and then move toward this newly calculated average
448  position. The explorer's new position is computed using the following formula:

49wt +1) = () + (A0 ) s rand(0,1) X R (10)

450 where: x; 4(1), X, 4(£) and x5 4(t) are three random explorers in dimension d at iterationz, d = 1,2, ... D:
451 D is the number of dimensions: { = 1,2, ...Tpyy: Npoy, is the total number of explorers: t = 1,2, ... MaxIt
452 is the number of iterations; Max/t is the maximum value of iteration.

453 e Explorers follow the best one

454 According to this strategy, the explorer (x; ;()) will move closer to the position of another explorer
455 currently holding the best position (Best;(t)), as determined by the following formula:

456 X,4(t +1) = x,4(t) + (Besta(t) — x,4(t)) X rand(0,1) X R (11)

457 where: Best,(t) represents the position of the particle with the best fitness in dimension d at iteration t,
458  the parameters d and t hold the same significance as defined in Equation 10

459 e  Explorers follow guidance from another one

460 Explorers in favorable positions with access to information can execute this movement strategy. In

461 this scenario, explorers (¥, 4(t)) will consult with eack-ether another explorer. The consulted explorer will




462 compare their direction and distance to the best individual, who holds the most favorable position
463  (Besty(t)) and guide the inquirer. This algorithm assumes that the inquirer can be any explorer, ic., a
464 random explorer (x; ;(t) ). The following formula describes how to calculate the new position of the
465  explorer following this strategy:

466 x,4(t+1) = x,4(t) + (Besta(t) — x, 4(t)) X rand(0,1) X R (12)

467  where: x; 4(t) is a random explorer in dimension d at iteration £. the parameters d and ¢ hold the same

468  significance as defined in Equation 10.

5) Section 3.6.0-In Figure 9, references are indicated
to the 18-19-20-21 and 22 equations. But these
equations do not exist and the text

We have revised the equation numbering in this
flowchart to ensure consistency with the sequence of
equations presented earlier.
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Figure 9. Flowchart of the fine-tuning process of Al models by the AEIO algorithm

6) section 3.6.0 in Figure 9 and in the text the
optimization stop criterion should be indicated.

We fully agree with the reviewer's suggestion and
have added content to the manuscript to emphasize
the stop criterion of the AEIO algorithm.

426 In cach itcration, explorers forecast their next move. If it promises a better position, they relocate.

427 Otherwise, if the new spot is less favorable for colony establishment. they stay put and await the next

1 Tenl

ical formulas to

428  iteration. The algorithm employs specific the movement step of
429 explorers or particles in the AEIO. The exploratory steps of explorer in the AEIO algorithm will
430  continuously iterate until the stop condition is satisfied.

475 The exploratory steps in the AEIO algorithm begin by classifying positions using the DBSCAN
476  algorithm. Subsequently, the explorers update the crowd control mechanism according to equations (13)

477  and (14), and move according to various strategics defined by equations (8), (10), (11), and (12). This

478  process is number of iterations is reached.

We have also incorporated the stop criterion into the
flowchart of the AEIO algorithm during the fine-
tuning of the Al model's hyperparameters.
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Figure 9. Flowchart of the fine-tuning process of AT models by the AEIO algorittm

7) Section 3.6.2. Figures 12 13 and 14 should be
presented together in the same group with the same
temporal axis. And an additional figure should be
added to the group, with the temporal sequence of
the rains

We have revised these figures by merging Figures
12, 13, and 14 into a single figure, presented along a
unified timeline. Additionally, the new figure
includes rainfall data from significant storms in the
region to facilitate easier comparison for the readers.

A) Precipitation of recorded heavy rainfall in studied area
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gjé Figure 12. Unified timeline visualization of data in this study.
550 A) Precipitation of recorded heavy rainfall in the studied area; B) Measured displacements from extensometer SAA C)
551 Measured displacements from extensometer E_2; D) Groundwater levels at stations A-17, A-18-2, A-20, and A-24.

8) in Section 4, the comparative result of the
deformations observations (shown in figure 14) with

In response to the reviewer's suggestion, we have
added a figure that displays the predicted deep-




the comparative predictions of the best model should
be graphically presented.

seated displacement of the best machine learning
model, the best time-series deep learning model, the
best CNN model, and the best hybrid models. This
allows readers to compare and assess the predictive
capabilities of these models.

771 Figure 10 illustrates the differences between typical Al models' actual and predicted deep-seated
772  displacement. Specifically, Figure 10a compares the performance of single models against the predicted
773  values, while Figure 10b does the same for hybrid models. The chart shows that, hybrid models
774  demonstrate superior predictive capability for deep-seated landslides compared to single models. This is
775  evident from the displacement line of the hybrid models in Figure 100 which closely aligns with the actual
776  deep-seated displacement and significantly outperforms the single models depicted in Figure 10a.
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780 b) Prediction results of deep-seated displacement by Al models optimized using the AEIO algorithm._
781 Figure 10. Graph comparing the real and predicted deep-seated displacement.
" . . . . '
9) section 4.2 is too long and should be simplified | We fully understand the reviewer's concern

and synthesized

regarding the length of Section 4.2. However, it is
important to note that much of the length is due to
the inclusion of performance result tables for the
models, which are essential and cannot be
condensed.

Additionally, we believe that the explanations and
commentary on the models' performance are equally
essential. These details not only enhance the
manuscript's relevance to readers interested in
landslide research but also appeal to those focused
on the use of Al models for regression studies.

Last but not least, while this section is lengthy, it is
organized in a logical structure. As a result, readers
will not be distracted by its length; instead, they can
easily find information on the specific models they
are interested in, corresponding to each subsection
within Section 4.2.

However, in response to the reviewer's valuable
suggestion, we have revisited Section 4.2 and
removed redundant content, retaining only the
information that is most valuable to the readers.
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most suitable machine learning model for predicting deep-seated landslides, exhibiting both high

prediction accuracy and a short running time. The foll e il parathi del with the best

time saries deen learnino modal to salect the optimal 1modal for fine tunine
P P -

Similar to the machine learning models, in this section, the time series deep learning models will

also be trained with default hyperparameters, as found in research of Chouand Moy R —
Chou and Nguyen (2023). The performance results of these models are shown in Table 7. Overall, akin to
demonstrates higher prediction accuracy. Therefore, the R-GRU model will be chosen as the best
numerical AT model. B GRU will underse fine tuning in the follow i ing the AEIO alsesitt

furth, v thi dall

displacement of R-GRU before fine-tuning was 7.9%, but this number decreased to only 3.03% after fine-
tuning_All other predicti imilarly show a d ing trand.

Additionally, Table 9 indicates that predictions from the dataset of the E-2 station consistently
outperform those of the SAA station. Specifically, the displacement prediction at the E-2 station is 3.03%
and 6.38%, better than the corresponding numbers for the SAA station, which are 3.94% and 7.96%,

respectively. This is attributed to the dataset collected by the E-2 station being more comprehensive and
gathered over a more extended period than the SAA station (as shown in Table 4).

the AEIO algorithm, are presented in Table 14. Compared-& b tiens; CNN models

with optimal hyperparameters eb sk =i st e e ey

are the most effective models in this study for predicting deep-seated displacement landslidececurrances.
Figure 10 illustrates the differences between typical AI models' actual and predicted deep-seated

displacement. Specifically, Figure 10a compares the performance of single models against the predicted

values, while Figure 10b does the same for hybrid models. The chart shows that, hybrid models

demonstrate superior predictive capability for deep-seated landslides compared to single models. This is

evident from the displacement line of the hybrid models in Figure 10b which closely aligns with the actual

deep-seated displacement and significantly outperforms the single models depicted in Figure 10a.
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