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perusal. Our colleague, a native English speaker of BLUE COLOR, has corrected grammatical
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Recommendations and Comments of Reviewer

Authors’ Summary of the Changes

This paper by Chou et al. describes an effort to test
the sensitivity of various machine learning models
on forecasting deep-seated landslide displacement
over single-day and weeklong timescales. The
authors utilize two sets of extensometer data that
record landslide displacement at Lushan Mountain
in Taiwan over a period from 2009-2017, along with
four records of groundwater well data and satellite-
derived temperature and humidity data. Over this
time, the extensometer data record multiple pulses of
movement that appear to correspond to peaks in
groundwater levels, suggesting a connection to pore-
water pressure increases via rising water tables. The
authors employ their record of time series data to
train a bevy of various Al models, and then from the
two top-performing models fine-tine their
hyperparameters  using a newly released
optimization algorithm (the Age of Exploration-
Inspired Optimizer, or AEIO). The authors find that:
1) many models perform well in forecasting
landslide displacement although there are tradeoffs
between accuracy and computation  time
(impressively low errors from ~4-7% in the best
cases); and 2) the AEIO algorithm successfully
reduces uncertainty in their top models.

Overall, the authors present a clear description of the
Al models used in the analysis and show
convincingly that for the study monitoring sites
machine learning algorithms can indeed be used to
accurately forecast landslide displacement, even at
the multi-day time scale. Showing that these

As authors, we wish to express our sincere gratitude
to the reviewers for their time and effort in
thoroughly evaluating our research. We are
encouraged by the recognition that our study may
contribute to NHESS. In response to the reviewers'
insightful suggestions, we will revise our manuscript
accordingly. The following sections will address
each revision in detail. We hope that these updates
will meet the reviewers' expectations and align with
the high standards of NHESS for publication.




methods yield a ~5% error on a seven-day forecast
of landslide displacement is highly impressive and
has obvious societal relevance. The AEIO method
(complete with a very fanciful Fig. 8) does appear to
work well in reducing the prediction uncertainty for
the top-performing models. Therefore, I think the
paper succeeds in showing the practical utility of
applying optimized Al-based methods to this type of
extensometer data and the benefits of running an
optimization scheme on improving model
performance. As presented, however, the manuscript
feels somewhat lopsided as there is comparatively
little information about the landslide itself and any
in-depth analysis on connections from the model(s)
to the results. For example, how much does the
choice of input parameters impact performance? Are
four groundwater datasets necessary, or would one
suffice? Does including humidity data actually help
improve model results, or is it extraneous? These are
the types of questions worth discussing that may
help yield more insight and understanding that may
expand the utility of these results beyond the
authors’ study data (and thus would be of increased
relevance to the global NHESS readership). Beyond
these primary concerns, there are a number of
smaller line-by-line technical and editorial
comments I provide below that warrant addressing
by the authors. If the authors can address these
comments, [ think this manuscript will make a
useful contribution to NHESS.

I: 'm not sure the phrase “in Mountains” is
necessary here.

2: I believe the word “an” should perceive “Age of
Exploration-Inspired Optimizer”.

We have identified inaccuracies in the title based on
the reviewer's comments. We will replace the phrase
"in Mountains" with "in Lushan Mountain" to
provide readers with more precise information about
the data collection and research location.
Additionally, as suggested by the reviewer, we will
add the word "an" before "Age of Exploration-
Inspired Optimizer.".
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9: Nothing is done in this manuscript to show that
deep-seated landslides are becoming increasingly
frequent due to changing climate patterns. Is there a
reference the author can provide that shows this in

We greatly appreciate the reviewer's comment. The
reviewer correctly pointed out that our study does
not demonstrate the argument that deep-seated
landslides are becoming more frequent due to




order to justify its presence in the abstract? This is
certainly a nuanced topic as projected climatic
changes may impact different areas (and thus
landslide-triggering potential) differently across the
globe, and therefore it is difficult to make these
blanket statements.

11: insert “by” after “displacements”

changing climate patterns. As such, it is
inappropriate to include this argument in the
abstract, and we have revised the sentence
accordingly. Additionally, we have added the word
"by" after "displacement," as suggested by the

ICviEwer.

8  Abstract

9 Deep-seated landslides;t ingt ingl 1 Jue to-changing elimate patt P tg

10 riskstek fife Hrfrast T k o Landslides have caused substantial

11 damage to both human life and infrastructure in the past. Developing an carly warning system for this type

12 of disaster is crucial to reduce its impact on society. This research contributes to developing predictive

ted slope by employing advanced computational models

13 early warning systems for deep- Jispl

14 for envi I risk

Our novel framework integrates machine learning, time series deep

25: There are certainly more than 378 landslides
recorded worldwide between 1997 and 2017. Is this
a specific subset of slides from this study? If so, a
little more context needs to be provided here on
what this number represents.

In this section, we aim to provide data to
demonstrate that landslides have significant negative
impacts on our lives. However, as suggested by the
reviewer, it appears that the data used may not be
accurate. Therefore, we have sought new data and
revised this section accordingly.

26 1. Introduction

27 The-378 landslid 1ed 1dwide 1007 and 2017 resulted in the deaths of 18414

dlef 4 AL thers—injured—witl iated s ; 1 ot ar 1 17D 8 bill

28 peopl
29  (Asseskeet-al-—2022) Landslides are among the most devastating natural disasters (Huang and Fan,
30 2013), claiming an average of over 4,000 lives annually worldwide between 2004 and 2010 (Petley, 2012).
31  Landslides represent a global hazard, particularly in developing countries, where rapid urbanization,

32 population growth, and significant land use changes occur (Caleca et al., 2024). The identification,

35: The 10 m threshold for defining a deep-seated
landslide seems arbitrary. Dou et al. (2015) use 10 m
as an example in their example sketch (their Fig. 5),
but they do not reference this as a specific genetic
guideline. Please use a more appropriate definition
here.

We fully agree with the reviewer that using the
definition of “deep-seated landslide” from Dou et al.
(2015) was inappropriate. Consequently, we have
revised this paragraph to adopt the definition
provided by Lin et al. (2013) and included the
relevant references. We hope this revised definition
offers greater clarity and accuracy, addressing the
reviewer's concerns.

36 al, 2014). These issues are further exacerbated in countries with complex geological and climatic

37  conditions.

38 Deep-seatedlandslid - tHonal daf calieclow: £ coil or rocleat
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40 A deep-seated landslide involves the gradual and persistent displacement of a substantial amount of soil
41 and rock. which can escalate into a sudden and devastating event (Kilburn and Petley, 2003; Geertsema
42 etal, 2006; Chigira, 2009). Unlike shallow landslides, which typically affect surface layers to a depth of
43 a few meters, deep-scated landslides extend deeper, often exceeding 10 meters, and can involve the
44 movement of underlying bedrock (Lin et al., 2013). Predicting these events is challenging and costly (Thai
45 Pham et al., 2019). Therefore, extensive efforts have been made to predict such disasters throughout
46  history. One method that has been employed involves thoroughly examining the physical and geological

41-42: This sentence feels out of place here since the
paragraph is just discussing background. It would fit
better in the final paragraph of this section outlining
the goals of the specific study (i.e., lines 63-76)

We agree that the inclusion of this sentence in this
paragraph is not appropriate as it only discusses the
background of the study. Therefore, we will remove
this sentence.

48  level of groundwater has been shown by numerous studies in the past to influence the mechanisms behind

49 landslide formation significantly (Miao and Wang, 2023: Preisig. 2020). Censequently—inthisstudy;

50 groundwaterlevels will serve as-inputs for models designed +

cadiet landslid
to-prediet

51 In pursuing a generalized approach to landslide forecasting, researchers have determined that the

52 critical factors associated with slope instability exhibit temporal variability, necessitating using time series

54: editorial suggestion — can remove “In

The phrase “In contemporary times” has been




contemporary times”

removed according to the reviewer's suggestion.

58 One of the most effective solutions for constructing models to predict time series data involves

59  applying data-driven techniques. The ad of putational capabilities has driven the

60  widespread adoption of data-driven machine-learning models over physics-based models. This shift is
61  based on the premise that the data used for slope monitoring originates from nonlinear systems (Zhou et

62 al.,2018). Ineont s times; An

g array of novel data-driven solutions is being developed
63  to overcome the constraints of traditional machine-learning approaches. Among these data-driven
64  solutions, convolutional neural networks (CNNs) have emerged as one of the most effective methods.
65  These CNN models. which excel at automated feature extraction, can enhance efficiency in analyzing

66  complex datasets and improve the accuracy of prediction results (Alzubaidi et al.. 2021).

55: CNN has not been defined before the
introduction of this acronym

We have added an additional sentence beforehand to
clearly explain the abbreviation 'CNN' and to further
elaborate on the paragraph's content.

58 One of the most effective solutions for constructing models to predict time series data involves

59  applying data-driven techniques. The ad of

putational capabilities has driven the
60  widespread adoption of data-driven machine-learning models over physics-based models. This shift is
61  based on the premise that the data used for slope monitoring originates from nonlinear systems (Zhou et

62 al.,2018). 1= v-times; An i

P

ing array of novel data-driven solutions is being developed
63 to overcome the constraints of traditional machine-leamning approaches. Among these data-driven
64 solutions, convolutional neural networks (CNNs) have emerged as one of the most effective methods.
65  These CNN models, which excel at automated feature extraction, can enhance efficiency in analyzing
66  complex datasets and improve the accuracy of prediction results (Alzubaidi et al., 2021).

64: The term “predict deep-seated landslides”
sounds vague. Predicting incipient failure?
Reactivation of an already-established failure?
Please specify.

We fully agree that the term “predict deep-seated
landslides” is unclear. We will revise this term to
“predict deep-seated displacement”.

72 Leveraging the effective methodologies mentioned above, this study employs Al models optimized
73 by an innovative metaheuristic optimization algorithm to predict deep-seated landslides displacement on
74 the northern slope of Lushan Mountain in Reaa: Ren'ai Township, Nantou County. The geclogical

65-66: Please list references of pre-existing work
that you are referencing here

Thank you to the reviewer for this comment. It was
an oversight on our part not to include the relevant
references to support this point. We have now added
the appropriate references, as shown below.

74 the northern slope of Lushan Mountain in Ren’ai Ren'ai Township. Nantou County. The geological
75 charactenistics of this area have undergone extensive research (Wang et al . 2015; Lin et al., 2020).
76  Previous studies have identified varying depths of the shear plane. Specifically, Wang et al. determined
77 the depth of the shear plane 1s §5m and 106m based on inclinometer data (Lin et al , 2020) This research

78  paper is firmly grounded in empirical evidence meticulously collected over eight years from

67: Impressive! At what depth is the failure plane for
each of these extensometers?

The geology and shear planes of the Lushan
Mountain region have been studied previously,
revealing shear planes at depths of 85m and 108m.
We have incorporated this information into the
manuscript as suggested by the reviewer.

74 the northern slope of Lushan Mountain in Res’ai Ren'ai Township. Nantou County. The geological
75 charactenistics of this area have undergone extensive research (Wang et al.. 2015; Lin et al., 2020).
76  Previous studies have identified varying depths of the shear plane. Specifically, Wang et al. determined
77 the depth of the shear plane is 85m and 106m based on inclinometer data (Lin et al., 2020). This research
78  opaper is firmly grounded in empirical evidence meticulously collected over eight years from
502 research area and shows the distribution of four survey boreholes (G20, G21, G18, and G23) along the
503  slope. Regolith, slate, and meta-sandstone are three distinct lithological units revealed through drilling.
504  Additionally, the study by Lin et al. identified the depths of failure planes in these survey boreholes.
505  Specifically, boreholes G18 and G25 did not record any failure planes, while boreholes G20 and G21
506  recorded failure planes at depths of 85 meters and 106 meters, respectively. These failure planes were
507  identified based on inclinometer data from the corresponding study (Lin et al , 2020).

508 Initially. the thickness of the topmost regolith layer was found to be less than 10 meters. Secondly,

509  slate predominated, exhibiting a notable presence with sporadic evidence of weathering that resulted in

88-92: This section feels quite under-referenced, as
there are numerous theoretical and observational
examples of groundwater impacts on deep-seated

We fully agree with the reviewer's comment.
Accordingly, we have included examples from both
theoretical and observational studies to clarify this




landslide failure.

point.

101  Casimuro, 2023; Jones et al., 2023). Among these, hydrological conditions, especially groundwater levels,
102 have been one of the most critical elements considered in studies related to landslide prediction. Numerous
103 studies have substantiated this point. For instance, research by Take et al. demonstrated that the distance
104  and velocity of landslides triggered under high antecedent groundwater conditions are significantly more
105  significant compared to scenarios with drier conditions (Take et al., 2015). Another study has shown that
106  the accumulation of water at a soil-bedrock contact can develop of positive pore water pressures, causing
107  landslides (Matsushi and Matsukura, 2007) (see Figure 1). Moreover, studies on past landslide events have
108  also demonstrated similar findings. example Examples of this research include the Tessing landshide in
109  northeastern Italy, where groundwater conditions triggered movement (Petley et al . 2005). Additionally,
110  the study by Keqiang et al. on water-induced landslides in the Three Gorges Reservoir project area
111 highlights the significant impact of hydrological conditions on the likelihood of such disasters (Keqiang
112 etal, 2015).

93-94: This is another purely editorial comment, but
the citation style presented here could be more
succinct. For example, “Similarly, Preisig (2020)
developed...” rather than “Similarly, Presig
developed a groundwater prediction... (Presig,
2020).” This same style is utilized throughout the
manuscript

We fully agree with the reviewer's suggestion and
have revised the citation at this location to make it
more concise.

113 Similarly, Preisig (2020) developed a groundwater prediction model for analyzing the stability of a
114 compound slide in the Jura Mountains (Preisig, 2020}, Additionally, Srivastava et al. explored machine

In addition, we have used the citation style
suggested by the reviewer for similar cases
throughout the manuscript.

76  Previous studies have identified varying depths of the shear plane. Specifically, Lin et al. (2020)
77  determined the depth of the shear plane is 85m and 106m based on inclinometer data .This research paper
102 have been one of the most critical elements considered in studies related to landslide prediction. Numerous
103 studies have substantiated this point. For instance, research by Take et al. (2015) demonstrated that the
104  distance and velocity of landslides triggered under high antecedent groundwater conditions are
105  significantly more significant compared to scenarios with drier conditions. Another study has shown that
109 northeastern Italy, where groundwater conditions triggered movement (Petley et al., 2005). Additionally,
110 the study by Keqiang et al. (2015) on water-induced landslides in the Three Gorges Reservoir project area
111 highlights the significant impact of hydrological conditions on the likelihood of such disasters {Kegiang
112 eval. 2045

113 Similarly, Preisig (2020) developed a groundwater prediction model for analyzing the stability of a

114 compound slide in the Jura Mountains {Preisig;2020). Additionally, Srivastava et al. (2020) explored

115 machine learning algorithms to forecast rainfall and established thresholds for landslide probabilities

116  (Srivastava-etal-—2020). Although the research by Srivastava et al. did not directly rely on groundwater

122 heavy rainfall events. Lin et al. (2020) conducted in-depth studies on the mechanisms of landslide
123 occurrence based on the geological conditions of the area {Ein-etal-2626). While successfully providing
141 For instance, Crosta and Agliardi (2003) analyzed the geology and rock mass behavior using
142 Voight's semi-empirical failure criterion, incorporating time-dependent factors to generate velocity curves
143 that indicate risk levels {Cresta-and Aghardi-2063). Recently, Xu et al. (2018) utilized real-time remote
144 monitoring systems to measure internal stress, deep displacement, and surface strain. This data was used
145 to formulate forecasting models to assess slope stability, particularly in railway construction (%u-et-ak:

146  2018). However, a common challenge with this method is the instability and frequent changes in the terrain
155 reservoir in Italy (Mufundirwa et al., 2010). In another study, Wu (2010) employed the numerical

156  discontinuous deformation analysis method to simulate a blocky assembly's post-failure behavior,
157 incorporating earthquake seismic data (%2010, Meaawhile-Another study follow this trend by Jiang
158  etal (2011), who utilized fluid-solid coupling theory to simulate displacement and capture eapturing the
159  interaction between fluid and solid materials (Fiangetal-2641). However, both numerical models and
165  acting on & slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear
166  Hoek-Brown shear strength reduction, determining the correlation between normal and shear stress based
167 on the Hoek-Brown criterion (Fu—andtiae—2010). Subsequently, the micro-units (microscopic
184  maps depicting landslide susceptibility. For instance, Margarint et al. (2013) employed a logistic
185  regression model to predict landslides based on discrete data in four regions of Romania (Margarintet
186  ak-2043). The logistic regression model yielded promising predictions, with an AUC value (area under
188  utilized to construct a map of landslide susceptibility in the study area. In a similar study, Pham ef al
189  (2016) utilized multiple AT models, including support vector machines (SVM), logistic regression (LR),
190  Fisher’s Fisher's linear discriminant analysis (FLDA), Bayesian network (BN), and naive Bayes (NB), for
191  landslide susceptibility assessment in a region within the Uttarakhand state of India (Phams-et-al-2016).
230  temporal data. For instance, Dahal et al. (2024) utilized spatial-temporal data to pinpoint where landslides
231  may occur and predict when they might happen and the expected landslide area density per mapping unit
232 (Pahaletal-2024). The E bl
238  optimization algorithms optimize the hyperparameters of Al models. For example, Balogun et al. (2021)
239  studied landslide susceptibility mapping in Western Serbia (Balegus-et-al-2024). This research collected
244 Hakim et al. (2022) conducted a study utilizing CNN models optimized by the GWO and imperialist

Neural Network employed in this research yielded promising

245  competitive algorithm (ICA) for landslide susceptibility mapping from geo-environmental and topo-
246 hydrological factors in Incheon, Korea (Hakis-etal-—20223. This research demonstrates that GWO and




248 Jaafari et al. (2022) employed an AT model known as the group method of data handling (GMDH)
249  for classification purposes, optimizing it using the cuckoo search algorithm (CSA) and the whale
250  optimization algorithm (WOA). In northwest Iran, they aimed to predict landslides based on various
251 factors, including topographical, geomorphological, and other environmental factors Gaafarietal=—2022).
499 In an early study of deep landslides in this area, Ein-et-ak (Lin et al. (2020) reported that the Lushan
500  slope exhibits large-scale deep-seated gravitational slope deformation, characterized by a steep scarp, a
20  also exhibit inter-cleavage gouges. Further details on this geological information can be found in the study
521 by Lin et al. (2020). These instances highlight the potential for significant geological changes and
522 landslide risk in this region.
530 level gauges (A-17, A-18-2, A-20, and A-24). The transmission. storage, and processing of data are
531  described in detail in the research of Eau-etal—in2023 (T au et al.; (2023).

664 Similar to the machine learning models, in this section, the time series deep learning models will
665  also be trained with default hyperparameters, as found in research of €k d-Nauven's el 202

666 Chou and Nguyen (2023). The performance results of these models are shown in Table 7. Overall, akin to

103-105: In what way did Lin et al. “somewhat
overlook” the importance of hydrological conditions
in landslide formation here? Please be specific.

In fact, the research by Lin et al. has accounted for
hydrological conditions in landslide formation.
Therefore, we have revised the motivation section
accordingly. Our research will incorporate the use of
Al models to predict deep-seated displacement at
Lushan Mountain, a task that has not yet been
addressed by previous studies about landslides in
this area.

122 heavy rainfall events. Lin et al. (2020) conducted in-depth studies on the mechanisms of landslide
123 occurrence based on the geological conditions of the area (Ein-et-al-2026). While su
124 valuable insights into the evolution of deep-seated gravitational deformations, their research somewhat
125 looked-th p landslid their

126  study focuses exclusively on employing traditional analytical methods in geological research, such as

fully providing

£ hvdrol 1 dit d & level

127  analyzing data from geotechnical instruments and conducting geological borehole analysis.
128 Our research aims to adopt a novel approach compared to previous landslide studies at Lushan
129  Mountain by utilizing AT models and metaheuristic optimization algorithms. This research will utilize o

130 ddress the limitati £previeuslandslide s el in the Lushan M. inareathis study-will explos

131  using hydrelegieal weather conditions and groundwater levels as inputs for AI models to predict deep-

132 seated displacement, thus aiding in landslide forecasting in this region.

110 (Figure 1). Where is the actual landslide here?
Below the diagram? I find the arrow below the right
diagram very confusing and vague. A schematic
failure plane perhaps informed by the borehole data
would be useful for clarifying what it is the authors
are trying to illustrate here.

We have revised Figure 1 by removing the arrow
and the text 'deep-seated slope failure,’ and adding a
label for the 'failure plane.! We hope these
modifications meet the reviewer's expectations.

Soil layer

Rainfall | water flow
| Severely cracked underground
bedrock ———Slide pattern
Bedrock with few HP Failure
cracks and plane
resistant to g
seepage of water Concentration of
groundwater
133
134 Figure 1. Schematic illustration showing the effects of groundwater on deep-seated slope failure

122: Numerical models can simulate many scales,
not just the laboratory scale. Please fix.

We have revised this section according to the
reviewer's suggestion.

149 Moreover, physical-based numerical and laboratory
150  at-alaberatery—seale: arc also gaining traction in landslide rescarch. These methods aim to maintain

151  forecasts using various data types while reducing human workload and ensuring high accuracy. For

Tal; 1o de_sxhiah cinal 1

152 example, Mufundirwa et al. ducted a laboratory study to the effectivencss of the inverse

125: Does this Mufundirwa et al. reference also
utilize a numerical model? If not, this paragraph
should perhaps speak to both laboratory and
numerical studies.

We have revised this paragraph to include references
to both laboratory and numerical studies, as

suggested by the reviewer.

149 Moreover, physical-based numerical and laboratory modeling methods-whiech-siraulate phenomena
150  at-alaberatory—seale: arc also gaining traction in landslide research. These methods aim to maintain

151  forecasts using various data types while reducing human workload and ensuring high accuracy. For

152 example, Mufundirwa et al. ducted a laboratory study to the effectiveness of the inverse




130: editorial — can delete “Meanwhile,” here

We have removed the term 'Meanwhile' and revised
the sentence accordingly, as suggested by the
reviewer.

155  reservoir in Italy (Mufundirwa et al.. 2010). In another study, Wu (2010) employed the numerical
156  discontinuous deformation analysis method to simulate a blocky assembly’s post-failure behavior,
157  incorporating earthquake seismic data (Wa—2040). Meanwhile-Another study follow this trend by Jiang
158  etal. (2011), who utilized fluid-solid coupling theory to simulate displacement and capture eaptusing the
159  interaction between fluid and solid materials Fasgetal—2641. However, both numerical models and

160  laboratory modeling methods require substantial effort from researchers. These approaches demand deep

135-136: What are “micro-units” here?

“micro-units” refer to microscopic components of
the rock mass, a term delineated during the
referenced study. We have added a concise
explanation to clarify the meaning of this term in the
manuscript:

165  acting on a slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear
166  Hoek-Brown shear strength reduction, determining the correlation between normal and shear stress based
167 on the Hoek-Brown criterion (Fu—andLiae,—2610). Subsequently, the micro-units (microscopic
168  components of the rock mass) instantaneous friction angle and cohesive strength under specific stress

169 diti are calculated. Although this approach effectively addresses cost and labor issues, it still

140-142: The previous paragraphs have not
demonstrated that these “conventional methods have
shown limited success in handling big data...” More
information needs to be provided in this or the
previous paragraphs to provide justification for this
argument.

The assertion that conventional methods show
limited success in handling big data is not entirely
complete or accurate. We have added more
information in this section to explain the drawbacks
of conventional methods and the necessity of using
Al models in this research.

143 that indicate risk levels {Crosta-and-Agliardi- 2663). Recently, Xu et al. (2018) utilized real-time remote
144 monitoring systems to measure internal stress, deep displacement, and surface strain. This data was used
145 to formulate forecasting models to assess slope stability, particularly in railway construction Gfu-et-ak
146 2648y However, a common challenge with this method is the instability and frequent changes in the terrain
147  and geology of landslide-prone areas. This necessitates constant updates to the computational model,
148  which can be time-consuming and labor-intensive.

149 Moreover, physical-based numerical and laboratory modeling methods-which simulate phenomena
150  at-alaberatery seale; are also gaining traction in landslide research. These methods aim to maintain
155  reservoir in Italy (Mufundirwa et al., 2010). In another study, Wu (2010) employed the numerical
156  discontinuous deformation analysis method to simulate a blocky assembly's post-failure behavior,
157  incorporating earthquake seismic data Wa—2648). Meanwhite-Another study follow this trend by Jiang
158  etal (2011), who utilized fluid-solid coupling theory to simulate displacement and capture eaptaring the
159  interaction between fluid and solid materials (ianget-al-26+1). However, both numerical models and
160  laboratory modeling methods require substantial effort from researchers. These approaches demand deep
161  expertise and the development of complex models. More importantly, they rely heavily on assumptions
162 during the simulation process and may not accurately reflect real-world conditions, leading to significant
163 errors.

164 Stability analysis is another commenly used method related to physics, which evaluates the forces
165  acting on a slope behavior. Fu and Liao (2010) presented a technique for implementing the non-linear
166  Hoek-Brown shear strength reduction, determining the correlation between normal and shear stress based
167  on the Hoek-Brown criterion (Fu—andEiae—2018). Subsequently, the micro-units (micrescopic
168  components of the rock mass) instantaneous friction angle and cohesive strength under specific stress
169  conditions are calculated. Although this approach effectively addresses cost and labor issues, it still
170 heavily relies on the researcher’s researcher's assumptions and is limited by the ability to utilize only a

171  small portion of data from the research area.

172 However, in landslide studies, monitoring data is constantly updated, generating large volumes daily
173 with a temporal relationship (Peternel et al., 2022; Corominas et al., 2014). Heneeconventional methods
174 haw I limited ik dli h‘aArA ot tally in-id i hi I|Vv‘ tricats y\ that
175 requix R i 4 hi 3 pl ki As previously mentioned,

176  using conventional methods in landslide research presents numerous challenges whenever data changes
177  or gets updated. In contrast, AT models can overcome these difficulties by automatically learning to
178  identify connections between input and output data. AI models can be updated to incorporate additional
179  input variables and handle increasing amounts of data flexibly in response to real-world conditions.

180  Therefore, AI models will be utilized in this research instead of conventional methods.

154: Is there any discussion on why this model was

Pham et al. (2016) did not explain why the support




the most successful?

vector machine (SVM) model provided the most
accurate predictions compared to other models. They
simply noted that the superior performance of the
SVM model was consistent with conclusions from
numerous past studies.

From our perspective, the study by Pham et al. did
not employ methods to search for optimal
hyperparameters to minimize the errors of the Al
models (such as grid search or metaheuristic
optimization algorithms). This oversight resulted in
the models not operating under optimal conditions.
Consequently, determining the truly effective model
in their study remains challenging.

Therefore, in the reference section of our current
research, we can only mention the SVM as the most
effective model according to their conclusions
without further explanation due to the lack of
optimization methods. We hope the reviewers
understand this challenge we face.

163-164: Please define what the term
engineering” is here

“feature

Adding further explanation for the term "feature
engineering" will enhance readers' understanding of
this study. We have included the requested
annotation below as per the reviewer's suggestion.

201  interrelationships, mainly when data availability is limited (Zhang et al., 2020). Finally., feature
202  engincering (the process of sclecting and transforming input variables to enhance the performance of the
203 models) is computationally intensive and labor-intensive, limiting its applicability when rapid forccasting

204  isrequired.

166: these parameters (topographic slope and soil
parameters) don’t necessarily have to be one-
dimensional. Topography can be 2-D and soil
parameters can be 3-D (and perhaps even time-
dependent).

168-169: from my limited understanding of Al-
based models, most are black boxes and therefore
disentangling physical processes can be difficult. I
thought this was the domain of physics-informed
neural networks?

We fully agree with the reviewer's comments
regarding the inaccuracies in this paragraph. We

have revised the paragraph as follows:
205 Given-—that p o one-dimensi

1 o fil d
pe—p:

Alongside the
206  aforementioned machine learning models, a range of neural network models, from simpler ones like
207  Artificial Neural Networks (ANN) to more advanced approaches such as Deep Neural Networks (DNNs)
208  and CNN eas are also be employed in research related to landslide (Kumar et al., 2017; Zheng et al., 2022)
209 & corth latienship-bets lop:

210  overhead{Fu-etal-2022). Notably, CNN models have become increasingly popular and are widely used

211  inresearch related to this disaster. CNN models often yield superior predictive results than other models

tabilite and input cith 1 1
7 PP P

212 in landslide susceptibility assessment and displacement prediction (He et al., 2024). Additionaty—ENN
213 dels have k din stud

£ this disaster. While CNIN

tially o d fori

214 itsinput and internal red—for twe-d ) includina th

215 kerneland featus p—To-address4 d ional nature of slope-profil d-seil physical and
216 B —Poi Meng & developed-a—HD-CNN-model with P

217  forti sarying trigger f £ 1 2021} T 9P d B P

218 ional hine learning models regarding drot o _it's worth noting that
219 b hrhas yette-gain-wid d-ad

184: “predicting landslide displacement” would be
more specific here

We have revised the term “landslide prediction” to
“predicting landslide displacement” according to the
reviewer's request.

226 employs a ion of machine leaming methods, time-series deep leaming, and CNN models to

227  compare and determine the most suitable model for predicting landslide displ t prediety

228  Therefore, our research aims to address this gap.

Section 3.1 (Lines 218-277): This part confused me
at first because CNN’s deal with imagery and you

We fully agree with the reviewer's comment and
have added a paragraph to further elaborate on this




are using time series vectors. It is later clarified in
the paper that the time series data are converted to
images for use with the models, but it would be
worth stating something up front that vector data can
also be utilized in this construct with the prop

point, as detailed below.

325 CNN models are typically used for image processing tasks. However, the input data for this study is
326  in numerical and vector form Therefore, several transformation steps are required to convert this
327  numerical and vector data into image data suitable for CNN input. Detailed information about these

328  transformation steps can be found in the study by Chou and Nguyen 2023 (Chou and Nguyen, 2023).

250 (Fig. 3): the 3x3 kernel illustrated here is
mislabeled as 2x2

The incorrect annotation of the kernel has been

corrected in the revised version of this figure.
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Figure A-2. Processing flow in convolution layer.

292: It’s not clear here why RNNS are well-suited to
learning time series with short-term dependencies.
Please clarify.

We have provided additional reasoning as to why
RNNs are well-suited for learning time series with
short-term dependencies, as requested by the

ICVIEWCET.
hidden layer: b is the bias term: and ranh() represents the hyperbolic tangent activation function, i.e.,

1-e%%
tanh(x) = e

The mechanism of leamning over time steps, stored within cells, enables RNNs to
capture complex relationships between cells and time sequences effectively. However, as the duration of
dependencies increases, RNN models are susceptible to issues related to vanishing gradients (Bengio et

al., 1994). Therefore, RNNs are well-suited to learning time series involving short-term dependencies.

318-322 (Performance Metrics): If you are assigning
a separate section to performance metrics, it would
be good to describe what each one is and the
benefits and drawbacks for each metric.

We greatly appreciate this feedback from the
reviewer. Performance metrics serve as evaluation
criteria for Al models in this study. Providing
comprehensive information about them will enhance
readers' understanding of this research. Therefore,
we have incorporated detailed information about
these performance metrics in Section 3.4.2 as
follows:

375 3.4.2 Performance Metrics

376 This study utilized four widely recognized performance measures to assess the medel’s model's
377  effectiveness in prediction accuracy (Chou and Nguyen. 2023). The measures included mean absolute
378  error (MAE). mean absolute percentage error (MAPE), and root mean square error (RMSE).

379 MAE represents the mean of absolute errors, calculated as the average of the absolute
380 differences between actual and predicted values. Its advantage lies in its simplicity, which
381 provides a straightforward measure of average prediction error. However, a drawback of MAE is
382  its insensitivity to more significant errors, so it may not effectively highlight differences between
383  models when significant errors are present. It is defined as:

384 MAE =ZThly — 7l ®

385  where n is the number of predictions, y: is the i forecasted value, and ¥, is the corresponding i*

386  actual value.
387 MAPE quantifies the average absolute error ratio—derived from the differences between

388 actual and forecasted values—to the actual value. It provides a clear metric in percentage terms,
389 facilitating straightforward interpretation across various datasets. However, MAPE's limitation
390 arises from 1ifs sensitivity to zero values in the actual data, which can become undefined or
391  impractical to compute, limiting its utility in scenarios involving zero or near-zero actual values.
392  The expression for MAPE 1s as follows:




393 M’APE:i L

394  where n is the number of predictions, y: is the i** forecasted value, and J; is the corresponding i
395 actual value.

396 RMSE represents the square root of the average squared error between actual and forecasted
397  values and is widely used for its ability to indicate the dispersion of errors. This method captures
398 the magnitude and direction of errors, making it practical for assessing overall prediction
399  accuracy. However, RMSE tends to be more sensitive to outliers and significant errors than MAE
400  due to its squaring of errors during computation. This sensitivity can disproportionately affect its

401  evaluation in datasets with extreme values. The expression for RMSE 1s as follows
— [iyn $.)2
402 RMSE = \,‘;21:1[}’: -7 0]

403 where n is the number of predictions, y: is the i forecasted value, and J; is the corresponding i*

404  actual value.

328: What exactly is a particle in this instance?
Some context is needed here.

We fully agree with the reviewer's comment. Our
manuscript lacked sufficient detail regarding the
term 'particle.’ We have now added an explanatory
section on this term in Section 3.5.

405 3.5 Age of Exploration-Inspired Optimizer

406 This study employs a range of AI models to forecast deep-seated displacement in mountainous
407  regions. To enhance the prediction accuracy of these AI models, the study incorporates a novel
408  metaheuristic optimization algorithm known as the Age of Exploration-Inspired Optimizer (AEIO).
409  Developed by Chou and Nguyen in 2024, this algorithm has demonstrated high effectiveness in fine-
410  tuning the hyperparameters of AT models. This algorithm treats each particle in the search domain as an
411  explorer. The movement of particles toward regions with higher fitness values parallels the exploratory
412 activities of the Age of Exploration, where explorers sought ideal locations for establishing colonies. In
413 this study, each particle represents a set of hyperparameters, with the ultimate goal of the search process
414 being to identify the optimal particle or hyperparameter set that minimizes prediction error for AT models.

415  Figure 3 illustrates the AEIO algorithm.

337 (Fig. 8): The red arcuate arrows that link the
positional strategies appears to suggest that once one
strategy is selected, the explorer goes from one
strategy to the next when in fact they return to the
middle after each time step (correct?). If that is the
case, then the arrows should arc back down to the
central location to reflect the decision-making
process that occurs with each positional change.

We have revised the illustrative figure for the AEIO
algorithm. Specifically, we removed the red arcuate
arrows linking the positional strategies to prevent
any misunderstanding for the reader. Additionally,
we added bidirectional arrows from the action of
choosing the strategy to each colony search action.
Furthermore, we included arrows around the central
image of the explorer-choosing a strategy, indicating
that the search process repeats with each iteration.

Follow other peers

Follow general trends

//Chnuse strategy

1o explore new
calony based on
current location

Prepare for the expedition

Follow guidance from
another explorer

Follow the best individual

361-372: These two steps need to be elaborated on a
little bit more, as it is presented somewhat
confusingly and the equations for (8) and (9) are
identical.

We acknowledge that the two equations mentioned
above are quite similar. The only difference between
them lies in the values x; 4(t) and x; 4(t). Despite
this slight variation in the formula, the mechanisms
of the two movements are fundamentally different.




One equation guides the current particle towards the
best particle, while the other directs the current
particle in a direction based on the distance of a
random particle from the best one. We have added
annotations in the explanations of the formulas.
These annotations clearly specify the mathematical
notation for each type of particle in the explanations.
We hope that this addition will make the movement
mechanisms of the particles more comprehensible.

431 e  Explorers follow general trends

432 The explorer choosing this movement type will calculate the distance from their location x; 4(t) to
433 the center of all other explorers (Meanvl,(t)), then attempt to move towards that central point in the
434 hope of finding a better location with the potential to establish a new colony. The following formula
435 determines the explorer's position after the movement:

436 xa(t+1) = xa() tar (Mermvid(t] - x;_d(f)) X rand(0,1) X R o)

wpalt)tegale) 4 deng o ale)

437 Meanvly(t) = )]

npop
438  where d = 1,2,..D: D is the number of dimensions: { = 1,2,...7p,p I Npgp 15 the total number of
439 explorers: t = 1,2, ... MaxlIt is the number of iterations; MaxIt is the maximum value of iteration: e is a
440  parameter for adjusting the particle’s movement toward the centroid position (usually equals 3).
441 Meanvl,(t) 1s the centroid of all particles m dimension d. rand(0,1) is the random number in the range
442 [0.1]. R: a number that equals 1 or 2 depending on the value of rand(0, 1) per the equation. R =
443 round(1+ rand(0,1) X 1), x;,4(t) 1s the location of particle [ in tteration t, x; 4(t + 1) 1s the location
444 of particle i in iteration (t + 1)

445 e  Explorers follow three other peers

446 Explorers employing this movement method will calculate the average position of three randomly

2y (£} e g ()4 g (& )

447  selected other explorers ( and then move toward this newly calculated average

448  position. The explorer's new position is computed using the following formula:

449 xa(t+1) = x4(0) +(

xy4 () 4%s 4t 4xs 4 ()
3

- x,4(8)) X rand(0,1) X R (10)

450 where: xy 4 (t). x5 4(t) and x5 4 () are three random explorers in dimension d at iteration £, d = 1,2, .. D
451 D 1s the number of dimensions; i = 1,2, ... ip,yp: Np,yp 15 the total mumber of explorers; t = 1,2, ... MaxIt
452 1s the number of iterations; MaxIt is the maximum value of 1teration.

453 e  Explorers follow the best one

454 According to this strategy, the explorer (x; ;(t)) will move closer to the position of another explorer
455 currently holding the best position (Best, (t)). as determined by the following formula:

456 xa(t+1) = x.q(t) + (Besty(t) — x,4(t)) X rand(0,1) X R (1D

457  where: Best,(t) represents the position of the particle with the best fitness in dimension d at iteration t.
458  the parameters d and t hold the same significance as defined in Equation 10

459 e  Explorers follow guidance from another one

460 Explorers in favorable positions with access to information can execute this movement strategy. In
461  this scenario, explorers (x; 4 (t)) will consult with sach sther another explorer. The consulted explorer will
462  compare their direction and distance to the best individual, who holds the most favorable position
463 (Besty(t)) and guide the inquirer. This algorithm assumes that the inquirer can be any explorer, 1.e., a
464  random explorer (x, ;(t) ). The following formula describes how to calculate the new position of the
465  explorer following this strategy:

466 x4t +1) = x,4(t) + (Besty(t) — x14()) X rand(0,1) X R 12)

467  where: x; 4(t) 15 a random explorer in dimension d at iteration £. the parameters d and t hold the same

468  significance as defined in Equation 10.

388 (Fig. 10): Much more information is needed in
the figure caption here, as the current captions are
essentially vacant. Additionally, the map in (a) is
missing crucial information such as latitude and
longitude graticules, and contains extraneous
information (e.g., random text and other symbols
that are not defined). With regard to (b), was the
landslide failure plane identified with these cores?
Or is the failure plane depth only known in the

We have made several adjustments to Figure 10 and
Figure 11. Specifically, in Figure 10, we have added
information on latitude and longitude. Additionally,
we have removed unnecessary details (e.g., random
text and undefined symbols) from Figure 10.




extensometer boreholes? Please provide more
information here or elsewhere in the manuscript.
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Figure 6. Illustration of geological drilling survey

For Figure 11, we primarily use this image to
provide readers with geological information about
the area.

These survey boreholes utilize data inherited from
the study by Lin et al. (2020), which provides a
detailed account of the failure plane depths. We have
included information on the depth of the failure
planes for each survey borehole in the manuscript
and added a citation to the previous study, allowing
readers to seek further details on these surface plane
determinations.

502  research area and shows the distribution of four survey boreholes (G20, G21. G18, and G25) along the
503  slope. Regolith, slate. and meta-sandstone are three distinct lithological units revealed through drilling.
504  Additionally, the study by Lin et al. identified the depths of failure planes in these survey boreholes.
505  Specifically, boreholes G18 and G25 did not record any failure planes, while boreholes G20 and G21
506  recorded failure planes at depths of 85 meters and 106 meters, respectively. These failure planes were
507  identified based on inclinometer data from the corresponding study (Lin et al., 2020).

508 Initially. the thickness of the topmost regolith layer was found to be less than 10 meters. Secondly.

407: Please cite the previous research here

We have added additional citations in this paragraph
as per the reviewer's request.

515 Previous research has detected signs of brittle deformation in the area. These indications include
516  chevron folds within cleavages, visible cracks, and intricate jigsaw puzzle-like patterns at the head of the
517  rock formations. Overturned and flexural toppling cleavages are prevalent towards the toe of the slope.

518  Additionally, kink bands are observable on el

fractures that-haw it & recently
519 undergoing flexural folding along the eastern boundary. Notably, horizontal cleavages near the toe region
520  also exhibit inter-cleavage gouges. Further details on this geological information can be found in the study
521 by Lin et al. (2020). These instances highlight the potential for significant geological changes and

522 landslide risk in this region.




407-412: 1 think the term “cleavage” is misused
here. Do the authors mean “fracture”? Typically,
cleavage refers to the tendency of a mineral to break
along planes defined by crystal lattice structure and
are typically not seen at the scale of an entire
hillslope. Lastly, it would be worth putting these
observation zones on the map of the landslide for
reference.

We greatly appreciate the reviewers for this
suggestion; we fully agree that the term “fracture” is
more appropriate than “cleavage” and we have made
the corresponding change.

515 Previous research has detected signs of brittle deformation in the area. These indications include
516  chevron folds within cleavages, visible cracks, and intricate jigsaw puzzle-like patterns at the head of the
517 rock formations. Overturned and flexural toppling cleavages are prevalent towards the toe of the slope.

518  Additionally, kink bands are observable on &}

fractures that-hawv ) ek recently
519  undergoing flexural folding along the eastern boundary. Notably. horizontal cleavages near the toe region
520 also exhibit inter-cleavage gouges. Further details on this geological information can be found in the study
521 by Lin et al. (2020). These instances highlight the potential for significant geological changes and

522 landslide risk in this region.

In response to the suggestion to display observation
zones on the map, we have included them in Figure
10. In addition to showing the locations of the
boreholes and data collection sites, Figure 10
delineates the areas prone to deep-seated landslides,
which represent the observation zones.
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426: How was the rainfall data measured? Via a
local rain gauge? If so, can put it on the map as well.

Rainfall data for this study were collected using a
rain gauge installed on-site. The location of the rain
gauge has been annotated on the map in Figure 10.
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438-442 (Figs. 12-14): It is very difficult to compare
the time series data as all the axes are scaled
differently. I strongly recommend making one three-

We have revised Figures 12-14 as per the author's
request. Specifically, we merged all three original
figures into one and placed them on a single




panel figure that is aligned in the time dimension
instead of three separate figures. I would also
recommend putting the known storms from Table 2
as vertical bands on each subplot. This will really
help unify the datasets and make it much easier for
readers to discern how precipitation, groundwater
levels, and landslide displacement are aligned.

timeline. Additionally, we added a graph to depict
the precipitation of recorded heavy rainfall in the
studied area.

Placing all graphs on the same timeline facilitates
easier tracking of concurrent data variations for
readers. Moreover, it highlights the relationships
between different datasets.

A) Precipitation of recorded heavy rainfall in studied area
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551 Measured displacements from extensometer E_2; D) Groundwater levels at stations A-17, A-18-2, A-20, and A-24.

446-447: Should be “June” instead of “August”,
otherwise the groundwater will be responding to a
future event!

We sincerely apologize for this confusion. The error
is corrected as below.

5353  increases coinciding with periods of pronounced fluctuations in groundwater levels. Specifically, in June
554 2012, there was a notable surge in groundwater levels attributed to heavy rainfall from June 8, 2012, to
555 TJune 17,2012, totaling 1029 mm over 219 hours (as indicated in Table 2 and Figure 7A). The abnormal

356  rise in groundwater levels caused a structural alteration in the area's soil, consequently amplifring deep-

457-458: The groundwater levels that are apparently
driving displacement here are 10s of meters below
the ground surface (e.g., Fig. 14). Which impacts on
soil structure by thermal processes are you referring
to? Do thermal effects at this depth contribute to
landsliding? Please provide context and references
here to back up this statement or otherwise remove.

In this study, we incorporated temperature as an
input for Al models to predict deep-seated
landslides, due to its significant impact on pore
water pressure and effective frictional resistance
forces, which in turn affects soil strength. We have
included several citations from past research to
substantiate this argument, as outlined below.

564 In addition to groundwater level data. weather factors such as temperature and humidity are also
565  utilized as input data for the prediction model. This study mcludes temperature as an input variable for Al
566  models to predict deep-seated displacement due to its impact on soil structure. Elevated temperatures can
567  cause thermal expansion of soil particles, which can increase pore water pressure and reduce effective
568  frictional resistance forces (Pinyol et al., 2018). Additionally, previous research has shown a relationship
569  between temperature and the likelihood of landslides in clay-rich soils, which are also present in the
570  geological composition of Lushan Mountain (Shibasaki et al,, 2017; Loche and Scaringi, 2023). These
571 faeh ficantlv impaetth 1 o landslid

e . 1 dinnl
28! i




459-461: Please describe more the data used here?
For example, is it daily data? What is the grid size?
What is the measurement source?

We have provided additional information to help
readers better understand the data collected from the
website https://power.larc.nasa.gov.

572 This study collected groundwater level and displacement data on-site using sensors. Furthermore,

573 temperature and humidity data were obtained from the website hitps://power.larc.nasa gov. This dataset
374 is part of the Prediction of Worldwide Energy Resource (POWER) project, developed by the National
375 Aeronautics and Space Administration (NASA) of the United States. The POWER. solar data derives from
576  satellite observations, which are used to mnfer surface insolation values. Meteorological parameters are
577  sourced from the Modern-Fra Retrospective analysis for Research and Applications, Version 2 (MERRA-
578  2) assimilation model. The primary solar data is available with a global resolution of 1° x 1°
579  latitude/longitude, while the meteorological data is provided at a finer resolution of %° x %°

580  latitude/longitude. Users can download the data hourly, daily, or monthly through this website.

488: Indeed! Having forecast data a week in advance
would be extremely beneficial.

We  sincerely  appreciate  the  reviewer’s
acknowledgment. We hope that these predictive
results will contribute to the advancement of
forecasting methods, ultimately aiding in the
evacuation efforts prior to landslide disasters.

499: Specify process to be modeled (i.e., landslide
displacement)

We have corrected this sentence for accuracy, as the
focus of the study is on predicting deep-seated
displacement rather than deep-seated landslides.

616 4.1 Model Establishment
617 Predicting deep-seated displacement landslides at Lushan Mountain is undoubtedly highly
618  challenging, given that such landshdes depend on numerous factors. Therefore, multiple methods will be

502: editorial comment — shouldn’t end sentence
with “...”

We have removed the ellipsis at the end of this
section as requested by the reviewer.

617 Predicting deep-seated displ nt lendshides at Lushan Mountain is undoubtedly highly

618  challenging, given that such landslides depend on numerous factors. Therefore. multiple methods will be
619  employed simultaneously to identify the optimal Al model for prediction. These methods include single
620  machine learning, time series decp learning, CNN, and hybrid models—.

509 (Fig. 16): Very helpful flow chart

We sincerely appreciate the reviewer's praise. We
consistently strive to use visuals and diagrams to
convey our research, aiming to make it more
accessible and comprehensible for readers.

545: It would be helpful to have a figure showing a
subset of the models plotted alongside the
displacement data so readers could see how the
differences in MAPE are actually reflected in the
time series predictions

We fully agree with the reviewer's suggestion.
Including a figure that illustrates the temporal
variation in the predicted deep-seated displacements
by different models will help readers clearly see how
the differences in MAPE are actually reflected in the
time series predictions. However, given the
extensive number of Al models used in this study,
displaying the prediction results of all models would
increase the complexity of the charts, making it
challenging to discern the differences in the models'
performance. Therefore, we have chosen to display
the displacement predictions of the most
representative models, including the best machine
learning model (XGBoost), the best time-series deep
learning model (R-GRU), the best CNN model
(MobileNet), and the best hybrid models (AEIO-
MobileNet and AEIO-R-GRU).



https://power.larc.nasa.gov/
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b) Prediction results of deep-seated displacement by Al models optimized using the AEIO algorithm.

Figure 10. Graph comparing the real and predicted deep-seated displacement.

568: change  “landslides” to  “landslide

displacement” or something similar

We have revised the term "deep-seated landslide" to
"deep-seated displacement" following the reviewer's
suggestion.

683  4.2.2 Best AT Model Finetuned by AEIO Algorithm

684 This section will focus on fine-tuning the hyperparameters of the numerical model to enhance its
it. The AEIO algorithm will fine-tune the
686 hyperparameters of the study's best numerical Al model, the R-GRU model. Details regarding the names
arc outlined in Table 8. The objective function of the AEIO

685  performance in predicting decp-

ted landslides displ
P

687  and search ranges of the hyper

660-664: This is a nice motivating paragraph that
belongs in the introduction and would help provide
context for the study.

We agree that including this information in the
introduction will help clarify the context of our
research and enable readers to better understand the
benefits of these predictive models. Therefore, we
have incorporated this information into the final
paragraph of the introduction.

89 This study represents the first instance of AT medels being utilized to predict deep-seated landslides
90  inLushan Mountain. Additionally, it marks the inaugural application of AEIO for fine-tuning AT models
91  inlandslide-related research. Our findings provide a valuable resource for civil engineers, contractors, and
92  inspectors involved in the planning and monitoring ef construction projects in landslide-prone areas.
93  Predicting the likelihood of landslide events can help minimize property loss, guide schedule adjustments,
94  improve work safety, and ensure smooth traffic flow during critical periods. Additionally, understanding
95  internal displacements provides engineers with precise data to evaluate the resilience of structures and

96 infrastructure in vulnerable areas, enabling the issuance of prudent warnings.

668-668: Are these models not considered
“conventional”? If not, why not? Could also be
specified earlier on in the manuscript.

We sincerely apologize for this oversight; the term
“conventional” should not be used for CNN models
for the following reasons:

- “Conventional models” refer to traditional, simple
machine learning models such as regression,
decision trees, support vector machines, etc. In
contrast, CNNs are not traditional methods and have
recently become widely used.

- CNNs have been shown in numerous studies to
yield superior performance compared to other
models. Labeling CNNs as conventional models




may diminish their value and advanced nature,
potentially leading to misunderstandings about their
applicability.

Therefore, we will use the term “standard CNN
models” to refer to models other than retrained CNN
models. We have added a section to explain this
terminology to prevent any confusion for the
readers.

318 This study will use various CNN models to predict deep-seated slope displacement. The CNN models

319  employed in this research include VGG (Simonyan and Zisserman. 2014), ResNet (He et al.. 2016),
320  Inception (Szegedy et al.. 2015), Xception (Chollet, 2016), MobileNet (Howard et al., 2017), DenseNet

321  (Huang et al., 2017), and NASNet (Zoph et al., 2018). To elarify, the term "standard CNN models" will

322 refer to models with structures that can be user-defined, while "retrained CNN models” will denote those
323 with architectures that have been researched and developed by other scientists and have been proven to
324 be highly effective.

678: Here again would be a great place to delve into
the “why” a little bit more. Any thoughts why a
certain class of models outperforms the others? This
discussion section is quite short relative to the rest of
this paper, and there are a lot of aspects to
potentially discuss. Does withholding certain
parameters (e.g., temperature, humidity, or both)
impact the results substantially? If so, why might
that be the case? Since so much work has been done
to get to this stage of predictive success, a small
amount of additional work may help elucidate the
role of specific processes in aiding the predictability
of landslide displacement in this context that could
be useful for the broad readership of NHESS.

We have expanded the discussion section to provide
a more comprehensive explanation of the study's
results. Specifically, we have added reasons to
explain why CNN models performed better than
both machine learning and time-series deep learning
models. Additionally, this discussion highlights a
limitation of the study: the lack of analysis on the
relative importance of each type of input data for the
predictive capabilities of the AI models. This
limitation underscores the need for further research
to clarify these aspects.

796 of our study lies in adopting pre-trained models, such as MobileNet. DenseNet, Inception, and VGG,
797  rather than eenventienal standard CNN models. Fhep lity-of employing these pre-trained-model:
798 ! 1, 1 affe : H 1i ot | I !

799 By employing various Al models, this study identifies the most effective model for predicting deep-
800  scated landslides and offers a comprehensive overview of the performance of different Al models. Initially,

801  machine learning models exhibited relatively high prediction errors, with MAPE ranging from 8.14% to
802  15.19%. This performance was generally lower than time-series deep learning models, which showed
803  MAPEs ranging from 7.9% to 14.73%. The superior performance of the time series deep learning models
804
805  enables them to learn patterns from the dataset more effectively than traditional machine learning models.
806
807
808  pooling layers in CNNs enable robust feature extraction from the input data. Convolutional layers are
809
810

is attributed to their ability to process sequential data and retain information from previous steps. This

However, compared to CNN models, the results of the time series deep learning models are not as

strong. This disparity is attributed to the superior learning mechanism of CNNs. The convolutional and

particularly cffective at identifying complex patterns and subtle features within time scrics data, primarily
when spatial correlations exist. This capability allows CNNs to uncover cssential featurcs that other
811  models might overlook

820 The input data used for the Al models were selected because they significantly influence the
821  likelihood of deep-seated landslides, as detailed in Section 3.6. However, a limitation of this study is that
822 it docs not evaluate the relative impertance of cach input data type on prediction accuracy. Future rescarch
823  should explore the impact of different combinations of input data on AI model performance. This could
824  help identify the significance of cach input type and potentially reveal the optimal combination of inputs

825  to enhance prediction accuracy further.
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