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Answer Reviewer 1 

General comments 

This is a well-structured manuscript that provides a clear methodology to address some of the uncertainties in 

rockfall susceptibility map production. Overall, I found it easy to read and follow, and it provides a valuable 

contribution to the more general issue of producing hazard maps at larger (regional) scales. I have a few 

questions, primarily around the technical implementation of some of the methods and how to interpret some of 

the later figures, however, none of these are major issues and I look forward to seeing the published revised 

version. 

Thank you very much for the positive feedback and for the observations and suggestions that will improve the 

comprehension and readability of the manuscript. We have revised the text considering all your comments and 

suggestions. Below, we present a point-by-point response to address all your suggestions. 

We hope that the revised version of the manuscript will be compliant with the quality standards of the journal. 

We sincerely appreciate the revision and the opportunity to provide a new version of the article. 

Specific comments 

1. Locations of past rockfall events vs locations of future rockfall events 

In this work there is the inherent assumption that past rockfall areas not only inform future rockfall areas but 

are also still “on-the-list”. After a rockfall has occurred, should the probability of a future event at the same 

location decrease? At some point you presumably will run out of rocks to fall? 

In the introduction, we have added the following text to explain better the meaning of susceptibility.  

The landslide susceptibility measures the degree to which a terrain can be affected by future slope movements. 

In other words, it is an estimate of “where” landslides are likely to occur. In mathematical language, can be 

defined as the probability of spatial occurrence of slope failures, given a set of geo-environmental conditions 

and a set of past landslide locations (Reichenbach et al., 2018). 

Reference: Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-

based landslide susceptibility models. Earth-science reviews, 180, 60-91. 

2. The term “probability” without any conditional information 

It is slightly misleading to have probability == 1 for a whole set of pixels without some sort of dependency. A 

probability of 1 is a certain event. These maps (e.g., figure 4) – are essentially saying there are huge areas where 

a rockfall will definitely pass through. Does this mean that the next event to occur will definitely pass through all 

of these places? Or that all of these places will eventually have a rockfall event? (if so, what time frame). I 

presume the values are just to simplify calculations – maybe some context or an example statement of what p 

== 1 at a specific pixel means might help? 

The value == 1 could be an implication of the numerical procedure (i.e., ECDF are generated using talus in the 

supervision with the value of 1 assigned to the highest trajectory count; in the channel upwards, those value can 

be higher and then ECDF assign a value 1) and a simplification due to the used colour scale. 

Pixels classified as 1, doesn’t mean that the next event will definitely pass through them but these places will 

eventually have a rockfall event in a future that is not defined (not included in the definition of susceptibility). By 
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assigning a probability value of 1, we aim to convey that these specific locations present the highest likelihood 

of being affected by rockfalls. Regarding the time frame, this analysis exclusively considered susceptibility; 

determining the timing of rockfall events would require further analysis of triggering factors such as rainfall or 

seismicity, or alternatively, conducting more detailed studies. We acknowledge this comment, as it presents an 

important point for future research to enhance the rockfall assessment on El Hierro. 

In response to the reviewer’s suggestion, we have added the following clarification: 

“The resulting map presents values ranging from 0 to 1, representing a probabilistic estimate of the likelihood of 

each pixel being affected by a rockfall event. Consequently, pixels equal to 1 indicate areas where the 

susceptibility zonation evaluate a higher probability of rockfall occurrence.” 

3. Slopes of past rockfall events informing CDFRSA 

If I understood this method correctly, any area with a slope LESS than the minimum observed slope of an existing 

rockfall source area has a probability of 0, and similarly, any place with a slope GREATER than the maximum 

observed slope has a probability of 1. It seems unlikely that the most extreme events have already been observed 

(especially given the small areas of the island where the rockfall data come from). It would be more realistic (and 

fair to the method) to have assumed observed values were (e.g.) 5 and 95 % values of the true slope distribution 

(actual % should be dependent on the number of data you’re using to build the ecdf). Some idea of the range of 

these slope values would be beneficial in the text too (e.g., are we looking at 42 – 42.5 degree slopes or 30 to 57 

degrees). 

Many thanks for your feedback. To clarify, we have added the ECDF graphs derived for the source area 

identification, which illustrates the distribution of slope angle values and the corresponding the probabilities. In 

the figure we show graphically the slope angle range associated to the probability ranges 0.5-0.6. Due to space 

constraints and the already high number of tables and figures in the manuscript, the authors have decided not 

to include it; however, we will include a text indicating the range of values. 

 “The slope values corresponding to a classification of 1 range from 62° to 82°, with a mean slope of 77°. In 

contrast, the slope values associated with a classification of 0 do not exceed 47.27°, exhibiting a mean slope of 

16°.” 
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4. How many rocks == a rockfall? And an idea (histogram?) of how many pixels these rockfalls are hitting on 

their way down (e.g., are most simulated trajectories only passing through 1 (start) or 2 pixels or is it closer 

to 100?). 

We appreciate the reviewer's comment. The information requested by the reviewer would be relevant and 

interesting, both form a hazard evaluation perspective and to deal with the issue of rockfall boulder 

fragmentation. However, the rockfall runout simulation software we have used, which mainly focuses on regional 

rather than hillslope scale analyses, does not produce in output such information. Histograms of each source 

area are included below. 

In the case of STRSA, since the assigned values are binary (0 for non-source areas and 1 for source areas), we 

multiplied the values by 10, resulting in 10 simulations launched from each identified source area. For CDFRSA and 

PROBRSA, where values range from 0 to 1, representing the probabilistic likelihood of a pixel functioning as a 

source area, the number of simulations was scaled between 0 and 10 based on the probability. This approach 

appropriately weights the probability of rockfall occurrence in the susceptibility zonation.  
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Due to the concurrent simulation launches from all source areas, it is challenging to discretize the rockfall 

trajectories originating from individual pixels. Nonetheless, we will consider conducting a similar analysis to that 

presented in Table 1, either as a new table or integrated into a figure.  

  

       

5. Data resolution 

I might have missed it but I couldn’t see where the information was on pixel size(s), whether the resolution of 

data for the different maps were identical to start or if interpolation was necessary, whether there was any 

concern or consideration of the method sensitivity to raster size (e.g., is it 10 x 10 m or 200m x 200m) and how 

do these compare to rockfall source areas? 

Thank you for your comment. For the susceptibility analysis in the island of El Hierro, a 5 x 5 m pixel size was 

employed, providing sufficient sensitivity for the results. In the following sections, we differentiate between the 

layers required to identify the source areas based on the different approaches and the layers used in the 

simulations. It has been indicated in the text. 

6. The external validation data 

Lines 242 to 244 suggest that external data (not used in the rest of the analyses) were used to “validate the 

models”. This is a great idea – but we are not told enough about this external data, the number, the extent, 

whether they are completely separate from the data used in the rest of the manuscript or are essentially just a 

subset. I also didn’t completely understand the buffer idea – how do these values (5, 50, 100m) align with pixel 

size? 

To explain better the rational of buffer selection we added the following text at the end of 3.3. 

Different buffer sizes allow to consider uncertainty due to local conditions and boulders locations. In the 

proposed approach the location of mapped boulders is used to evaluate the rockfall susceptibility zonation. 

Susceptibility zonation PROB unsupervised Susceptibility zonation PROB supervised 
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Commonly this information is mainly used to evaluate runout models verifying if simulations reach entirely or 

partially the boulder locations.  

7. Supervised is better 

Given the finding that the supervised classification system is better – some discussion around the original rockfall 

data used is necessary – how biased is the original dataset by (e.g.) proximity to populations? Size of rockfall? 

Age of rockfall? And was any sensitivity analysis done via subsetting this data during the classification process? 

Many thanks for your comment. It is fine to add additional description of data, but we believe we can just add 

text. It will be also important to stress the possible impact of selecting biased or inaccurate data on modelling of 

both source areas and runout simulation. To underline the importance of the expert-based work to create 

unbiased and representative datasets we have added the following at the end of second paragraph of section 

3.3. Here you need to rewrite the answer including the mentioning of adding the text below to the manuscript.  

Despite the expert-based rockfall deposits mapping is affected by uncertainty, it is relevant to provide for the 

analysis a representative map accounting for different geo-environmental setting which control rockfall 

occurrence and evolution. 

For the number of rockfalls used to validate this work, we have the following data:  field investigations conducted 

from 2012 to 2018 (47 records), aerial images (84 records), and the MOVES database (BDMoves) (78 records).  

Some of the specific details requested by the reviewer are outlined below. To address some of the questions 

raised, they are presented as graphs or maps. Since the analysis of the inventory is not the main objective of the 

paper, it will not be included in the manuscript. 

The following graph shows the number of rockfall records in the Canary Islands from 1879 to the present (2023). 

They are represented by colored circles corresponding to each island. As can be seen, the available records are 

mainly concentrated in the last 10 years, with a particular emphasis on the most recent years. This is due to the 

fact that work on MOVES database began during this period, when the IGME-CSIC, together with IRPI-CNR, 

collaborated on several international projects, and a citizen observatory was established in the Canary Islands to 

collect rockfall data through an app. 
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The following maps show the rockfall inventory in MOVES for the island of El Hierro. In the first map, you can see 
the events recorded in the database before September 2022 (blue) and since September 2022 (yellow).  
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Additionally, to address the impact on infrastructure, a map of road damage by municipality is shown. The purple 
dots indicate the locations of road network damage. Finally, a map of building damage by municipality is 
presented. The yellow dots indicate the locations of damage to buildings. This information is conditioned by the 
available data in the database, as in many cases (especially smaller events below 1 m³) there is no information 
on the damage caused. As can be seen, the main impact is on the road network. Regarding fatalities due to 
rockfalls, there are records of only two people who unfortunately lost their lives in Pozo de las Calcosas in the 
mid-20th century. 

Regarding the triggering factors, they are mainly due to rainfall; however, in El Hierro, as mentioned in the article, 
they are also conditioned by the occurrence of rockfalls due to seismic activity. An example is the event 
presented in the paper that occurred in the Roquillos tunnel during the 2011 seismic-volcanic crisis. 

In the text, we have added the following information regarding the number of events included in the rockfall 

inventory. 

“To classify and validate the simulated rockfall runout, we have prepared a map (Figure 1) that shows two types 

of areas: (1) areas affected by rockfalls (red polygons), where we have identified detached boulders through 

various field investigations conducted from 2012 to 2018 (47 records), aerial images (84 records), and the MOVES 

database (BDMoves) (78 records). We have point features that we converted into polygons by applying a 50-

meter buffer to account for uncertainty in data collection; and (2) areas with no evidence of rockfall activity (green 

polygons), determined by a heuristic analysis based on field observations and geomorphological and 

topographical maps. These mainly include flat areas where no evidence of rockfalls has been observed, identified 

using Geomorphon and topographical data, and verified during the field campaign.” 

Technical corrections 

Line 37 - There are several places where rockfalls should be rockfall, this is one of them, I have not noted them 

throughout. 

Many thanks. We have revised the text and made the corresponding changes. 

Line 49 – Sources → source 

Done. 

 Line 86 – EL → El  

Done. 

Line 130 – evidences → evidence 

Done. 

Line 188 – I think dependent should be independent here? Unless you’re doing some subsetting of the dependent 

variable? 

Thanks for your comment but dependent is correct (Rossi 2020) 

Lines 94 – 95 [and repeated on lines 354 – 357] – this looks like it was a valuable exercise – but the results aren’t 

included in the paper? 
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We appreciate the reviewer’s comment, however, we would be grateful if the reviewer could kindly provide 

further clarification on this point, as we would be pleased to address it. 

Lines 203 & 208 – physically → physics  

Done 

Line 247 – regardless the adopted → regardless of the adopted  

Done 

Lines 256 – 269 – most of this text is just Table 1 in words and could be removed.  

We appreciate the reviewer’s comment and suggestion. However, we would prefer to keep this part of the paper 

as it is to maintain continuity with the rest of the article and to clarify the comparison of the results. 

Line 280 – 66,80 → 66.80 

Done 

Lines 345-347 – this seems completely out of place – suggest removing or adding some context so it is obvious 

why it is included. 

Many thanks for your comment. We have added this information. 

To derive rockfall susceptibility maps, the trajectories values can be classified using different systems, including 

Equal Interval, Natural Break, Quantile, Standard Deviation, Head/Tail Breaks and Landslide Percentage (Alqadhi 

et al., 2022; Baeza et al., 2016; Cantarino et al., 2019; Tehrani et al., 2022; Wang et al., 2016), in order to make 

a qualitative interpretation of the results. 

Line 350 – helps reducing…. → helps to reduce differences and homogenise zonation 

Done 

Table 2 – I just can’t wrap my head around this table, but I am assuming this is just me! 

Thanks for comment. We have prepared the following table to make the information clearer. 

 COMPARISON 
OF RSA MAPS   

TOTAL 
(RSA1 ∪ RSA2) 

INTERSECTION 
(RSA1 ∩ RSA2) 

ONLY 
RSA-1 

ONLY 
RSA-2 

RSA-1 RSA-2 Pixels (#) Area (Km2) Pixels (#) Area (Km2) Pixels (#) Area (Km2) Pixels (#) Area (Km2) 

ST CDF 1628115 40.70 727536 18.19 67 0.0017 900512 22.51 

ST PROB 3399705 84.99 727490 18.19 19 0.005 2672196 66.80 

CDF PROB 3482657 87.06 1543701 38.59 82971 2.07 1855985 46.40 

 

Figure 2 – Would be good to add the number of red pixels for each of the source area maps (LHS ones) or add 

some text in the caption (e.g.) “see Table 1 for pixel count”. 

Done. We have added the text proposed in the capitation. 
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Figure 3 – I don’t quite understand the numbers in the legend compared to the maps – in the map the visible 

pixels are mainly green and dark blue, but according to the legend, green should be one of the least observed 

and there should be more peach/pink colours??  

Many thanks for your comment. Figure 3 will be reviewed and modified taking into account the reviewer’s 

comment. 

Figure 5 – because of the differences in x-axis scale it is virtually impossible to compare these ecdfs. Would it be 

possible to add the unsupervised line in a different colour to the supervised ones as well so we can see what’s 

going on? 

Many thanks for your comment. We prefer to keep the figure the way it is, since the insets layouts is the same 

for previous and successive figures. 

Figure 6 – I thought my printer had broken. Also, it’s not “probability of rockfall trajectories” because you can’t 

have -1 probability, it is the difference in probabilities of rockfall trajectories. 

Yes, the reviewer is correct. The map represents the difference in susceptibility calculated using different source 

areas, which explains the presence of a negative value, indicating a higher probability for the second of the two 

values. We have changed the legend of the figure. 

Figure 7 – where do the zeros get binned in these histograms? Would probably be better (given that 0 is a 

“match”) to have 0 as the mid-point of the central bin. 

Many thanks for your comment. Zero values are few and are included in the left bin. We believe that this way to 

bin the data is more efficient to show better the positive or negative differences between maps. Indeed, we have 

also used the same in Figure 6 to better describe this feature.  

Figure 8 – Needs a better explanation when talked about in the text, and what is the total number of 

“measurements” number of total pixels across the island? Or only those that were included in at least one of the 

models as p > 0? Or other? 

Many thanks for your comment. The total number of pixels corresponds only to those included in at least one of 

the models with a probability greater than 0 (p > 0). We have added the following text to clarify the figure: 

The 2D hexagonal bin count heat maps (Figure 8), derived for the different pairs of susceptibility maps, confirm 

these results showing a better alignment along the bisector of the higher frequency counts (i.e., dark reddish 

hexagons) obtained for supervised susceptibility maps (Figure 4 d, e, f). These plots are divided into hexagonal 

bins, and each bin is colored based on the count of susceptibility maps value. Dark reddish shades indicate a 

higher frequency of measurements within the corresponding hexagon, while lighter areas may indicate sparse 

values. 

Figure 9 – This one also needs some extra information as I don’t understand it – how did you measure “true 

positives”? and as the “empirical ROC” is consistent across rows, and all the points appear to be on the line – 

how is model fit calculated? And if the numbers are probability threshold reference values – should these be in 

the opposite order and vaguely align with the numbers of the y-axis to estimate fit? Also, they’re all black lines 

as far as I can tell. 

Regarding the way the True Positives are calculated, by definition a ROC curve (e.g., Fawcets, 2006) is derived 

comparing observed/mapped areas affected (i.e., pixels within polygons mapped as “without any significant 
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evidence of potential boulders reaches” taking a value of 0 in the analysis) or not affected by rockfall (i.e., pixels 

within polygons mapped as “reached by rockfall boulders” taking a value of 1 in the analysis) and probabilistic 

estimates of rockfall susceptibility (pixels of the modelled susceptibility zonation ranging from 0 to 1). Each point 

along the ROC curve is derived selecting a probability threshold (between 0 and 1) used to classify the 

probabilistic prediction (i.e., the values below the threshold take a 0 value, those above a value of 1), then the 

comparison of the classified probability and the observed values allows to derive a confusion matrix having one 

value of TN, TP, FN and FP and to derive TPR (True Positive Rate) and FPR (False Positive Rate) values which 

identify a single point along the ROC curve. To obtain the entire curve, multiple threshold values need to be used, 

for each of those different values of TN, TP, FN and FP and TPR and FPR are calculated and constitute the point 

which define the ROC. The above explain why the order of the probability values in the ROC are correct.  

Regarding the same values of ROC area obtained for the unsupervised and supervised ECDF for given source area 

identification methods (i.e., row wise in Figure 9), this can be explained because the two probabilistic 

transformations (using different ECDFs) are merely a reclassification of the same original information, which the 

trajectories’ count obtained by the models. Overall, the order of the data does not change, and performance of 

the unsupervised and supervised models must not change. Different is when considering the final values after 

the reclassification which show clearly the effectiveness of using the supervised ECDF, with this being described 

and demonstrated in the manuscript. We prefer not to add this detailed explanation, in the text to make the 

reading smoother. We slightly modify the text of the first paragraph in the section 4.3 as follows. 

The graphs show that the model with the best performance is obtained by using the PROBRSA source areas 

(AUCROC=0.88), followed by the CDFRSA (AUCROC=0.84), with STRSA performing the worst (AUCROC=0.78). 

References 

Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. 

http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf


Reviewer 2 

I am rejecting this paper. The study does not present any fundamentally new methodologies for 

rockfall hazard assessment. It relies on established techniques and applies them in a comprehensive 

manner. So, no significant contribution to method development other than comparison. 

The motivation of the author is not clear. The paper discusses the socio-economic impacts of rockfalls, 

suggesting that even remote areas can have significant implications, potentially affecting future 

development, tourism, or local infrastructure. This analysis identifies the sources of rockfall in remote 

mountainous areas, where there are no populations or roads. As a result, there is no classification of 

which areas are vulnerable to rockfalls or how these rockfalls might affect populations and 

development. Identifying rockfall sources in inhabited areas or near infrastructure would be beneficial 

for safety and planning purposes. However, the necessity of finding rockfall sources in remote areas 

without development is not clearly explained, leaving the practical relevance of this study in such 

locations unclear. 

While the paper overviews the data used for identifying rockfall source areas and modelling 

susceptibility, it lacks details on data acquisition and processing. Although a 5m x 5m DEM from IGN 

is used, the source whether satellite, LiDAR, or other is unclear. Lithological and geological data from 

IGME-CSIC maps lack detailed classification methods, and geomorphological data are mentioned 

without specifics on acquisition or use. Historical rockfall events and field observations are referenced 

for validation, but collection and validation methods are not detailed. The author could add more 

information. 

The paper does not seem to employ a conditional probability framework that explicitly models how a 

rockfall event influences the probability of subsequent events. 

One limitation of the paper is that it does not thoroughly describe the relevance of rockfall trajectories. 

Although the study compares different methods, it does not provide a detailed evaluation of why 

specific factors or combinations of factors lead to better performance. 

The paper discusses the results of the different methods used for rockfall susceptibility assessment, 

identifying which method provides the best results. However, it does not delve into the reasons 

behind why one method outperforms the others. This lack of analysis of the factors contributing to 

the best results limits the understanding of the strengths and weaknesses of each approach. Without 

a clear explanation of why a particular method is more effective, it is difficult to apply these findings 

in other contexts or to make informed decisions about method selection in future studies. 

The slope thresholding approach does not consider other important factors like vegetation or soil 

type, which can also affect rockfall susceptibility. Although the choice of slope threshold is informed 

by previous studies and local conditions, focusing primarily on slope and lithology, it can still be 

somewhat arbitrary. Without proper validation, this method may not accurately identify all rockfall-

prone areas, potentially leading to inaccuracies. The methods and findings are specific to the 

geological and topographical context of El Hierro, a volcanic island, and do not offer clear guidance on 

adapting these methods to other regions, limiting their generalizability. 

Thank you very much for your comments and feedback on the manuscript. We would like to clarify 

some points that, in our opinion, do not reflect the content and the main objectives of the manuscript 

or that are addressed in the text may be not clear enough to be understood by the reader.   



We would like to clarify, highlight, and address each point of the reviewer to provide some more clear 

explanation of our work. 

Answers Reviewer 2 

The motivation of the author is not clear. The paper discusses the socio-economic impacts of 

rockfalls, suggesting that even remote areas can have significant implications, potentially affecting 

future development, tourism, or local infrastructure. This analysis identifies the sources of rockfall 

in remote mountainous areas, where there are no populations or roads. As a result, there is no 

classification of which areas are vulnerable to rockfalls or how these rockfalls might affect 

populations and development. Identifying rockfall sources in inhabited areas or near infrastructure 

would be beneficial for safety and planning purposes. However, the necessity of finding rockfall 

sources in remote areas without development is not clearly explained, leaving the practical 

relevance of this study in such locations unclear.  

 The main focus of the article is not the discussion of “the socio-economic impacts of rockfalls.” but it 

presents a workflow that analyses how different source areas delimitation influences the rockfall 

modelling results. In particular, three types of approaches are considered for defining source areas, 

depending on data availability scenarios. Different source area maps are used as input data to rockfall 

runout model, which outputs are classified to derive rockfall susceptibility zonation.  

The word “socio-economic” appears only in the abstract to justify the selection of El Hierro as the case 

study, and in the introduction to mention that “rockfalls are dangerous natural hazards with a relevant 

socio-economic impact worldwide (Borella et al., 2019; Mateos et al., 2020).” 

The sentence “This analysis identifies the sources of rockfall in remote mountainous areas, where there 

are no populations or roads” does not accurately represent the scenario in El Hierro. The island has 

approximately 11.646 inhabitants, and the floating population may significantly increase due to the 

high demand for rural and natural tourism, as indicated by the extensive network of tourist trails and 

public-use infrastructure available throughout the island. 

In addition, the objective of this article is not to estimate vulnerability. And this is the reason why 

“there is no classification of which areas are vulnerable to rockfalls” We appreciate the reviewer’s 

suggestion, as it could provide a valuable direction for future research. 

In addition, we would like to underline that the manuscript presents a workflow from rockfall source 

areas identification to susceptibility zonation at a regional scale. Vulnerability, risk assessment and the 

impact of rockfall on structures and infrastructures is not part of the topics discussed in the article. 

Although a 5m x 5m DEM from IGN is used, the source whether satellite, LiDAR, or other is unclear. 

Lithological and geological data from IGME-CSIC maps lack detailed classification methods, and 

geomorphological data are mentioned without specifics on acquisition or use. Historical rockfall 

events and field observations are referenced for validation, but collection and validation methods 

are not detailed. The author could add more information. 

To clarify these points, chapter 2.2 “Available data and products” was completely rephrased  

In this paper, we have used different thematic data to identify source areas and to perform rockfall 

modelling and susceptibility zonation. The different methods proposed to identify source areas require 

diverse type of information: (i) unsupervised STRSA and CDFRSA require only slope data; (ii) supervised 

STRSA and CDFRSA require slope data and the location of source areas (i.e., normally mapped in the 

field; see Rossi et al., 2020 for details); (iii) PROBRSA needs also additional geo-environmental 



information (see Rossi et al., 2020 for details). For the island the following data are available: (1) Digital 

Elevation Model (DEM) at 5 m x 5m resolution (LiDAR-PNOA Centro de Descargas del CNIG (IGN)) that 

was used to compute the morphometric parameters (e.g., elevation, slope, curvature, landform 

classification, etc.); and (2) lithological information derived from the geological map provided by IGME-

CSIC at a scale of 1:25000. The map was reclassified into 5 geotechnical classes (Sarro et al., 2020; 

Rossi et al., 2020), ranging from class 1, which includes soft soils (such as lapilli and sand), to class 5, 

which includes very hard rocks (dikes, volcanic breccias, and massive basalts). 

In addition, for the runout modelling the following additional data were exploited: (i) a sample of 

mapped rockfall deposits in polygon format for the supervised CDF analyses of rockfall trajectories 

(Figure 5); (ii) a sample of areas affected or with no evidence of rockfall for ROC-based model 

performance evaluation (Figure 9); and (iii) a sample of the rockfall boulders location (i.e., silent 

witnesses) for violin and boxplots susceptibility analysis (Figure 10).  

Figure 1 illustrates the distribution of rockfall information used in the runout simulations classification 

and validation: (1) red polygons show areas affected by rockfalls, where we have identified detached 

boulders through field investigations conducted from 2012 to 2018 (46 records), aerial images (84 

records), and the MOVES database (BDMoves) (78 records), including point features converted into 

polygons by applying a 50-meter buffer to account for uncertainty in data location; (2) green polygons 

show areas with no evidence of rockfall activity, mapped in the field by experts with the support of 

geomorphological and topographical maps; (3) blue polygons show the subset of rockfall deposits (i.e., 

talus) used in CDF analysis; and (4) black dots show the subset of boulders location used in violin and 

boxplot analyses. 

The paper does not seem to employ a conditional probability framework that explicitly models how 

a rockfall event influences the probability of subsequent events.  

The authors acknowledge the importance of this point, as a rockfall event can significantly alter the 

conditions of the slope, affecting the probability of future rockfalls. 

However, the presented work does not fully capture the dynamics of these phenomena in complex 

scenarios where events may be interrelated. While the scenario you present is indeed interesting, it 

falls outside the scope of this study. 

One limitation of the paper is that it does not thoroughly describe the relevance of rockfall 

trajectories.  

This topic is widely discussed in the literature, but this paper focuses on the entire workflow leading 

to the estimation of the susceptibility posed by rockfalls starting from the identification of source 

areas applying different methods to the classification of trajectory count maps and the evaluation of 

the final susceptibility zonation.  

Although the study compares different methods, it does not provide a detailed evaluation of why 

specific factors or combinations of factors lead to better performance.  

It’s not clear if the terms “specific factors” refer to environmental factors that are considered in the 

modelling or to the different steps of the proposed workflow. 

The paper discusses the results of the different methods used for rockfall susceptibility assessment, 

identifying which method provides the best results. However, it does not delve into the reasons 

behind why one method outperforms the others. This lack of analysis of the factors contributing to 

the best results limits the understanding of the strengths and weaknesses of each approach. 



Without a clear explanation of why a particular method is more effective, it is difficult to apply these 

findings in other contexts or to make informed decisions about method selection in future studies.  

In section 3.3, we describe two possible classification approaches for the rockfall trajectory counts, 

based on (i) an unsupervised and (ii) a supervised statistical approach exploiting Empirical Cumulative 

Distribution Functions (ECDF). The unsupervised classification requires, as input, the raster map of 

rockfall trajectory counts. This map is then classified using the ECDF function derived by accounting 

for all count values greater than or equal to 1. To perform the supervised classification of the rockfall 

trajectory count map, additional information on observed (i.e., mapped) rockfall deposits is needed. 

In this case, the ECDF function was derived by considering only the count values of the pixels within 

the rockfall deposit polygons. The output map provides a different probabilistic estimate of a given 

pixel being affected by a rockfall and can be interpreted as a susceptibility map. In the same chapter 

we describe the different analyses we have used to compare the final classified susceptibility maps.   

The slope thresholding approach does not consider other important factors like vegetation or soil 

type, which can also affect rockfall susceptibility. Although the choice of slope threshold is informed 

by previous studies and local conditions, focusing primarily on slope and lithology, it can still be 

somewhat arbitrary. Without proper validation, this method may not accurately identify all rockfall-

prone areas, potentially leading to inaccuracies.  

The existing literature on rockfall, including an article we have published for Gran Canaria (Canary 

Islands), indicates that the value selected for El Hierro is consistent with the range commonly selected 

by the scientific community. It’s very difficult to consider the influence of vegetation in slope 

thresholds analysis because this information is often missing or not complete for areas with a big 

extension.  

We added the following information: 

Sarro et al. (2020) proposed a slope threshold over 40º in Gran Canaria (Canary Islands), an island 

with similar topographical and geological conditions than El Hierro. Detailed evaluations revealed 

that the source areas in Gran Canaria are primarily associated with hard, very hard, and extremely 

hard rocks, corresponding to geological types such as dykes and breccia, phonolite, massive basalt, 

trachyte, and ignimbrite.  

Considering that the geological context of El Hierro where rockfall occurrences are observed, is similar 

to Gran Canaria we have defined the threshold above 40°.  

The methods and findings are specific to the geological and topographical context of El Hierro, a 

volcanic island, and do not offer clear guidance on adapting these methods to other regions, limiting 

their generalizability. 

We appreciate the comment, but we do not agree with this statement. 

The workflow is designed to be reproducible in various geological contexts. The tools developed for 

this work are applicable across diverse geological settings. For instance, the identification of source 

areas, whether through slope thresholds or ECDF, can be effectively conducted in any context. While 

the probabilistic approach does account for factors specific to volcanic areas, such as dikes, the tool 

utilized (LANDSUITE) can be employed in a wide range of contexts by considering the primary factors 

that determine rockfalls. 

In the case of deterministic rockfall runout simulation, the STONE software has been successfully 

applied in numerous geological contexts, and the literature supports this application. Furthermore, in 



generating a probabilistic susceptibility map through the classification of rockfall runout, we employed 

two classification approaches based on the ECDF of trajectory counts. This classification is conducted 

by considering (1) areas affected by rockfalls, where we have identified detached boulders through 

field investigations, aerial imagery, and the MOVES database (BDMoves); and (2) (green polygons) 

areas with no evidence of rockfall activity. 

Lastly, the tools for representing comparisons on different susceptibility maps can also be utilized in 

any geological context. 

We would like to express our gratitude for your review. We trust that we have adequately addressed 

your comments and that the new modifications make the article more robust. 

 



Answer Reviewer 3 

General comments 

The manuscript under review presents a well-conceptualized and executed study that aims to analyze 

how different approaches to defining source areas can influence the accuracy of rockfall modelling, 

using a methodological experiment conducted on the island of El Hierro (Canary Islands, Spain). 

Although the topic of rockfall susceptibility modelling is common in the literature, this study makes an 

interesting contribution by highlighting the critical importance of source area definitions. The 

experiments conducted strongly support the prioritization of probabilistic approaches for identifying 

source areas at a regional scale, and the manuscript argues effectively for the benefits of supervised 

classification in susceptibility mapping over unsupervised methods. The study is not only of scientific 

interest but also holds practical value for local managers and stakeholders. The manuscript is generally 

well-structured and, for the most part, easy to follow. However, the methodological section requires 

clearer explanations and the inclusion of some missing details, which will be addressed in the specific 

comments. Overall, I believe that this manuscript has the potential for publication once these 

comments and corrections have been addressed. 

Thank you very much for your positive feedback on the manuscript. We appreciate the important 

suggestions that will improve the readability and comprehension of the article. In the revised version, 

we have carefully considered all the comments and suggestions. In the following pages, we present 

comprehensive responses to each point. 

We hope that our replies could be successfully aligned with the request of the reviewer and with the 

standard of the journal.  

Specific comments 

In the introduction, the authors talk several times about deterministic, statistical and probabilistic 

approaches. I suggest to add a few lines explaining the basic differences between these three 

methodologies in order to ensure that the reader understands correctly what they are trying to explain 

when they use such a term. 

We have added information on the different approaches 

Deterministic methods identify rockfall source or detachment locations using models based on 

mechanical principles, while statistical methods are based on the analyses of historical catalogues of 

past rockfall events. For the probabilistic identification of source areas, supervised multivariate 

classification or machine learning models are employed to predict rockfall detachment locations (i.e., 

dependent or grouping variable) based on a set of explanatory variables (i.e., independent variables). 

In section 2.1 the authors offer a good overview of the geographical and geological settings of the 

study area. However, there is no reference to Figure 1, where the reader can actually locate the many 

locations mentioned in the paragraph. 

We have added a reference in Section 2.1 of Figure 1. 

In section 2.2 the authors list some sources of information used to define rockfall source areas, among 

which there is something cited as “some geomorphological information”. I find this phrase too 

ambiguous and it should be more specific. What exactly did they use? 

Many thanks we have added this text: 



We have modified the text in the first paragraph of the section 2.2 to explain which information we 

have used, namely landform features derived from DEM analysis with Geomorphons approach (Rossi 

et al., 2020). 

In section 2.2 there is the weak point of the paper. If I have well understood, some crucial steps of the 

analysis are dependent on the available rockfall inventory. For instance, the ECDF model is built on 

data obtained within the mapped source areas; so is for the training and validation of the probabilistic 

model (logistic regression); and the supervised classification approach is fed by the rockfall deposition 

zones previously mapped. Notwithstanding, the only information provided about such an inventory is 

that they are “areas affected by rockfalls where we have identified detached boulders by field 

investigation”. It is not clear if source areas and deposition areas are independent polygons or not. 

There is no extra information about the number of the mapped rockfalls and the period in which the 

field survey was carried out. Furthermore, later in section 3.4 the authors mention two different 

inventories, but there is no information about what the origin of these data is. In my opinion this is 

one thing to be improved in the revised version. 

We have modified as follow, section 2.2 and Figure 1 to explain better the information available for 

the area that was used to identify the source areas, train and validate the runout and susceptibility 

modelling. 

In this paper, we have used different thematic data to identify source areas and to perform rockfall 

modelling and susceptibility zonation. The different methods proposed to identify source areas require 

diverse type of information: (i) unsupervised STRSA and CDFRSA require only slope data; (ii) supervised 

STRSA and CDFRSA require slope data and the location of source areas (i.e., normally mapped in the 

field; see Rossi et al., 2020 for details); (iii) PROBRSA needs also additional geo-environmental 

information (see Rossi et al., 2020 for details). For the island the following data are available: (1) Digital 

Elevation Model (DEM) at 5 m x 5m resolution (LiDAR-PNOA Centro de Descargas del CNIG (IGN)) that 

was used to compute the morphometric parameters (e.g., elevation, slope, curvature, landform 

classification, etc.); and (2) lithological information derived from the geological map provided by IGME-

CSIC at a scale of 1:25000. The map was reclassified into 5 geotechnical classes (Sarro et al., 2020; 

Rossi et al., 2020), ranging from class 1, which includes soft soils (such as lapilli and sand), to class 5, 

which includes very hard rocks (dikes, volcanic breccias, and massive basalts). 

In addition, for the runout modelling the following additional data were exploited: (i) a sample of 

mapped rockfall deposits in polygon format for the supervised CDF analyses of rockfall trajectories 

(Figure 5); (ii) a sample of areas affected or with no evidence of rockfall for ROC-based model 

performance evaluation (Figure 9); and (iii) a sample of the rockfall boulders location (i.e., silent 

witnesses) for violin and boxplots susceptibility analysis (Figure 10).  

Figure 1 illustrates the distribution of rockfall information used in the runout simulations classification 

and validation: (1) red polygons show areas affected by rockfalls, where we have identified detached 

boulders through field investigations conducted from 2012 to 2018 (46 records), aerial images (84 

records), and the MOVES database (BDMoves) (78 records), including point features converted into 

polygons by applying a 50-meter buffer to account for uncertainty in data location; (2) green polygons 

show areas with no evidence of rockfall activity, mapped in the field by experts with the support of 

geomorphological and topographical maps; (3) blue polygons show the subset of rockfall deposits (i.e., 

talus) used in CDF analysis; and (4) black dots show the subset of boulders location used in violin and 

boxplot analyses. 

 



In section 3 the authors make reference to Figure 2 a couple of times. I’ll leave the decision to the 

authors, but from my point of view it is strange to mention the main results in the methodology 

section. 

We have deleted Figure 2 in some places to clarify the section. 

In section 3.1.1 the authors argue some slope angle cut values used in the literature as a threshold, 

but they do not specify which is the one applied in their study. This is only clarified in section 4.1 (i.e. 

slope threshold = 40º). This should be clearly specified in the methodology. 

The following text has been added: 

Considering that the geological context of El Hierro where rockfall occurrences are observed, is similar 

to Gran Canaria we have defined the threshold above 40°.  

In section 3.1.3 there are some confusing explanations. It is not clear if the probabilistic model has 

been done merging the three outputs of the logistic regression, discriminant analysis and quadratic 

analysis; or instead, the authors just selected the better performing among them. Another important 

information is missing: the training and validation sample proportions. For the sake of the 

comprehensiveness of the paper I suggest to improve this section and to provide more details. 

The following text has been modified/added in section 3.1.3: 

The final source area zonation was prepared applying a combination of different statistical modelling 

methods, namely a linear discriminant analysis, a quadratic discriminant analysis, and a logistic 

regression model. See Rossi et al. (2022) for the details on training/validation/combination procedure. 

In section 3.2 the authors mention the need of three coefficient maps in order to run STONE, and that 

the values of such “coefficients were estimated considering different lithological/geotechnical 

categories reported in the geotechnical map of El Hierro and selecting values reported for similar 

lithologies in the literature (Alvioli et al., 2021; Guzzetti et al., 2003; Mateos et al., 2016; Sarro et al., 

2020)”. Further than that, I find compulsory to specify the coefficient values applied in the study, in 

order to facilitate the reproducibility of the experiment. 

The following table has been added: 

USDA Classification 
Tangential  
restitution 

Normal  
restitution 

Rolling  
friction 

Extremely hard rock 89 64 0.35 

Very hard rock 88 63 0.48 

Hard rock 87 57 0.50 

Moderately rock 78 46 0.55 

Moderately soft rock 75 45 0.59 

Soft rock 54 41 0.67 

Soils 50 38 0.70 

Figure 2. Values of the coefficients used in rockfall modelling considering geotechnical classification. 

In section 3.4 the authors introduce two validation tests that are not so common in landslide 

susceptibility evaluation tests: (i) 2D hexagonal bin count heat maps and (ii) distribution of average 

susceptibility values within circular buffers (i.e., violin plots). I appreciate the effort made by the 

authors to include innovative validation proves. However, I believe that some extra explanations in 

the methodology section about how one should interpret this kind of plots, together with additional 

references, would improve substantially the quality of the manuscript. 



We have used 2D hexagonal bin for maps comparison. We clarify this in the manuscript adding the 

following text in section 3.3: 

Hexagonal binning for map comparison is a technique used in data visualization, particularly when 

dealing with large datasets in two-dimensional scatter plots. It groups data points into hexagonal 

"bins" (rather than traditional square bins) to provide a more structured view of the data's distribution. 

The hexagonal shape is often preferred because it avoids the visual artifacts that can result from 

aligning data into rectangular grids and provides a more compact and efficient way of packing data 

points (Wickham, 2016). As suggested by the reviewer, the violin plots are uses as an additional model 

evaluation. To clarify, we added the following text: 

In section 3.4: 

Different buffer sizes allow to consider uncertainty due to local conditions and boulders locations. In 

the proposed approach the location of mapped boulders is used to evaluate the rockfall susceptibility 

zonation. Commonly this information is mainly used to evaluate runout models verifying if simulations 

reach entirely or partially the boulder locations. Violin The violin plots show distribution of the 

susceptibility data and specifically their probability density and together with box plots help visualizing 

summary data statistics, such as median values and interquartile ranges. 

In section 4.2 at the end 4th paragraph: 

These plots are divided into hexagonal bins, and each bin is colored based on the count of susceptibility 

maps value. Dark reddish shades indicate a higher frequency of measurements within the 

corresponding hexagon, while lighter areas may indicate sparse values. 

In section 4.1 I was expecting the validation results of the probabilistic approach applied to generate 

the PROBRSA map, since in section 3.1.3 the authors state that “Specifically, contingency matrices and 

plots along with model sensitivity, specificity, Cohen's kappa indices and ROC curves with the 

corresponding area under curve (AUCROC) values, were used to compare the observed and modelled 

source areas and to explore quantitatively the performances of different model configurations 

allowing the selection of the best model and the corresponding probabilistic source area map”. In my 

opinion these are very relevant results that need to be shown up. 

In the article "Probabilistic Identification of Rockfall Source Areas at Regional Scale in El Hierro (Canary 

Islands, Spain)" by Rossi et al. (2020), all the methodologies and results to generate probabilistic RSA 

are explained in detail, including contingency matrices and plots along with model sensitivity, 

specificity, Cohen's kappa indices, and ROC curves with the corresponding area under the curve 

(AUCROC) values. We have chosen to not repeat such information in this article that illustrates several 

methodologies to derive rockfall susceptibility zonation. We have indicated more clearly in 3.4 the 

reference where is possible to search such information. We additionally provided a summary in 

section 3.1.3 and a reference the previous one for further information on the probabilistic source area 

map. 

I strongly suggest improving the writing of Section 4.2. The argumentation was difficult to follow. Since 

this section discusses the core results, it is important to present it as clearly as possible. Therefore, I 

recommend dedicating additional effort to ensure clarity in this crucial part of the manuscript. 

Many thanks for your suggestion. Section 4.2 have been improved to facilitate understanding: 

The output of runout simulation obtained by STONE (Figure 2 d, e, f), using as input the different source 

areas maps (i.e., STRSA, CDFRSA and PROBRSA), shows diverse spatial distributions of rockfall 



trajectory counts providing a potential different information on the susceptibility posed by rockfall in 

the study area. To facilitate the comparison of rockfall simulations, we proposed classifying the 

trajectory count maps using two approaches: unsupervised and supervised ECDF analysis (Figure 4 and 

Figure 5) , to obtain a comparable probabilistic susceptibility map. The application of the ECDFs (i.e., 

derived for different runout models taking in input different source area maps) to the relative 

trajectories’ count maps, allows to derive the six probabilistic susceptibility maps shown in Figure 4. 

This figure shows larger differences between the 3 maps for the different source area using the 

unsupervised ECDFs (Figure 4 a, b, c); such differences are reduced/minor when considering the 

supervised alternatives (Figure 4 d, e, f).  

For comparison of the six results, different plot representations have been used to facilitate the 

understanding of this behavior. 

Figure 5 shows the unsupervised and supervised ECDF functions derived from the outputs obtained 

using different source area identification methods. The unsupervised distributions show larger ranges 

and higher number of cells with low trajectories counts (i.e., values close to 0). Additionally, the 

comparison of the unsupervised ECDFs (Figure 5 a, b, c) reveals a larger number of cells with high count 

values for STRSA, followed by CDFRSA and PROBRSA. With this behaviour reversed when considering 

supervised ECDFs (Figure 5 d, e, f). 

Figure 6 and Figure 7 show the pairwise difference of susceptibility maps obtained using different 

source area maps and diversified classification method. Specifically, the figure portraits the following 

six pairs of results: (a) STRSA-unsup-CDFRSA-unsup, (b) STRSA-unsup-PROBRSA-unsup, (c) CDFRSA-

unsup-PROBRSA-unsup, (d) STRSA-sup-CDFRSA-sup, (e) STRSA-sup-PROBRSA-sup, and (f) CDFRSA-sup-

PROBRSA-sup. The lighter colours (i.e., lower absolute difference values) between supervised maps 

pairs and the frequency counts of the corresponding histograms, highlight lower differences between 

the susceptibility outputs obtained applying supervised ECDFs. 

The 2D hexagonal bin count heat maps (Figure 8), derived for the different pairs of susceptibility maps, 

confirm these results showing a better alignment along the bisector of the higher frequency counts 

(i.e., dark reddish hexagons) obtained for supervised susceptibility maps (Figure 4 d, e, f). These plots 

are divided into hexagonal bins, and each bin is colored based on the count of susceptibility maps value. 

Dark reddish shades indicate a higher frequency of measurements within the corresponding hexagon, 

while lighter areas may indicate sparse values. 

Furthermore, an analysis has been conducted not only on the variations in the number of trajectories 

per cell but also on the lithological types through which these trajectories pass. The comparison of the 

trajectory maps with the simplified geotechnical classes map (Figure 1 in (Rossi et al., 2020)) reveals 

that the rockfall trajectories mainly involve lithology types classified as very hard rocks and hard rocks, 

whereas trajectories through soft rocks are quite limited. 

Section 5 correctly synthesizes the presented results and draws conclusions that are well supported 

by the evidence. However, to enhance this section, I would appreciate a more in-depth discussion on 

the implications of the findings. For instance, does this mean that every rockfall susceptibility analysis 

should utilize the PROBRSA approach for identifying source areas, in combination with STONE and the 

ECDF classification method? Additionally, while STONE, like many other rockfall simulation software 

mentioned by the authors, is effective, it does not account for certain relevant factors in fall 

trajectories, such as the initial size of the detached boulder or other complex mechanical aspects. A 

brief discussion of the limitations and advantages of this tool would be valuable for readers to 

consider. 



The authors welcome your suggestion for a more comprehensive discussion on the implications of the 

findings. We have added the following text: 

In the analysis of rockfall susceptibility at a regional scale, access to comprehensive data is frequently 

limited. This constraint impacts the methodologies employed to definition source areas, which are 

subsequently integrated as input into modelling software. When only a digital elevation model (DEM) 

and bibliographic resources are available, deterministic methods are typically the predominant 

approach. However, in scenarios where additional data, such as geological or geomorphological 

information, are available, investing time in the cartographic of source areas enables the application 

of probabilistic methods that yield more robust results. 

Furthermore, upon obtaining modelling results—primarily trajectory counts—most studies tend to 

consider these outputs as definitive. Nevertheless, regardless of the inputs use to obtain these results, 

implementing a supervised analysis based on inventory data and runout delineation can significantly 

enhance the precision of the outcomes. 

Despite the availability of various software and methods for rockfall runout simulation in the literature, 

we have selected STONE due to its previous validation and application in the study area. Nonetheless, 

we recognize that the susceptibility zonation methodology proposed in this study remains relevant 

even when employing other rockfall modelling software. The tools introduced herein are transferable 

to other software, as the main difference between the approach to define the source areas, while other 

input parameters are kept constant. The classification of trajectory counts maps using two 

methodologies—unsupervised and supervised ECDF analysis—is applicable to the results generated by 

any software, thereby facilitating the development of probabilistic susceptibility zonation. 

Technical corrections (a compact listing of purely technical corrections) 

Page 1 – Line 17: “A morphometric firstly approach establishes a slope angle …” Please verify if the 

sentence is grammatically correct. 

We have corrected the sentence. 

Page 2 – Line 48: “Rockfalls simulation models …” Shouldn’t be Rockfall (singular)? Pease verify. 

Done 

Page 2 – Line 49: “sources areas…” Shouldn’t be source areas? Pease verify. 

Done 

Page 2 – Line 59: “dataset …” datasets (plural)? 

Done 

Page 4 – Line 94: “The Canary Islands is a volcanic archipelago …” is or are? Pease verify. 

Done 

Page 4 – Line 119: you use both modeling and modelling. Please chose one forms and be consistent. 

Done 

Page 5 – Line 130: “(BDMoves) …” Is it a citation? In such case, the reference is missing in the list. If 

not, please provide some more info about that because it is not a convention. 

Many thanks, yes is a citation. We have added BDMoves: http://info.igme.es/BD2DMoves/) in the list. 

http://info.igme.es/BD2DMoves/


Page 6 – Line 158: “For the first statistical identification …” I don’t understand why it is THE FIRST 

We have corrected the sentence. “For the second identification of rockfall source areas, we utilized 

the Empirical Cumulative Distribution Functions (ECDF) of slope angle values (hereafter referred as 

CDFRSA).” 

Page 6 – Line 164: “…denotes the CDF of a random…” Do you mean ECDF? 

Yes, we appreciate the reviewer’s insight. We have corrected the error. 

Page 6 – Line 173 & 176: CDFRSA or ECDFRSA? 

In this case, we refer to CDFRSA, which is the term we will use to indicate the source areas obtained 

with the ECDF. 

Page 6 – Line 182: “The model uses in input morphometric …” Remove in. 

Done 

Page 7 – Line 203: “…employing in input…” as input? Please verify 

Done 

Page 7 – Line 203: “…the three source areas maps…” source area maps? 

Done.  

Page 8 – Line 230: “The resulting map is probabilistic with values ranging from 0 to 1 and shows a 

probabilistic estimation…” too much probabilistic. 

We have changed the sentence: “The resulting map displays values ranging from 0 to 1 and shows a 

probabilistic estimation of the likelihood of a given pixel being affected by a rockfall.” 

Page 8 – Line 230: “…three source areas maps…” source area maps. 

Done 

Page 8 – Line 230: “…ECDFs graphs…” ECDF graphs. 

Done 

Page 9 – Line 277: The first two sentences are redundant with the previous paragraph. Better to 

remove. 

We agree with the reviewer, and we have deleted the first two sentences. 

Page 10 – Line 283: “Furthermore, Table 2 shows…” Its Table 1 I guess. 

It is correct 

Page 10 – Line 286: “proposed by (Rossi et al., 2020)) and classifies…” Correct citation 

Corrected. “…classes proposed by Rossi et al., (2020)...” 

Page 10 – Line 290: “The output of run-out simulation…” runout. 

Done 



Page 10 – Line 295: “(Figure 1 in (Rossi et al., 2020)) reveals” (Figure 1 in Rossi et al. (2020)) revealed 

that the rockfall trajectories 

Done 

Page 10 – Line 301: the "hard soil" class … quotation marks show different format. Revise in the 

complete manuscript. 

Done, we have deleted all the quotations.  

Page 11 – Line 327 & 328: “…the model with the best performance is obtained by using the PROBRSA 

source areas (AUCROC=0.88), followed by the CDFRSA (AUCROC=0.84)…” You should add the AUROC 

value of STRSA to this paragraph. 

We have added this information.  

The graphs show that the model with the best performance is obtained by using the PROBRSA source 

areas (AUCROC=0.88), followed by the CDFRSA (AUCROC=0.84), with STRSA performing the worst 

(AUCROC=0.78). 

Page 11 – Line 341: “…source areas of increasingly complexity…” of increasing complexity? 

Done. 
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