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Abstract. Accurate rockfall modelling is crucial for evaluating rockfall hazards and requires several inputs data, including the 10 

location of the source areas and the parameters that control the boulder trajectories. Inaccurate definitions of source areas can 

lead to unrealistic representations of the rockfall process. In this study, we analyse how different approaches used to define 

source areas can affect the accuracy of rockfall modelling. El Hierro (Canary Islands, Spain) is selected due to its geological 

and geomorphological characteristics, as well as the socio-economic importance of rockfalls in the island. 

To identify rockfall source areas, three different approaches are considered, ranging from situations with limited data 15 

availability to scenarios with many topographic, geological and geomorphological information. 

For the first approach, a morphometric method establishes a slope angle threshold above which detachment zones are 

considered. For the second, we have employed a statistical method, using Empirical Cumulative Distribution Functions 

(ECDF) of slope angle values. For the third method, a probabilistic modelling framework applies a combination of multiple 

multivariate statistical classification models that use the mapped source areas as a dependent variable, and a set of thematic 20 

information as independent variables. 

The source area maps obtained from the three methods are utilized as inputs for rockfall runout models to establish a 

classification of rockfall susceptibility areas. 

One of the main outcome of the rockfall modelling simulations on El Hierro is the rockfall trajectory counts maps, showing 

areas prone to rockfalls. These maps indicate the probability of a given pixel being affected by a rockfall event. Two 25 

classification approaches were applied to generate the probabilistic susceptibility maps: unsupervised and supervised statistical 

methods by using distribution functions. The unsupervised classification only employs as input the raster map of the rockfall 

trajectory counts. In contrast, the supervised classification requires additional data on the areas already affected by rockfalls. 

Finally, six susceptibility maps are developed and compared to highlight the influence of source areas definition on the 

distribution of rockfall trajectories. 30 
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1 Introduction 

Rockfalls are dangerous natural hazards with a relevant socio-economic impact worldwide (Borella et al., 2019; Mateos et al., 

2020). Changes in environmental conditions related to the growth of the population, land-use intensification and industrial 

development have the potential to increase the impact of rockfalls in many different regions (Farvacque et al., 2019; Othman 

et al., 2021; Santangelo et al., 2020). In addition, climate change is expected to modify precipitation patterns with effects in 35 

the increasing frequency and extension of rockfalls (Gariano et al., 2015; Sarro et al., 2021). As a consequence, there is an 

increasing interest for improving the reliability and accuracy of tools and products able to support rockfall management and 

mitigate their impact (Noël et al., 2021; Omran et al., 2021; Santos et al., 2024). 

Rockfall runout models allow to obtain information on the spatial distribution of the boulders trajectories, their velocity, energy 

and heights (Carlà et al., 2019; Gallo et al., 2021), and play a relevant role in rockfall assessment, supporting the identification 40 

of rockfall-prone areas and the characterization of blocks behavior (Crosta et al., 2015; Pfeiffer, 2019). In the literature, 

different modelling approaches were proposed based on data availability, environmental setting, and type of analyses. An 

incomplete list comprises : STONE (Guzzetti et al., 2003; Sarro et al., 2020), RocPro3d (Sarro et al., 2014, 2018), Hy-Stone 

(Dinçer et al., 2016; Lanfranconi et al., 2020), RAMMS (Dhiman and Thakur, 2021), RokyFor3D (Francioni et al., 2020; 

Robiati et al., 2019) and Rocfal (Kakavas et al., 2023; Pérez-Rey et al., 2019). The output of runout models are commonly 45 

used to estimate the rockfall susceptibility degree by classifying rockfall trajectories counts (Dorren et al., 2023; Nanehkaran 

et al., 2022; Noël et al., 2023). The susceptibility measures the degree to which a terrain can be affected by future slope 

movements. In other words, it is an estimate of “where” landslides are likely to occur and in mathematical language, can be 

defined as the probability of spatial occurrence of slope failures, given a set of geo-environmental conditions (Reichenbach et 

al., 2018).  50 

Rockfall simulation models, both probabilistic or deterministic, present errors associated with the input data employed to 

replicate the rockfall process (Straub and Schubert, 2008). The inaccuracy in defining rockfall source areas is highly relevant 

in modelling, since source areas provide the starting state for rockfall trajectories (Frattini et al., 2013; Rossi et al., 2020).  

The placement of source areas depends on several characteristics, such as slope morphology, lithology, and discontinuities 

(Alvioli et al., 2021; Sarro et al., 2018; Yan et al., 2023). At the local scale, in situ analyses commonly involve discontinuity 55 

characterization and escarpment recognition. Frequently, logistical and safety issues in the field constrain these methods. 

Remote sensing techniques, such as laser scanners and UAV-based photogrammetry, are nowadays widely used to address 

these limitations and obtain detailed observations of slopes (Gallo et al., 2021; Giordan et al., 2020; Sarro et al., 2018). 

Although both, fieldwork and remote sensing methods are successful at a local scale, their utility at a regional scale is limited. 

Many methods with different degrees of complexity have been proposed for identifying rockfall source areas at regional scale, 60 

based on deterministic, probabilistic or statistical approaches (Muzzillo et al., 2018). Deterministic methods identify rockfall 

source or detachment locations using models based on mechanical principles, while statistical methods are based on the 

analyses of historical catalogues of past rockfall events. For the probabilistic identification of source areas, supervised 
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multivariate classification or machine learning models are employed to predict rockfall detachment locations (i.e., dependent 

or grouping variable) based on a set of explanatory variables (i.e., independent variables). 65 

Most of the approaches are based on the numerical analysis of digital elevation models (DEMs) and additional environmental 

datasets. Source areas can be identified analysing local topography by using surface slope thresholds, which denotes the area 

with the favourable conditions to boulder detachment. Larcher et al. (2012) proposed an equation for defining rockfall source 

areas by linking the slope angle threshold and the resolution of DEM. Rockfall source areas can also be identified empirically 

or derived from the decomposition of slope frequency distributions, using morphometric methods based on the slope angle 70 

thresholds. Several studies determined a correlation between this threshold and the angle of internal friction of the rock massif 

(Loye et al., 2008; Paredes et al., 2015). Thus, the evaluation of slope frequency distributions can determine the angle of 

internal friction associated with each lithological unit of the rock massif, and it is used as the threshold beyond the block-rock 

becomes unstable. In the same way, Loye et al. (2009) developed a model based on the Gaussian distribution of the slope angle 

values. According to the result of this slope angle distribution, for each morphological unit, the steepest slopes are selected as 75 

potential source areas (Zhan et al., 2022). Additionally, Wang et al. (2021) identify rockfall source areas controlled by rock 

mass strength and by using relief-slope angle relationships. 

Other identification techniques at regional scale are based on the analysis of remote sensing multi-temporal imagery, such as 

interpretation of orthophotos from optical aerial or satellite data. The use of distinctive imaging features/signs, as scars or 

deposits, has shown to be feasible in several researches (Liu et al., 2020; Mateos et al., 2016; Scavia et al., 2020). However, 80 

this technique is limited by the availability of satellite data, and the difficulty of analysing some areas (shadowed slopes, steep 

slopes and/or vegetation). Moreover, photo-interpretation is time-consuming and this often hampers its application over large 

areas (Alvioli et al., 2021). 

Recently, advanced heuristic methods and statistical tools were proposed to identify the location of source areas with good 

results. A heuristic method depends on the site characteristics and its application requires validation and special adaptation 85 

processes (Fernandez-Hernández et al., 2012). Conversely, statistical methods can be performed to assess different levels of 

likelihood based on geomorphological, geological and geo-environmental factors. These methods, such as multivariate 

analysis, logistic regression, or frequency ratio, are more flexible than heuristic methods, but require training with 

representative data samples. Hybrid methods combine statistical and experimental methods, such as neural networks or 

machine learning decision analysis, to reduce the amount of data required and improving the accuracy of the results (Fanos 90 

and Pradhan, 2019; Rossi et al., 2020). 

In the literature, there are no specific studies that analyse how the goodness of source areas delimitation influences the rockfall 

modelling results. To fill this gap, this work analyses at a regional scale (El Hierro island, Spain), the effect of different methods 

proposed to identify the source areas in rockfall modelling. Depending on data availability scenarios, three approaches are 

considered for defining source areas, that are used as input data for rockfall runout modelling. The runout outputs are classified 95 

to derive rockfall susceptibility zonation and the types of classification (i.e., supervised versus unsupervised methods) are 

discussed. 
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The article is organized in the following sections: section 2 describes the test area; section 3 presents the variety of 

methodologies employed; section 4 presents the results and, section 5 discusses the results and highlights the main conclusions.  

2 Test site and data 100 

2.1 Geographical and geological setting 

The Canary Islands are a volcanic archipelago located in the Atlantic Ocean, within the African plate. The archipelago is made 

up of seven major islands (Figure 1) and some smaller ones which, together with underwater reliefs, form an extensive volcanic 

domain. The islands are the result of a long magmatic history that started 70 million years ago and continues to the present 

with the recent volcanic eruption in La Palma (September 2021). 105 

El Hierro is the westernmost and the youngest island with an extension of 268.71 km2 and a population of 11,147 inhabitants 

(Instituto Canario de Estadística, ISTAC, 2021). The climate is subtropical oceanic along the coast, very mild and sunny for 

most of the year, with rainfall concentrated from October to March. Heavy storms are frequent, associated with intense rainfall 

and strong winds that often trigger landslides. The average temperature ranges between 19 and 25ºC, with maximum values in 

August.  110 

The morphology of the island is the result of numerous volcanic events, associated with important geological features. One of 

the most characteristic features of El Hierro is the presence of large landslides, which correspond to the escarpments of El 

Golfo, El Julan and Las Playas, located in the N, SW, and SE respectively (Figure 1). In the northern part, El Golfo, with cliffs 

that reach an elevation of more than 1,100 m, is a hazardous area for rockfalls. During the period 2011-2012, a submarine 

eruption took place about 2.5 km from the coastal village of La Restinga. The highest seismicity was in the El Golfo area, with 115 

two earthquakes of magnitude 4.4 and 4.6 in mid-November 2011. The seismic events triggered rockfalls near the Los 

Roquillos tunnel, one strategic infrastructure, which connects the municipalities of Frontera and Valverde, the most populated 

villages on the island. After the event, the first field observations carried out by technicians of the Geological and Mining 

Institute of Spain (IGME-CSIC), allowed to evaluate the cliff stability along the road HI-5, where the Roquillos tunnel is 

located. The report prepared showed a complex scenario for the analysis of rockfall hazard and the definition of source areas. 120 

The field surveys revealed that dykes that outcrop on the escarpments of the large landslides of El Golfo and Las Playas are 

preferential rockfall source areas. Recently, on 14 March 2021, a large rockfall along the El Golfo escarpment alerted the 

population and caused a social alarm.  

2.2 Available data and products 

For El Hierro island are available the following data: (1) Digital Elevation Model (DEM) at 5 m x 5m resolution (LiDAR-125 

PNOA Centro de Descargas del CNIG (IGN)) that was used to compute morphometric parameters (e.g., elevation, slope, 

curvature, landform classification, etc.); and (2) lithological information derived from the geological map provided by IGME-

CSIC at a scale of 1:25000. The map was reclassified into 7 geotechnical classes (Sarro et al., 2020; Rossi et al., 2020), ranging 
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from class 1, which includes soft soils (such as lapilli and sand), to class 7, which includes extremely hard rocks (dikes and 

volcanic breccias). 130 

In the paper, we have used different thematic data to identify source areas and to perform rockfall modelling and susceptibility 

zonation The methods to identify source areas require diverse type of information: (i) unsupervised slope thresholding 

(STRSA)and slope angle ECDF (CDFRSA) require only slope data; (ii) supervised STRSA and CDFRSA require slope data and the 

location of source areas (i.e., normally mapped in the field; see Rossi et al., 2020 for details); (iii) probabilistic identification 

(PROBRSA) needs additional geo-environmental information (see Rossi et al., 2020 for details). For the runout modelling the 135 

following additional data were exploited: (i) a sample of mapped rockfall deposits in polygon format for the supervised CDF 

analyses of rockfall trajectories; (ii) a sample of areas affected or with no evidence of rockfall for ROC-based model 

performance evaluation; and (iii) a sample of the rockfall boulders location (i.e., silent witnesses) for violin and boxplots 

susceptibility analysis.  

Figure 1 illustrates the distribution of rockfall information used in the runout simulations classification and validation: (1) red 140 

polygons show areas affected by rockfalls, where we have identified detached boulders or deposits through field investigations 

conducted from 2012 to 2018 (47 records), aerial images (84 records), and the MOVES database (BDMoves) (78 records), 

including point features converted into polygons by applying a 50-meter buffer to account for uncertainty in data location; and 

(2) green polygons show areas with no evidence of rockfall activity, mapped in the field by experts with the support of 

geomorphological and topographical maps. Additionally, a subset of rockfall talus deposits (not shown in Figure 1) was in the 145 

Cumulative Distribution Function (CDF) analysis, and a subset of detached boulder locations was utilized to prepare violin 

and boxplot for the validation analyses. 

3 Methodology 

To evaluate the influence of different source areas, to model rockfall and to assess the associated susceptibility, we adopted a 

procedure based on the following steps: (i) identification of rockfall source areas using three different approaches, (ii) rockfall 150 

modelling, and (iii) classification, comparison and validation of the runout maps. 

3.1 Identification of rockfall source areas 

A crucial input for the rockfall analysis is the map of the source areas that we identified using three different approaches: (i) a 

morphometric schema based on the slope thresholding; (ii) the use of Cumulative Distribution Functions (CDF) that consider 

slope information and geology; and (iii) a probabilistic model.  155 

3.1.1 Slope thresholding 

The method (hereafter referred as STRSA) relies on a simple morphometric approach, which identifies as potential rockfall 

detachment zones, those areas with a slope angle above a given threshold. Even though, rockfall initiate mainly on steep slopes 
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and steepness of the hillslope surface can be used to identify potential source areas. It is more realistic to determine a slope 

threshold using distinctive evidence (e.g. deposits, inventory) rather than arbitrarily establishing one (Michoud et al., 2012).  160 

According to Fu et al. (2021), more than 80% of 2238 rockfall records collected in Sichuan (China) over the past 30 years 

occurred on hillslopes with slope ranging between 30º and 50º, and most of them around 40º. As a result of an historical 

rockfall study in the Yosemite Valley (California, USA), Guzzetti et al. (2003) identified as potential release points, slopes 

above 60º. In the region of the County de Vaud (Switzerland), Jaboyedoff and Labiouse (2011) determined slope thresholds 

between 47º and 54º. Frattini et al. (2008), based on the experience of the Trentino Geological Survey, selected as source areas 165 

cells with slope angle over 37º in Val di Fassa (Dolomites, Eastern Italian Alps). Overall, most of the cited previous studies 

reveal slope thresholds over 30º. 

Sarro et al. (2020) proposed a slope threshold over 40º in Gran Canaria (Canary Islands), an island with similar topographical 

and geological conditions than El Hierro. Detailed evaluations revealed that the source areas in Gran Canaria are primarily 

associated with hard, very hard, and extremely hard rocks, corresponding to geological types such as dykes and breccia, 170 

phonolite, massive basalt, trachyte, and ignimbrite. Considering that the geological context of El Hierro where rockfall are 

observed, is similar to Gran Canaria we have defined the threshold above 40°. The source area map obtained using the slope 

thresholding method is a binary map, where 0 corresponds to stable areas and 1 to rockfall prone detachment areas. 

3.1.2 Statistical identification of rockfall source areas using slope angle ECDF  

For the second identification of rockfall source areas, we utilized the Empirical Cumulative Distribution Functions (ECDF) of 175 

slope angle values (hereafter referred as CDFRSA). 

An ECDF function returns the probability that a random variable is less than or equal to a given value (Lee et al., 2022). In 

mathematical terms this is expressed by Equation 1: 

𝐹𝑥(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑡)𝑡≤𝑥    Equation 1 

 180 

where FX(x) denotes the ECDF of a random variable X whose probability distribution is f(x). 

ECDF has a lower and upper limit respectively of 0 and 1 and gives a cumulated probability, which increases with the x value. 

Equation 2 shows the values taken by ECDF or FX(x) for infinite boundaries of the random variable, and Equation 3 the relation 

between FX(x) values for successive values of x. 

𝐹𝑥(−∞) = 0, 𝐹𝑥(∞) = 1    Equation 2 185 

 

∀𝑥𝑛+1 ≥ 𝑥𝑛 , 𝐹𝑥(𝑥𝑛+1) ≥ 𝐹𝑥(𝑥𝑛)   Equation 3 

 

In our study, we selected the slope value as the random variable X, and using a supervised approach, we analysed only the 

slope values in correspondence of mapped rockfall detachment areas (source areas inventory in Rossi et al., 2020) to derive 190 

CDFRSA. Thus, CDFRSA gives the probability that the slope in rockfall source areas is less than or equal to a given value. This 
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function represents the cumulative probability of slope to cause rockfalls and can be used as a quantitative probabilistic 

estimation of rockfall detachment for given slope values. The source areas map obtained using CDFRSA approach is a 

probabilistic map, with values ranging from 0 to 1, respectively for a nil or unitary probability of being a potential rockfall 

detachment area. The slope values corresponding to a classification of 1 in CDFRSA approach range from 62° to 85°, with a 195 

mean slope of 77°. In contrast, the slope values associated with a classification of 0 do not exceed 47.27°, exhibiting a mean 

slope of 16°. 

3.1.3 Probabilistic identification of rockfall source areas using LAND-SUITE 

The third method for the source areas identification (hereafter referred as PROBRSA) proposes a probabilistic modelling 

framework that applies a combination of multiple multivariate statistical classification models, using the source area locations 200 

mapped in the field (Rossi et al., 2022) as dependent variable and a set of thematic data as independent variables (i.e., 

morphometric data derived from DEMs and lithological data). The model uses input morphometric parameters derived from 

the Digital Elevation Model and lithological data as an expression of the mechanical behaviour of the rocks. 

As described in detail in Rossi et al. (2020), we applied the probabilistic framework using LAND-SUITE (LANDslide - 

Susceptibility Inferential Tool Evaluator) an R-based open source program (Rossi et al., 2022). The software allowed us to 205 

obtain a probabilistic source area map, which expresses the probability that a certain area could be a potential rockfall source 

area. A logistic regression model integrated into the tool was used for the preliminary analysis of different training/validation 

scenarios to determine whether the model was sensitive to the selection of dependent variables and to identify the best model 

training configuration for application on the island.  

The final source area zonation was prepared applying a combination of different statistical modelling methods, namely a linear 210 

discriminant analysis, a quadratic discriminant analysis, and a logistic regression model. Then, different LAND-SUITE tools 

were used to evaluate probabilistic source area maps that resulted from different model applications and configurations, to 

verify the modelling performance and to estimate the associated uncertainty. The resulting probabilistic source area zonation 

was evaluated by integrating the output expressing the variation for a variety of probability thresholds. Specifically, 

contingency matrices and plots along with model sensitivity, specificity, Cohen's kappa indices and ROC curves with the 215 

corresponding area under curve (AUCROC) values, were used to compare the observed and modelled source areas and to explore 

quantitatively the performances of different model configurations allowing the selection of the best model and the 

corresponding probabilistic source area map. See Rossi et al. (2022) for the details on training/validation/combination 

procedure.  

Similarly, to the previous identification approach, the source areas map obtained using the method implemented with LAND-220 

SUITE is a probabilistic map, with values ranging from 0 to 1, respectively for a nil or unitary probability of being a potential 

rockfall detachment area. 
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3.2 Deterministic rockfall runout simulation 

The rockfall runout simulation was performed using a physics-based model employing as input source areas the maps described 

above (Figure 2 a, b, c). Such type of model is based on the fundamental principles of mass and energy conservation and is 225 

extensively employed worldwide to study the rockfalls runout.  In this study, we used STONE, a distributed 3-dimensional 

software based on physics-based simulations. The software is raster based and applies a lumped mass approach to simulate 

boulder movement along a topography described by a Digital Elevation Model (Guzzetti et al., 2002). The software requires 

four main inputs: (i) a digital elevation model, (ii) three coefficients maps (i.e., dynamic rolling friction, normal energy 

restitution, and tangential energy restitution) that simulate energy loss by a boulder when rolling and bouncing at impact points 230 

(Table 1), (iii) a map portraying the location of the rockfall source areas, and (iv) a map of the number of simulations to be run 

during modelling.  

The three maps of the coefficients were estimated considering different lithological/geotechnical categories reported in the 

geotechnical map of El Hierro and selecting values reported for similar lithologies in the literature (Alvioli et al., 2021; Guzzetti 

et al., 2003; Mateos et al., 2016; Sarro et al., 2020). 235 

The number of simulations run for each source area pixel was obtained multiplying the binary (i.e., 0 or 1) or probabilistic 

(i.e., from 0 to 1) value of the source area maps by 10, successively rounded to the closest integer value.  

The main output of the runout modelling computed for the three source area maps is the cumulative count of rockfall 

trajectories (Figure 2 d, e, f).  

3.3 Classification of rockfall runout for susceptibility estimation, model comparison and validation 240 

The map of the rockfall trajectory counts estimates the potential of a specific pixel to be impacted by a rockfall.  To derive 

rockfall susceptibility maps, the trajectories values can be classified using different systems, including Equal Interval, Natural 

Break, Quantile, Standard Deviation, Head/Tail Breaks and Landslide Percentage (Alqadhi et al., 2022; Baeza et al., 2016; 

Cantarino et al., 2019; Tehrani et al., 2022; Wang et al., 2016), in order to make a qualitative interpretation of the results. 

To generate a probabilistic susceptibility map, we employed two classification approaches based on the ECDF of trajectories 245 

counts and considering, respectively, an unsupervised and a supervised method.  

The unsupervised classification technique is based exclusively on the raster map of rockfall trajectory counts. This method 

classifies the map by utilizing the ECDF derived from the values of counts obtained in the entire study area by the rockfall 

runout model (i.e., cells with count value equal to or greater than 1). The resulting map presents values ranging from 0 to 1, 

representing a probabilistic estimate of the likelihood of each pixel being affected by a rockfall event. Consequently, pixels 250 

equal to 1 indicate areas where the susceptibility model predicts the highest probability of rockfall occurrence. 

The supervised classification method works similarly, but in this case the ECDF analysis considers only the trajectories count 

in correspondence of rockfall deposits and/or rockfall talus mapped in the study area. The rockfall deposits mapping can be 
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affected by uncertainty and to be reliable should be statistically representative of different geo-environmental setting 

controlling rockfall occurrence and evolution. 255 

This twofold classification methodology was applied to the maps of trajectories count obtained by STONE using as input the 

three source areas maps (i.e., STRSA, CDFRSA and PROBRSA). As a result, we obtained 6 ECDF graphs and 6 susceptibility 

maps that we compared and analysed using different analyses. The six susceptibility maps were evaluated pairwise considering 

the three source area maps, and the two classification methods. To investigate and quantify the diversities, we used maps of 

the differences and histograms that enables the identification of the locations where the susceptibility maps show a greater (or 260 

a lower) likelihood of rockfall occurrence. Additionally, 2D hexagonal bin count heat maps derived for the different coupling 

of susceptibility maps, were plotted to show the correlation between the model outcomes. Hexagonal binning for map 

comparison is a technique used in data visualization, particularly when dealing with large datasets in two-dimensional scatter 

plots. It groups data points into hexagonal "bins" (rather than traditional square bins) to provide a more structured view of the 

data's distribution. The hexagonal shape is often preferred because it avoids the visual artifacts that can result from aligning 265 

data into rectangular grids and provides a more compact and efficient way of packing data points (Wickham, 2016). 

To validate the models, we used two rockfall inventories: (i) a polygon-type inventory with zones reached by rockfall boulders 

and zones without any significant evidence of potential boulders reaches; (ii) a point-type inventory with locations of isolated 

rockfall boulders at their final reach after runout (i.e., silent witnesses). We first used the polygon-type inventory to derive 

ROC plots (Rossi et al., 2010, 2022; Rossi and Reichenbach, 2016) and the corresponding area under curve (AUCROC) with 270 

the main purpose of showing the differences between the modelled and observed susceptibility values and providing a 

quantitative estimates of the final rockfall susceptibility zonation performances, regardless of the adopted classification 

approach. Successively, we analysed the distribution of average susceptibility values (i.e., violin plots and box plots) within 

circular buffers of different sizes built around boulders locations reported in the point-like inventory, to verify the capability 

of models to discriminate susceptible conditions in correspondence and in the vicinities of mapped rockfall boulders.  Different 275 

buffer sizes allow to consider uncertainty due to local conditions and boulders locations. In the proposed approach the location 

of mapped boulders is used to evaluate the rockfall susceptibility zonation. Commonly this information is used to evaluate 

runout models verifying if simulations reach entirely or partially the boulder locations. The violin plots show distribution of 

the susceptibility data and specifically their probability density and together with box plots help visualizing summary data 

statistics, such as median values and interquartile ranges. 280 

4 Results 

4.1 Comparison of different source areas maps 

Following the steps of the methodology, we first compared the source areas maps prepared using three different approaches 

(see section §3.1), which cover the entire island with consistent and equal spatial coverage. 
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For the slope thresholding approach (STRSA), we determined a threshold of 40º by combining geomorphological data, 285 

geological analysis and historical rockfall events. In this case, for the entire island, a total of 727,603 pixels were identified as 

prone to rockfalls detachment, corresponding to 18.19 km2 (6.8% of the island, Table 2). To carry out the rockfall simulation, 

the binary map was multiplied by 10, resulting in two distinct values: 10 simulations in correspondence of rockfall source 

areas and 0 elsewhere. 

In the second approach, we used CDFRSA to obtain a probabilistic source map with values ranging from 0 to 1, respectively for 290 

a nil or unitary probability of being a potential rockfall detachment area. Unlike the binary values in the STRSA map, this 

probabilistic information allows to identify the source areas with different levels of certainty. The map shows that 1,628,048 

pixels have not- nil probability of being a potential detachment area, twice the number of pixels identified with the slope 

thresholding approach (STRSA). Source areas identified through CDFRSA cover a total area of 40.70 km2, around 15% of the 

island's surface. In this case, the map of the number of runout simulations has integer values ranging from 0 to 10. 295 

The third source area map obtained with the PROBRSA method shows a total of 3,339,686 pixels with not nil probability of 

being a potential detachment area, which is equivalent to 84.99 km2, approximately the 31.6% of the entire island surface. 

Similarly to the CDFRSA case, the resulting map of the number of simulations has integer values ranging from 0 to 10. 

The comparison of source areas identified with the three methods was performed using spatial overlay in raster format and 

frequency-based criteria. The three maps show a diversified spatial arrangement,  with a total of 727,423 pixels were 300 

recognized as source areas through the three different methods, with the matching areas mostly located on steep slopes (Figure 

3). No pixels were identified as source area only by STRSA being always associated either with CDFRSA or PROBRSA. The pixels 

identified only by PROBRSA are 1,855,918, corresponding to more than 55% of the pixels identified with other methods or 

methods combinations (Table 3). 

The largest RSA match is observed between CDFRSA and PROBRSA, with a number of pixels of 816,278 (20.40 km2), while 305 

the largest mismatch for STRSA and PROBRSA, with a deviation of 2,672,196 (66.80 km2) pixels detected by PROBRSA but not 

by STRSA. This provides evidence that the PROBRSA tends to identify a larger number of source areas, covering a larger portion 

of the study area (1,855,918 pixels and 46,39 km2).  

An additional analysis to evaluate the possible relation with the geotechnical classes revealed that only STRSA is able to identify 

source areas in soft and hard soils. 310 

4.2 Comparison of rockfall simulation and susceptibility maps 

The output of the runout simulations (Figure 2 d, e, f), shows diverse spatial distributions of rockfall trajectory counts providing 

a potential different information on the susceptibility posed by rockfalls. To obtain comparable rockfall susceptibility maps, 

we classified the trajectory count maps using unsupervised and supervised ECDF analysis (Figure 4 and Figure 5). The 

application of the ECDFs  to the relative trajectories’ count maps, allows to derive the six probabilistic susceptibility maps 315 

shown in Figure 4. The figure reveals evident differences between the maps derived from the unsupervised ECDFs (Figure 4 

a, b, c) that are reduced/minor when considering the supervised alternatives (Figure 4 d, e, f).  
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Different plot representations were used to compare the six maps and to understand their difference. Figure 5 shows the 

unsupervised and supervised ECDF functions derived from the outputs obtained using the three source area maps. The 

unsupervised distributions show larger ranges and higher number of cells with low trajectories counts (i.e., values close to 0). 320 

Additionally, the comparison of the unsupervised ECDFs (Figure 5 a, b, c) reveals a larger number of cells with high count 

values for STRSA, followed by CDFRSA and PROBRSA;  this behaviour is reversed when considering the supervised ECDFs 

(Figure 5 d, e, f). 

Figure 6 and Figure 7 show the pairwise difference of susceptibility maps obtained using different source area maps and 

diversified classification method. Specifically, the figure portraits the following six pairs of results: (a) STRSA-unsup-CDFRSA-325 

unsup, (b) STRSA-unsup-PROBRSA-unsup, (c) CDFRSA-unsup-PROBRSA-unsup, (d) STRSA-sup-CDFRSA-sup, (e) STRSA-sup-PROBRSA-sup, and (f) 

CDFRSA-sup-PROBRSA-sup. The lighter colours (i.e., lower absolute difference values) between supervised maps pairs and the 

frequency counts of the corresponding histograms, highlight lower differences between the susceptibility outputs obtained 

applying supervised ECDFs. 

The 2D hexagonal bin count heat maps (Figure 8), derived for the different pairs of susceptibility maps, confirm these results 330 

showing a better alignment along the bisector of the higher frequency counts obtained for supervised susceptibility maps 

(Figure 4 d, e, f). These plots are divided into hexagonal bins, and each bin is colored based on the count of susceptibility maps 

values. Dark reddish shades indicate a higher frequency of measurements within the corresponding hexagon, while lighter 

areas may indicate sparse values. 

In addition, the comparison of the trajectory maps with the simplified geotechnical classes (Figure 1 in Rossi et al., 2020) 335 

reveals that the trajectories mainly cross over hard and very hard rocks , and only moderately soft rocks.  In the unsupervised 

maps, very hard rocks are affected by rockfall trajectories for approximately 19%, 25% and 42% corresponding to STRSA, 

CDFRSA, and PROBRSA, whereas hard rocks, the percentages decrease to 7%, 17% and 37%. These percentages can be 

explained by the geological and morphological setting. Furthermore, the hard soil class shows considerable percentages above 

70%. This distribution can be justified by their position in the lower part of the slopes, where trajectory paths commonly stop. 340 

Trajectories do not cross over soft soils, which are mainly located in flat areas. In the supervised maps, the very hard and hard 

rocks are affected by the majority of the trajectories (i.e., respectively 81%, 81%, and 88% for STRSA, CDFRSA, and PROBRSA).  

4.3 Rockfall susceptibility model validation 

Figure 9 shows the results of the ROC analysis comparing the different susceptibility maps (Figure 4) and field observations. 

The graphs show that the model with the best performance is obtained by using the PROBRSA source areas (AUCROC=0.88), 345 

followed by the CDFRSA (AUCROC=0.84), with STRSA performing the worst (AUCROC=0.78). 

For the same maps, Figure 10 shows the distributions of the average values within circular buffers of 5m, 50m and 100m 

defined around observed boulder locations. Susceptibility average and maximum values increase with the decrease of the 

buffer size. The distributions of values change significantly for different source areas when the susceptibility is classified using 

the unsupervised EDCF, whereas they tend to be more homogeneous when the supervised ECDF is applied. 350 
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5 Discussion and conclusions 

Rockfall modelling is complex and requires a set of dedicated methodological choices and assumptions. Despite specific 

aspects of the modelling have been largely discussed in the literature (Ding et al., 2023; Noël et al., 2023; Yan et al., 2023; 

Yang et al., 2021; Žabota et al., 2019), a comprehensive methodology to assess susceptibility posed by rockfalls  is still missing. 

To fulfil this gap, we have proposed a workflow, which includes methods for the source area identification, the deterministic 355 

runout modelling, the classification of runout output to derive objective rockfall probabilistic susceptibility zonation and finally 

the comparison and validation of the results. The methodology was applied in El Hierro island (Canary Islands, Spain), where 

rockfalls pose a significant threat to structures, infrastructures and population. We have presented three methods for identifying 

source areas of increasing complexity, namely STRSA, CDFRSA and PROBRSA, which requires diversified input. Table  and 

Figure 3 show how these methods may provide different input (i.e., source area and number of simulation) for rockfall 360 

deterministic runout models, impacting the rockfall trajectories simulation and the corresponding susceptibility zonation 

(Figure 4). 

To derive probabilistic susceptibility maps, we propose the use of unsupervised and supervised ECDFs of the trajectories 

counts. We demonstrate with quantitative metrics (Figure 7 and Figure 8), how the use of the supervised ECDF approach helps 

to reduce differences and homogenise zonation, at the expenses of a dedicated mapping effort to derive a rockfall inventory 365 

(Figure 1). This is a significant methodological finding of this work and shows, that even using simple source areas 

identification methods, such as STRSA or CDFRSA, the supervised ECDF application guarantees a reliable and not biased 

zonation of rockfall susceptibility. 

This study also explores the strategies to validate the rockfall susceptibility outputs, using different types of inventory, such as 

i) polygon-type maps portraying the zones reached by rock fall boulders and zones without any significant evidence of potential 370 

boulders’ reaches; and ii) point-type inventories with the locations of isolated rockfall boulders at the end of the runout (i.e., 

silent witnesses). Metrics comparing modelled and observed values (i.e., ROC plots and correspondent AUCROC) can be used 

to show the performances of susceptibility models, regardless the adopted classification approach (Figure 9). Identical AUCROC 

values are obtained for unsupervised and supervised ECDFs, when the same source area identification method is used. The 

ROC analysis is sensitive to methodological choices and helped selecting PROBRSA (followed by CDFRSA and STRSA) as the 375 

preferable method to identify rockfall source areas. Such results can be explained by the larger statistical robustness of this 

method (Rossi et al., 2020), which requires a dedicated mapping, a set of thematic information and the use of specific statistical 

software (Rossi et al., 2022). In general, we demonstrated that the larger is the effort in the identification of source areas, the 

more reliable and accurate is the rockfall susceptibility zonation. 

When only rockfall point-type inventories are available, a simple analysis of the distribution of average susceptibility values, 380 

within circular buffers of different sizes (Figure 10) built around boulders locations, can provide a basic verification of the 

capability of models to discriminate susceptible conditions in correspondence and in the vicinities of the mapped/observed 
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boulders. Such analysis also shows the effect of using different classification approaches and confirms that the use of 

supervised ECDFs should be preferred as a method for generating comparable rockfall susceptibility zonation. 

In the analysis of rockfall susceptibility at a regional scale, the access to comprehensive data is frequently limited. This 385 

constraint impacts the choice of the methodologies employed to define source areas. When only a digital elevation model 

(DEM) and bibliographic resources are available, slope thresholding method is preferred. Where additional data, such as 

geological or geomorphological information, are accessible, investing time in the mapping of source areas enables the 

application of probabilistic methods that yield more robust results. Furthermore, maps of trajectory counts are often considered 

the final modelling outputs. In this study we propose to implement a supervised analysis of the trajectory counts to classify the 390 

susceptibility zonation and enhance their reliability.  

Despite the availability of various software and methods for rockfall runout simulation, we have selected STONE due to its 

previous use, validation and application in the study area. Nonetheless, we recognize that methodological framework proposed 

in this study remains relevant even when employing other rockfall modelling software. The unsupervised and supervised ECDF 

analysis is applicable to the trajectories count generated by any software. 395 

The proposed methodology provides a possible guidance for an objective and reliable rockfall modelling able to support civil 

protection, emergency authorities and decision makers in evaluating and assessing potential rockfall impacts and can be a 

potential strategic support for rockfall warning systems. 
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Figure 1: Areas used to classify and validate the simulated rockfall runout. 

 600 
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Figure 2: The figure shows on the left the source areas maps identified using the 3 different approaches (a, STRSA; b, CDFRSA; 

and c, PROBRSA) and on the right the cumulative counts of rockfall trajectories for each source area map (d, e, f). See Table 2 

for the pixel count of each source area map. 
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 605 

 

Figure 3: The map shows the spatial comparison of the source areas identified using the 3 different approaches (i.e., STRSA, 

CDFRSA and PROBRSA). 
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Figure 4: Probabilistic susceptibility maps derived from the application of unsupervised (a, b, c) and supervised (d, e, f) ECDF 610 

functions (Figure 5). 
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Figure 5: Unsupervised (a, b, c) and supervised (d, e, f) ECDF functions derived for outputs obtained for the different source 

areas identification methods. 
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 615 

Figure 6: Maps of the pairwise differences of susceptibility maps obtained for different source areas identification methods 

(row wise), and diversified classification method (column wise). Negative values indicate a higher probability for the second 

of the two compared methods. 
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Figure 7: Histograms of the pairwise differences of susceptibility maps obtained for different source areas identification 620 

methods (row wise) and diversified classification method (column wise). 
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Figure 8: 2D hexagonal bin count heat maps derived for the different pairs of susceptibility maps obtained applying 

unsupervised (a, b, c) and supervised (d, e, f) ECDF functions. Dark reddish shades indicate a higher frequency of 

measurements within the corresponding hexagon. 625 
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Figure 9: ROC plots and corresponding AUCROC values for the six susceptibility maps shown in figure 4. Point shows values 

of the Hit Rate (also referred as True Positive Rate or Sensitivity) and False Alarm Rate (also referred as False Positive Rate 

equivalent to 1 - Specificity) for a set of probability threshold reference values. 
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 630 

Figure 10: Violin and boxplots derived for the average values of susceptibility within buffers defined around rockfall boulder 

locations. Plots correspond to the six susceptibility maps shown in Figure 4.  
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Table 1: The table shows values of the coefficients (i.e., dynamic rolling friction, normal energy restitution, and tangential 

energy restitution) used in the rockfall modelling. 635 

USDA Classification 
Tangential  
restitution 

Normal  
restitution 

Rolling  
friction 

Extremely hard rock 89 64 0.35 

Very hard rock 88 63 0.48 

Hard rock 87 57 0.50 

Moderately rock 78 46 0.55 

Moderately soft rock 75 45 0.59 

Soft rock 54 41 0.67 

Soils 50 38 0.70 
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Table 2: The table shows the spatial extension of the source areas maps identified by the 3 approaches (i.e., STRSA, CDFRSA 

and PROBRSA). 

Source areas maps Number of pixel  
Total area  

(km2) 
% of El Hierro island 

(268,71 km2) 

STRSA 727603 18.19 6.8% 

CDFRSA 1628048 40.70 15.1% 

PROBRSA 3399686 84.99 31.6% 

 640 
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Table 3: This table shows the differences of the spatial distribution of source areas as identifies by the 3 approaches (i.e., 

STRSA, CDFRSA and PROBRSA).  

 645 

Comparison of 
RSA maps   

Total 
(RSA-1 ∪ RSA-2) 

Intersection 
(RSA-1 ∩ RSA-2) 

Only  
RSA-1 

Only  
RSA-2 

RSA-1 RSA-2 Pixels (#) 
Area 
(Km2) 

Pixels (#) 
Area 
(Km2) 

Pixels (#) 
Area 

(Km2) 
Pixels (#) 

Area 
(Km2) 

STRSA CDFRSA 1628115 40.70 727536 18.19 67 0.0017 900512 22.51 

STRSA PROBRSA 3399705 84.99 727490 18.19 19 0.005 2672196 66.80 

CDFRSA PROBRSA 3482657 87.06 1543701 38.59 82971 2.07 1855985 46.40 

 

 


