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Abstract. Accurate rockfall modeling is crucial for evaluating rockfall hazards and requires consideration of several inputs 10 

data, including parameters that control boulder trajectories and source areas. Inaccurate definitions of source areas can lead to 

unrealistic representations of the rockfall process. In this study, we analyze how different approaches used to define source 

areas can affect the accuracy of rockfall modeling. The island of El Hierro (Canary Islands, Spain) is selected due to its 

geological and geomorphological characteristics, as well as the socio-economic importance of rockfalls on the island. 

To assess rockfall source areas, three different approaches were considered, ranging from situations with limited data 15 

availability to scenarios with many topographic, geological and geomorphological information. 

A morphometric firstly approach establishes a slope angle threshold above which block detachment zones are considered. For 

the second approach, we have employed a statistical method to identify rockfall source areas, using Empirical Cumulative 

Distribution Functions (ECDF) of slope angle values. The third method was a probabilistic modeling framework that applies 

a combination of multiple multivariate statistical classification models. These models use the mapped source areas as a 20 

dependent variable, as well as a set of thematic information as independent variables. 

The source area maps obtained from the three methods were used as inputs for a rockfall runout model, to establish a 

classification of rockfall susceptibility areas. 

One of the main outcome of the rockfall modeling simulations on El Hierro is the rockfall trajectory counts maps, showing 

areas prone to rockfalls. These maps indicate the probability of a given pixel being affected by a rockfall event. Two 25 

classification approaches were applied to generate the probabilistic susceptibility maps: unsupervised and supervised statistical 

methods by using distribution functions. The unsupervised classification only employs as input the raster map of the rockfall 

trajectory counts. In contrast, the supervised classification requires additional data on the areas already affected by rockfalls. 

Finally, six susceptibility maps are developed and compared to highlight the influence of source areas definition on the 

distribution of rockfall trajectories. 30 
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1 Introduction 

Rockfalls are dangerous natural hazards with a relevant socio-economic impact worldwide (Borella et al., 2019; Mateos et al., 

2020). Changes in environmental conditions related to the growth of the population, land-use intensification and industrial 

development have the potential to increase the impact of rockfalls in many different regions (Farvacque et al., 2019; Othman 

et al., 2021; Santangelo et al., 2020). In addition, climate change is expected to modify precipitation patterns with effects in 35 

the increasing frequency and extension of rockfalls (Gariano et al., 2015; Sarro et al., 2021). As a consequence, there is an 

increasing interest for improving the reliability and accuracy of tools and products able to support rockfalls management and 

mitigate their impact (Noël et al., 2021; Omran et al., 2021; Santos et al., 2024). 

Rockfall runout models allow to obtain information on the spatial distribution of the boulders trajectories, their velocity, energy 

and heights (Carlà et al., 2019; Gallo et al., 2021), and play a relevant role in rockfall assessment, supporting the identification 40 

of rockfall-prone areas and the characterization of blocks behavior (Crosta et al., 2015; Pfeiffer, 2019). In the literature, 

different modeling approach were proposed based on data availability, environmental setting, and type of analyses. An 

incomplete list comprises : STONE (Guzzetti et al., 2003; Sarro et al., 2020), RocPro3d (Sarro et al., 2018, 2014), Hy-Stone 

(Dinçer et al., 2016; Lanfranconi et al., 2020), RAMMS (Dhiman and Thakur, 2021), RokyFor3D (Francioni et al., 2020; 

Robiati et al., 2019) and Rocfal (Kakavas et al., 2023; Pérez-Rey et al., 2019). The output of runout models are commonly 45 

used to estimate the rockfall susceptibility degree by classifying rockfall trajectories counts (Dorren et al., 2023; Nanehkaran 

et al., 2022; Noël et al., 2023). 

Rockfalls simulation models, both probabilistic or deterministic, present errors associated with the input data employed to 

replicate the rockfall process (Straub and Schubert, 2008). The inaccuracy in defining rockfall sources areas is highly relevant 

in modeling, since source areas provide the starting state for rockfall trajectories (Frattini et al., 2013; Rossi et al., 2020).  50 

The placement of source areas depends on several characteristics, such as slope morphology, lithology, and discontinuities 

(Alvioli et al., 2021; Sarro et al., 2018; Yan et al., 2023). At the local scale, in situ analyses commonly involve discontinuity 

characterization and escarpment recognition. Frequently, logistical and safety issues in the field constrain these methods. 

Remote sensing techniques, such as laser scanners and UAV-based photogrammetry, are nowadays widely used to address 

these limitations and obtain detailed observations of slopes (Gallo et al., 2021; Giordan et al., 2020; Sarro et al., 2018). 55 

Although both, fieldwork and remote sensing methods are successful at a local scale, their utility at a regional scale is limited. 

Many methods with different degrees of complexity have been proposed for identifying rockfall source areas at regional scale, 

based on deterministic, probabilistic or statistical approaches (Muzzillo et al., 2018). Most of them are based on the numerical 

analysis of digital elevation models (DEMs) and additional environmental dataset. Source areas can be identified analysing 

local topography by using surface slope thresholds, which denotes the area with the favourable conditions to boulder 60 

detachment. Larcher et al. (2012) proposed an equation for defining rockfall source areas by linking the slope angle threshold 

and the resolution of DEM. Rockfall source areas can also be identified empirically or derived from the decomposition of slope 

frequency distributions, using morphometric methods based on the slope angle thresholds. Several studies determined a 
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correlation between this threshold and the angle of internal friction of the rock massif (Loye et al., 2008; Paredes et al., 2015). 

Thus, the evaluation of slope frequency distributions can determine the angle of internal friction associated with each 65 

lithological unit of the rock massif, and it is used as the threshold beyond the block-rock becomes unstable. In the same way, 

Loye et al. (2009) developed a model based on the Gaussian distribution of the slope angle values. According to the result of 

this slope angle distribution, for each morphological unit, the steepest slopes are selected as potential source areas (Zhan et al., 

2022). Additionally, Wang et al. (2021) identify rockfall source areas controlled by rock mass strength and by using relief-

slope angle relationships. 70 

Other identification techniques at regional scale are based on the analysis of remote sensing multi-temporal imagery, such as 

interpretation of orthophotos from optical aerial or satellite data. The use of distinctive imaging features/signs, as scars or 

deposits, has shown to be feasible in several researches (Liu et al., 2020; Mateos et al., 2016; Scavia et al., 2020). However, 

this technique is limited by the availability of satellite data, and the difficulty of analysing some areas (shadowed slopes, steep 

slopes and/or vegetation). Moreover, photo-interpretation is time-consuming and this often hampers its application over large 75 

areas (Alvioli et al., 2021). 

Recently, advanced heuristic methods and statistical tools were proposed to identify the location of source areas with good 

results. A heuristic method depends on the site characteristics and its application requires validation and special adaptation 

processes (Fernandez-Hernández et al., 2012). Conversely, statistical methods can be performed to assess different levels of 

likelihood based on geomorphological, geological and some geo-environmental factors. These methods, such as multivariate 80 

analysis, logistic regression, or frequency ratio, are more flexible than heuristic methods, but require training with 

representative data samples. Hybrid methods combine statistical and experimental methods, such as neural networks or 

machine learning decision analysis, to reduce the amount of data required and improving the accuracy of the results (Fanos 

and Pradhan, 2019; Rossi et al., 2020). 

In the literature, there are no specific studies that analyse how the goodness of source areas delimitation influence the rockfall 85 

modeling results. For this, this work analyses, for the first time and at a regional scale (EL Hierro, Spain), the effect of different 

methods to identify the source areas in the results of the rockfall modeling. Three types of approaches are considered for 

defining source areas, depending on data availability scenarios. Different source area maps are used as input data to rockfall 

runout model, which outputs are classified to derive rockfall susceptibility zonation. Finally, we discuss the type of 

classification developed (i.e., supervised versus unsupervised methods). 90 

The article is organized in some sections. Section 2 describes the test area; Section 3 presents the variety of methodologies 

employed; Section 4 presents the results and, finally, Section 5 discusses the results and highlights the main conclusions.  
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2 Test site and data 

2.1 Geographical and geological setting 

The Canary Islands is a volcanic archipelago located in the Atlantic Ocean, within the African plate. The archipelago is made 95 

up of seven major islands and some smaller ones which, together with underwater reliefs form an extensive volcanic domain. 

The islands are the result of a long magmatic history that started 70 million years ago and continues to the present day with 

the recent volcanic eruption in La Palma (September 2021). 

El Hierro is the westernmost and the youngest island with an extension of 268.71 km2 and a population of 11,147 inhabitants 

(Instituto Canario de Estadística, ISTAC, 2021). The climate is subtropical oceanic along the coast, very mild and sunny for 100 

most of the year, with rainfall concentrated from October to March. Heavy storms are frequent, associated with intense rainfall 

and strong winds that often trigger landslides. The average temperature ranges between 19 and 25ºC, with maximum values in 

August.  

The morphology of the island is the result of numerous volcanic events, associated with important geological features. 

One of the most characteristic features of El Hierro is the presence of large landslides, which correspond to the escarpments 105 

of El Golfo, El Julan and Las Playas, located in the N, SW, and SE respectively. In the northern part, El Golfo, with cliffs that 

reach an elevation of more than 1,100 m, is a hazardous area for rockfalls. During the period 2011-2012, a submarine eruption 

took place about 2.5 km from the coastal village of La Restinga. The highest seismicity was in the El Golfo area, with two 

earthquakes of magnitude 4.4 and 4.6 in mid-November 2011. The seismic events triggered rockfalls near the Los Roquillos 

tunnel, one strategic infrastructure, which connects the municipalities of Frontera and Valverde, the most populated villages 110 

on the island.  

After the event, the first field observations in the area carried out by technicians of the Geological and Mining Institute of 

Spain (IGME-CSIC), allowed to evaluate the cliff stability along the road HI-5, where the Roquillos tunnel is located. The 

report prepared showed a complex scenario for the analysis of rockfall hazard and the definition of source areas. The field 

surveys revealed that dykes that outcrop on the escarpments of the large landslides of El Golfo and Las Playas are preferential 115 

rockfall source areas. Recently, on 14 March 2021, a large rockfall along the El Golfo escarpment alerted the population and 

caused social alarm.  

2.2 Available data and products 

In this paper, we combine thematic data and products to identify source areas and to perform rockfall modelling and 

susceptibility zonation. To define the source areas, we have considered the following information: (1) morphometric 120 

parameters (elevation, slope, and curvature) derived from the Digital Elevation Model (DEM) with a resolution of 5m x 5m 

(Centro de Descargas del CNIG (IGN)); (2) lithological information from the geological map provided by IGME-CSIC, at a 

scale of 1:25000 and (3) some geomorphological information. 
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Lithologies shown on the geological map were categorized into 5 geotechnical classes (Sarro et al., 2020; Rossi et al., 2020), 

ranging from class 1, which includes soft soils (such as lapilli and sand), to class 5, which includes very hard rocks (dikes, 125 

volcanic breccias, and massive basalts). From field observations, rockfall source areas in El Hierro are mainly related to hard 

and very hard rocks.  

To classify and validate the simulated rockfall runout, we have prepared a map (Figure 1) that shows two types of areas: (1) 

(red polygons) areas affected by rockfalls where we have identified detached boulders by field investigation, aerial images and 

MOVES database (BDMoves); and (2) (green polygons) areas with no evidences of rockfall activity determined by a heuristic 130 

analysis taking into account field observations and geomorphological and topographical maps.  

3 Methodology 

To evaluate the influence of different source areas, to model rockfall and to assess the related susceptibility, we adopted a 

procedure based on the following steps: (i) identification of rockfall source areas using three different approaches, (ii) rockfall 

simulations, and (iii) classification of rockfall runout maps, their comparison and validation. 135 

3.1 Identification of rockfall source areas 

A crucial input for the rockfall analysis is the map of the source areas that we identified using three different approaches: (i) a 

morphometric schema based on the slope thresholding; (ii) the use of Cumulative Distribution Functions (CDF) that consider 

slope information and geology; and (iii) a probabilistic model (Figure 2 a, b, c).  

3.1.1 Slope thresholding 140 

The method (hereafter referred as STRSA) relies on a simple morphometric approach, which identifies as potential rockfall 

detachment zones, those areas with a slope angle above a given threshold. Even though, rockfall initiate mainly on steep slopes 

and steepness of the hillslope surface can be used to identify potential source areas. It is more realistic to determine a slope 

threshold using distinctive evidence (e.g. deposits, inventory) rather than arbitrarily establishing one (Michoud et al., 2012).  

According to Fu et al. (2021), more than 80% of 2238 rockfall records collected in Sichuan (China) over the past 30 years 145 

occurred on hillslopes with slope ranging between 30º and 50º, and most of them around 40º. As a result of an historical 

rockfall study in the Yosemite Valley (California, USA), Guzzetti et al. (2003) identified as potential release points, slopes 

above 60º. In the region of the County de Vaud (Switzerland), Jaboyedoff and Labiouse (2011) determined slope thresholds 

between 47º and 54º. Frattini et al. (2008), based on the experience of the Trentino Geological Survey, selected as source areas 

cells with slope angle over 37º in Val di Fassa (Dolomites, Eastern Italian Alps). Overall, most of the cited previous studies 150 

reveal slope thresholds over 30º. 
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Sarro et al. (2020) proposed a slope threshold over 40º in Gran Canaria (Canary Islands), an island with similar topographical 

and geological conditions than El Hierro. Detailed evaluations revealed that source areas in Gran Canaria are mainly associated 

with hard, very hard, and extremely hard rocks.   

The source area map obtained using the slope thresholding method is a binary map, where “0” corresponds to stable areas and 155 

“1” to rockfall prone detachment areas. 

3.1.2 Statistical identification of rockfall source areas using slope angle ECDF  

For the first statistical identification of rockfalls source areas, we exploited the Empirical Cumulative Distribution Functions 

(ECDF) of slope angle values (hereafter referred as CDFRSA). 

An ECDF function returns the probability that a random variable is less than or equal to a given value (Lee et al., 2022). In 160 

mathematical terms this is expressed by Equation 1: 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑡)𝑡≤𝑥    Equation 1 

 

where FX(x) denotes the CDF of a random variable X whose probability distribution is f(x). 

ECDF has a lower and upper limit respectively of 0 and 1 and gives a cumulated probability, which increases with the x value. 165 

Equation 2 shows the values taken by ECDF or FX(x) for infinite boundaries of the random variable, and Equation 3 the relation 

between FX(x) values for successive values of x. 

𝐹𝑥(−∞) = 0, 𝐹𝑥(∞) = 1    Equation 2 

 

∀𝑥𝑛+1 ≥ 𝑥𝑛, 𝐹𝑥(𝑥𝑛+1) ≥ 𝐹𝑥(𝑥𝑛)   Equation 3 170 

 

In our study, we selected the slope value as the random variable X, and using a supervised approach, we analysed only the 

slope values in correspondence of mapped rockfalls detachment areas to derive CDFRSA. Thus, CDFRSA gives the probability 

that the slope in rockfall source areas is less than or equal to a given value. This function represents the cumulative probability 

of slope to cause rockfalls and can be used as a quantitative probabilistic estimation of rockfall detachment for given slope 175 

values. The source areas map obtained using CDFRSA approach is a probabilistic map, with values ranging from 0 to 1, 

respectively for a nil or unitary probability of being a potential rockfall detachment area. 

3.1.3 Probabilistic identification of rockfall source areas using LAND-SUITE 

The third method for the rockfall source areas identification (hereafter referred as PROBRSA) proposes a probabilistic modelling 

framework that applies a combination of multiple multivariate statistical classification models, using the source area locations 180 

mapped in the field as dependent variable and a set of thematic data as independent variables (i.e., morphometric data derived 

from DEMs and lithological data). The model uses in input morphometric parameters derived from the Digital Elevation Model 

and lithological data as an expression of the mechanical behaviour of the rocks. 
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As described in detail in Rossi et al. (2020), we applied the probabilistic framework using LAND-SUITE (LANDslide - 

Susceptibility Inferential Tool Evaluator) an R-based open source program (Rossi et al., 2022). The software allowed us to 185 

obtain a probabilistic source area map, which expresses the probability that a certain area could be a potential rockfall source 

area. A logistic regression model integrated into the tool was used for the preliminary analysis of different training/validation 

scenarios to determine whether the model was sensitive to the selection of dependent variables and to identify the best model 

training configuration for application on the island. Furthermore, the final source area zonation was carried out, enabling the 

combination of different statistical modelling approaches such as Linear Discriminant Analysis, Quadratic Discriminant 190 

Analysis, and Logistic Regression Model. Then, different LAND-SUITE tools were used to evaluate probabilistic source area 

maps that resulted from different model applications and configurations, to verify the modelling performance and to estimate 

the associated uncertainty. The resulting probabilistic source area zonation was evaluated by integrating the output expressing 

the variation for a variety of probability thresholds. Specifically, contingency matrices and plots along with model sensitivity, 

specificity, Cohen's kappa indices and ROC curves with the corresponding area under curve (AUCROC) values, were used to 195 

compare the observed and modelled source areas and to explore quantitatively the performances of different model 

configurations allowing the selection of the best model and the corresponding probabilistic source area map (Rossi et al., 

2020). 

Similarly, to the previous identification approach, the source areas map obtained using the method implemented with LAND-

SUITE is a probabilistic map, with values ranging from 0 to 1, respectively for a nil or unitary probability of being a potential 200 

rockfall detachment area. 

3.2 Deterministic rockfall runout simulation 

The rockfall runout simulation was performed using a physically based model employing in input the three source areas maps 

described above. Such type of model is based on the fundamental principles of mass and energy conservation and is extensively 

employed worldwide to study the occurrence of rockfalls. In the context of rockfall hazard assessment, some parameters 205 

associated with the terrain and rock massif settings are used to compute the spatial distribution of trajectories, velocities, and 

heights. 

In this study, we used STONE, a distributed 3-dimensional software based on physically based simulations. The software is 

raster based and applies a lumped mass approach to simulate boulder movement along a topography described by a Digital 

Elevation Model (Guzzetti et al., 2002).  210 

The software requires four main inputs: (i) a digital elevation model, (ii) three coefficients maps (i.e., dynamic rolling friction, 

normal energy restitution, and tangential energy restitution) that simulate energy loss by a boulder when rolling and bouncing 

at impact points, (iii) a map portraying the location of the rockfall source areas, and (iv) a map of the number of simulations 

to be run during modelling. The main output is a raster map of the cumulative count of rockfall trajectories, along with 

additional maps of simulated boulder heights and velocities not used in this study. 215 
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The three maps of model coefficients were estimated considering different lithological/geotechnical categories reported in the 

geotechnical map of El Hierro and selecting values reported for similar lithologies in the literature (Alvioli et al., 2021; Guzzetti 

et al., 2003; Mateos et al., 2016; Sarro et al., 2020). 

The number of simulations run for each source area pixel was obtained multiplying the binary (i.e., 0 or 1) or probabilistic 

(i.e., from 0 to 1) value of the source area maps by 10, successively rounded to the closest integer value.  220 

The main output of the runout modelling computed for each source area identification approach (Figure 2 a, b, c) is the 

cumulative frequency of rockfall trajectories counts (Figure 2 d, e, f).  

3.3 Classification of rockfall runout for susceptibility estimation, model comparison and validation 

The map of the rockfall trajectory counts estimates the potential of a specific pixel to be impacted by a rockfall. To generate a 

probabilistic susceptibility map, we employed two classification approaches based on the ECDF of trajectories counts and 225 

considering, respectively, an unsupervised and a supervised method.  

The first approach uses an unsupervised classification technique and it is based exclusively on the raster map of rockfall 

trajectory counts. This method classifies the map of trajectories counts by utilizing the ECDF derived from the values of counts 

obtained in the entire study area by the rockfall runout model (i.e., cells with count value equal to or greater than 1). The 

resulting map is probabilistic with values ranging from 0 to 1 and shows a probabilistic estimation of the likelihood of a given 230 

pixel being affected by a rockfall.  

The supervised classification method works similarly, but in such case the ECDF accounts only the trajectories counts in 

correspondence of rockfall deposits (i.e., rockfall talus) mapped in the study area (i.e., red polygons in Figure 1). 

This twofold classification methodology was applied to the three maps of trajectories counts obtained by STONE and using as 

input the three source areas maps (i.e., STRSA, CDFRSA and PROBRSA). As a result, we obtained 6 ECDFs graphs and 6 different 235 

susceptibility maps. 

To compare the final classified susceptibility maps, we set up different analyses. The six susceptibility maps were evaluated 

pairwise considering the three source area maps, and the two classification methods. To investigate and quantify the diversities, 

we used maps of the differences and histograms that enables the identification of the locations where the susceptibility maps 

show a greater (or a lower) likelihood of rockfall occurrence. Additionally, 2D hexagonal bin count heat maps derived for the 240 

different coupling of susceptibility maps, were plotted to show the correlation between the different model outcomes.  

To validate the models, we used two rockfall inventories: (i) a polygon-type inventory with zones reached by rockfall boulders 

and zones without any significant evidence of potential boulders reaches; (ii) a point-type inventory with locations of isolated 

rockfall boulders at their final reach after runout (i.e., silent witnesses). We first used the polygon-type inventory to derive 

ROC plots (Rossi et al., 2022, 2010; Rossi and Reichenbach, 2016) and the corresponding area under curve (AUCROC) with 245 

the main purpose of showing the differences between the modelled and observed susceptibility values and providing a 

quantitative estimates of the final rockfall susceptibility zonation performances, regardless the adopted classification approach. 

Successively, we analysed the distribution of average susceptibility values (i.e., violin plots) within circular buffers of different 
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sizes built around boulders locations reported in the point-like inventory, to verify the capability of models to discriminate 

susceptible conditions in correspondence and in the vicinities of mapped rockfall boulders. 250 

4 Results 

4.1 Comparison of different source areas maps 

Following the steps of the methodology, we first compared the source areas maps prepared using three different approaches 

(see section §3.1). The three maps cover the entire island with consistent and equal spatial coverage. 

Using the morphometric approach based on slope thresholding (STRSA), we determined a threshold of 40º by combining 255 

geomorphological data, geological analysis and historical rockfall events. In this case, for the entire island, a total of 727,603 

pixels were identified as prone to rockfalls detachment, corresponding to 18.19 km2 (6.8% of the island, Table 1). To carry out 

the rockfall simulation, the binary value was multiplied by 10, resulting in two values: 10 simulations in correspondence of 

rockfall source areas and 0 elsewhere. 

In the second approach, we used CDFRSA to obtain a probabilistic source map with values ranging from 0 to 1, respectively for 260 

a nil or unitary probability of being a potential rockfall detachment area. Unlike the binary values in the STRSA map, this 

probabilistic information allows to identify the source areas with different levels of certainty. The map shows that 1,628,048 

pixels have not- nil probability of being a potential detachment area, twice the number of pixels identified with the binary 

approach (STRSA). Source areas identified through CDFRSA cover a total area of 40.70 km2, around 15% of the island's surface. 

In this case, the map of the number of runout simulations has integer values ranging from 0 to 10, differently from STRSA. 265 

The third source area probabilistic map obtained with the PROBRSA method shows a total of 3,339,686 pixels with not nil 

probability of being a potential detachment area, which is equivalent to 84.99 km2, approximately the 31.6% of the entire 

island surface. Similarly, to the CDFRSA case, the resulting map of the number of simulations has integer values ranging from 

0 to 10. 

The comparison of source areas identified with the three methods was performed using spatial overlay in raster format and 270 

frequency-based criteria. 

The three maps show a diversified spatial arrangement of the pixels identified as rockfall source areas (Figure 3). A total of 

727,423 pixels were recognized as source areas through the three different methods, with the matching areas mostly located 

on steep slopes (Figure 3, dark blue pixels). No pixels were identified as source area only by STRSA being always associated 

with either CDFRSA or PROBRSA. The pixels identified only by PROBRSA are 1,855,918, corresponding to more than 55% of 275 

the pixels identified with other methods or methods combinations. 

The comparison between the source area maps shows that only 727,423 pixels are classified as source areas by the three 

approaches (Table 2). STRSA is always predicting source areas jointly to another method. The largest source area match is 

observed between CDFRSA and PROBRSA, with a number of pixels of 816,278 (20.40 km2), while the largest mismatch for 

STRSA and PROBRSA, with a deviation of 2,672,196 (66,80 km2) pixels detected by PROBRSA but not by STRSA. This provides 280 
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evidence that the PROBRSA tends to be more conservative when identifying source areas, covering a larger portion of the study 

area (1,855,918 pixels and 46,39 km2).  

Furthermore, Table 2 shows the differences in the spatial distribution of source areas identified by the three approaches, both 

in terms of pixels and square kilometres, highlighting the results that stem from employing these methods. According to Figure 

3, it is evident that the ST does not have as much significance in the differences as the other approaches. 285 

Table 2 also includes the geotechnical classes proposed by (Rossi et al., 2020)) and classifies them as source areas. It is evident 

that the discrepancies between the STRSA and the other approaches (CDFRSA and PROBRSA) correspond to classes not associated 

with rockfall source areas, such as soft and hard soils. 

4.2 Comparison of rockfall simulation and susceptibility maps 

The output of run-out simulation obtained by STONE (Figure 2 d, e, f), using as input the different source areas maps (i.e., 290 

STRSA, CDFRSA and PROBRSA), show diversified spatial distributions of rockfall counts providing a potential different 

information on the susceptibility posed by rockfall in the study area. To address this diversity, we have proposed to classify 

the trajectories count maps using two approaches based on unsupervised and supervised ECDF analysis (Figure 4 and Figure 

5). 

The comparison of the trajectory maps with the simplified geotechnical classes map (Figure 1 in (Rossi et al., 2020)) reveals 295 

that the rockfall trajectories mainly involve lithology types classified as “very hard rocks” and “hard rocks”, whereas 

trajectories through “soft rocks” are quite limited. 

Areas characterized by “very hard rock” are affected by rockfalls trajectories of unsupervised classification maps for 

approximately 19%, 25% and 42% corresponding to STRSA, CDFRSA, and PROBRSA, whereas for “hard rocks” areas, the 

percentages decrease to 7%, 17% and 37%. 300 

These percentages can be explained by the geological and morphological setting. Furthermore, the "hard soil" class also shows 

considerable percentages, above 70%. This distribution pattern aligns with their position in the lower part of slopes, where 

trajectory paths commonly stops. However, the trajectories do not pass through areas with “soft soil”, which are primarily 

located in flat terrain. 

For the supervised maps, the analysis of the runout simulations reveals that "very hard rock" and "hard rock" classes are 305 

affected by trajectories for 81%, 81%, and 88%, respectively. 

The analysis of unsupervised (Figure 5 a, b, c) and supervised (Figure 5 d, e, f) ECDF generally shows a different behaviour. 

The unsupervised distributions show larger ranges and higher number of cells with low trajectories counts (i.e., values close 

to 0). The comparison of the unsupervised ECDFs (Figure 5 a, b, c) reveals a larger number of cells with high count values for 

STRSA, followed by PROBRSA and CDFRSA. With this behaviour reversed when considering supervised ECDFs (Figure 5 d, e, 310 

f). 

The application of the ECDFs (i.e., derived for different runout models taking in input different source area maps) to the 

relative trajectories’ count maps, allows to derive the six probabilistic susceptibility maps shown in Figure 4. This figure shows 
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larger differences between the 3 maps for the different source area using the unsupervised ECDFs (Figure 4 a, b, c); such 

differences are reduced/minor when considering the supervised alternatives (Figure 4 d, e, f).  315 

Figure 6 and Figure 7 show the pairwise difference of susceptibility maps obtained using different source area maps and 

diversified classification method. Specifically, the figure portraits the following six pairs of results: (a) STRSA-unsup-CDFRSA-

unsup, (b) STRSA-unsup-PROBRSA-unsup, (c) CDFRSA-unsup-PROBRSA-unsup, (d) STRSA-sup-CDFRSA-sup, (e) STRSA-sup-PROBRSA-sup, and (f) 

CDFRSA-sup-PROBRSA-sup. The lighter colours (i.e., lower absolute difference values) between supervised maps pairs and the 

frequency counts of the corresponding histograms, highlight lower differences between the susceptibility outputs obtained 320 

applying supervised ECDFs. 

The 2D hexagonal bin count heat maps (Figure 8), derived for the different pairs of susceptibility maps, confirm these results 

showing a better alignment along the bisector of the higher frequency counts (i.e., dark reddish hexagons) obtained for 

supervised susceptibility maps (Figure 4 d, e, f). 

4.3 Rockfall susceptibility model validation 325 

Figure 9 shows the results of the ROC analysis comparing the six susceptibility maps of Figure 4 and rockfall field 

observations. The graphs show that the model with the best performance is obtained by using the PROBRSA source areas 

(AUCROC=0.88), followed by the CDFRSA (AUCROC=0.84). 

For the same susceptibility maps, Figure 10 shows the distributions of the average values within circular buffers of 5m, 50m 

and 100m defined around observed boulders locations. Susceptibility average and maximum values increase with the decrease 330 

of the buffer size. The distributions of values change significantly for different source areas when the susceptibility is classified 

using the unsupervised EDCF, whereas they tend to be more homogeneous when the supervised ECDF is applied. 

5 Conclusions 

Rockfall modeling is complex and requires a set of dedicated methodological choices and assumptions. Despite specific aspects 

of modeling have been largely discussed in the literature (Ding et al., 2023; Noël et al., 2023; Yan et al., 2023; Yang et al., 335 

2021; Žabota et al., 2019), a comprehensive methodology to assess susceptibility posed by rockfalls (i.e., a key information 

for a proper hazard estimation) is still missing. To fulfil this gap, we have proposed a new workflow, which includes methods 

for the source area identification, the deterministic runout modelling, the classification of runout modelling output to derive 

objective rockfall probabilistic susceptibility zonation and the comparison and validation of the results. The methodology was 

applied in the island of El Hierro (Canary Islands, Spain), where rockfalls pose a significant threat to structures, infrastructures 340 

and population. We have presented three methods for identifying source areas of increasingly complexity, namely STRSA, 

CDFRSA and PROBRSA, which requires diversified input. Table 2 and Figure 3 show how these methods may lead to different 

spatial input maps (i.e., source area and number of simulation maps) for rockfall deterministic runout models, impacting the 

rockfall trajectories simulation and the corresponding susceptibility zonation (Figure 4). 
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To derive rockfall susceptibility maps, the trajectories values can be classified using different systems, including Equal 345 

Interval, Natural Break, Quantile, Standard Deviation, Head/Tail Breaks and Landslide Percentage (Alqadhi et al., 2022; Baeza 

et al., 2016; Cantarino et al., 2019; Tehrani et al., 2022; Wang et al., 2016).  

We propose a methodological approach to derive probabilistic susceptibility maps based on the use of unsupervised and 

supervised ECDFs of the trajectories counts. We demonstrate with quantitative metrics (Figure 7 and Figure 8), how the use 

of the supervised ECDF approach helps reducing differences and homogenising zonation, at the expenses of a dedicated 350 

mapping effort to derive a rockfall inventory (Figure 1). This is a significant methodological finding of this work and shows 

that even using simple source areas identification methods, such as STRSA or CDFRSA, supervised ECDF application guarantees 

an acceptable and not biased zonation of rockfall susceptibility maps. 

This study also explores the strategies to validate the rockfall susceptibility model outputs, using different types of inventories, 

such as polygon-type maps portraying the zones reached by rock fall boulders and zones without any significant evidence of 355 

potential boulders’ reaches, and point-type inventories showing only locations of isolated rockfall boulders at their final reach 

after runout (i.e., silent witnesses). Diffused metrics comparing modelled and observed values (i.e., ROC plots and 

correspondent AUCROC) can be used to show the performances of susceptibility models, regardless the adopted classification 

approach (Figure 9). Indeed, identical AUCROC values are obtained for unsupervised and supervised ECDFs, when the same 

source area identification method is used. The ROC analysis is sensitive to methodological choices and helped identifying 360 

PROBRSA (followed by CDFRSA and STRSA) as the preferable method to identify rockfall source areas. Such results can be 

explained by the larger statistical robustness of this method (Rossi et al., 2020), which requires a dedicated mapping, a set of 

thematic information and the use of specific statistical software such as LAND-SUITE (Rossi et al., 2022). In general, we 

demonstrated that the larger is the effort in the identification of source areas, the more reliable and accurate is the rockfall 

susceptibility zonation. 365 

When only rockfall point-type inventories are available, a simple analysis of the distribution of average susceptibility values, 

within circular buffers of different sizes (Figure 10) built around boulders locations, can provide a basic verification of the 

capability of models to discriminate susceptible conditions in correspondence and in the vicinities of the mapped/observed 

boulders. Such analysis also clearly shows the effect of using different classification approaches and confirms that the use of 

supervised ECDFs should be preferred as a method for generating comparable rockfall susceptibility zonation. 370 

Despite different softwares and methods for rockfall runout simulation are available in the literature, we selected STONE that 

was already tested and used in the study area. However, we acknowledge that the rockfall modeling methodology proposed in 

this study holds even using different runout modelling approaches. 

We conclude that the methodology here proposed provides guidance for an objective and reliable rockfall modelling to support 

civil protection, emergency authorities and decision makers in evaluating and assessing potential rockfall impacts. In addition, 375 

we believe that the entire approach can also be a strategic support for early rockfall warning systems. 
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2021). 

Data availability 380 

The authors can provide the El Hierro (Canary Islands, Spain) data used in the analyses to allow replication of the results. 
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Figure 1: Areas used to classify and validate the simulated rockfall runout. 
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Figure 2: The maps show results of the source areas identified using the 3 different approaches (a, STRSA; b, CDFRSA; and c, 575 

PROBRSA) and the cumulative frequency of rockfall trajectories counts for each source area identification approach (d, e, f). 
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Figure 3: The map shows results of the spatial comparison of the source areas identified using the 3 different approaches (i.e., 

STRSA, CDFRSA and PROBRSA). 
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 580 

Figure 4: Probabilistic susceptibility maps derived from the application of unsupervised (a, b, c) and supervised (d, e, f) ECDFs 

(Figure 5). 
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Figure 5: Unsupervised (a, b, c) and supervised (d, e, f) ECDF functions derived for outputs obtained for the different source 

areas identification methods. 585 
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Figure 6: Maps of the pairwise differences of susceptibility maps obtained for different source areas identification methods 

(row wise), and diversified classification method used (column wise). 
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Figure 7: Histograms of the pairwise differences of susceptibility maps obtained for different source areas identification 590 

methods (row wise) and diversified classification method used (column wise). 
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Figure 8: 2D hexagonal bin count heat maps derived for the different pairs of susceptibility maps obtained applying 

unsupervised (a, b, c) and supervised (d, e, f) ECDFs. Dark reddish shades indicate a higher frequency of measurements within 

the corresponding hexagon. 595 
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Figure 9: ROC plots and corresponding AUCROC values derived for the six susceptibility maps shown in figure 4. Point shows 

values of the Hit Rate (also referred as True Positive Rate or Sensitivity) and False Alarm Rate (also referred as False Positive 

Rate equivalent to 1 - Specificity) for a set of probability threshold reference values. 
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 600 

Figure 10: Violin and boxplots derived for the average values of susceptibility within buffers defined around rockfall boulder 

locations. Plots correspond to the six susceptibility maps shown in Figure 4.  
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Table 1: The table shows the spatial dimensions of source areas identified by the 3 approaches (i.e., STRSA, CDFRSA and 

PROBRSA). 605 

Source areas maps 
Total  

(pixel) 
Area  
(km2) 

% Of Hierro island  
(268,71 km2) 

STRSA 727603 18.19 6.8% 

CDFRSA 1628048 40.70 15.1% 

PROBRSA 3399686 84.99 31.6% 
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Table 2: This table shows the differences of the spatial distribution of source areas as identifies by the 3 approaches (i.e., 

STRSA, CDFRSA and PROBRSA). It also identifies the geotechnical classes in the difference (1: Soft soils; 2: Hard soils; 3: Soft 610 

rocks; 4: Hard rocks; 5: Very hard rocks).  

 

 Spatial difference between source areas approaches  
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