1 Supplementary Materials

(A)

- 2 <u>SM-1</u>: (A) Description of the AIG17III (Lake Aiguebelette deep basin) sequence and its 8 units (from Banjan et al. 2023);
- 3 (B) Detailed log of the AIG17III sequence (also available in Banjan et al. 2023, Supplementary Materials).
- 4
- 5

Unit	Depth MCD (master core	Description	Specific characteristics
	depth (cm))		
1	0 - 21	Brown to greenish clays with	Topped by three silty layers (of 2
		alternations of type 1), 2) and 3)	to 3 mm each); laminae are less
		laminae	diffuse from 104.5 to 165 cm
			MCD
2	21.1 - 165.5	Gray to brownish clay with faint	
		lamination	
3	165.5 - 374.2	Gray to brownish sediments with	Topped by a 5 cm-thick visually
		alternation of type 1), 2) and 3)	homogeneous brown clayey to
		laminae	silty event layer (the thickest one
			observed in this unit)
4	374.2 - 513.9	Olive brown clays	Alternating thin clayey to silty
			dark sections and clear gray to
			yellow laminae
5	513.9 - 728.7	Thin clayey to silty layers of brown	
		to greenish-gray with	
		submillimeter-scale darker laminae	
6	728.7 - 1150.3	Brown to greenish-gray clayey-	Part of this unit is composed of an
		silty sediment with millimeter-	event layer. This event layer is
		scale laminae	constituted by a 31.4 cm thick
			sandy graded base topped by an
			83.6 cm thick homogenous deposit
			(Fig. 6). These two facies

			constitute the thickest (115 cm)
			event layer of the sediment
			sequence
7	1150.3 - 1410.7	Gray—brownish clay and silt with	Millimetric- to centimetric-graded
		fine millimeter-scale dark and clear	sandy event layers are observed in
		gray laminae with no specific	this unit
		repetitive pattern	
8	1410.7 - 1597.6	Clayey to silty gray and olive green	The lower 70 cm are characterized
		sediments with thicker (several mm	by faint lamination
		thick) laminae	

7 (B)

9 <u>SM-2</u>: Correlations between cores from Lake Aiguebelette deep basin.

13 14

15 <u>SM-4</u>: Standard deviation (STD) and maximal angular variation (MAV) of the declination and inclination of the 16 Characteristic Remanent Magnetization for different studied lakes compared to the Arch 3k model. Lake Aiguebelette is 17 indicated in bold. The data from several lakes from Crouzet et al. (2019a) and Lund and Platzman (2016) are indicated 18 for comparison. The number (Nb) of values used for calculation is indicated.

	Declination		Inclination			Nb
	STD	MAV	Average	STD	MAV	
THU	24.8	101.3	56.8	8.1	48.3	218
ALO	5.2	21.8	49.6	7.1	34.8	64
BLB	15.0	61.8	56.6	7.2	30.6	49
EYC	19.6	76.5	62.5	9.8	37.4	46
DOS	18.8	68.8	72.5	6.5	25.0	33
ZACA	-	65.0	50.0	-	20	-
AIG (0-300)	8.8	58.1	46.1	11.7	49.7	178
Arch 3k	10.7	39.7	61.9	4.2	14.5	160

<u>SM-5</u>: Presentation of the event layers (Hm or Tu+Hm type) interpreted as seismically-induced and correlations between cores at the scale of the deep basin (AIG16-05; AIG17III). Possible correlations to historical earthquakes identified in other regional lakes are suggested in this table. The depositional date of the event layer is given based on (based on the age-depth model (Fig. 8) and core-to-core correlations). The thickness of each event layer is indicated in red and the depth in orange (cm MCD). Based on this study, a confidence index is provided: (+) indicates it is highly possible that the historical earthquake triggered the archived event layer, whereas (-) indicates that a correlation is possible in terms of occurrence but has been disregarded.

26

AIG16-05	AIG17III	Depositional date	Possible triggering	Earthquake archived in the
		(y cal CE)	confidence index	sediments of Lake
0.2 82.2-82.5		1760-1824	*1822 CE Bugey, (-) **1784 CE Chartreuse, (+)	*Bourget: Chapron et al. (1999)
				**Paladru (?): Chapron et al. (2016)
0.7 89.3-90		1528-1586		
0.5 127.5-128		1581-1647		
4 140.5-144.5	4.8 166.6-171.4	1327-1372	1356 CE Basel, (-)	Zurich: Strasser et al. (2013)
				Baldedegger See: Monecke et al. (2004)
				Vierwaldstatter See: Schnellmann et al. (2002)
0.6 163.2-163.8	0.6 195.9-196.5	1186-1256		
0.6 205.8-208.6		1039-1127		
2.8 205.8-208.6	1.7 250.9-252.6	712-801		
1 217.2-218.2	0.4 263.6-264	630 - 729		

27

29 SM-6: Records of historical earthquakes in lakes Aiguebelette (AIG), Le Bourget (LDB) and Paladru (LP). Data for LDB

30 and LP are from Chapron et al. (2016). The presence of event layers in the lake at a compatible date with the earthquake

31 occurrence is indicated by a cross. Lake Aiguebelette event layer has a depositional time window compatible with two

32 seismic events. The 1784 CE event is the favoured triggering seismic event (discussed in section 5.2.2).

AIG	LDB	LP	Historical earthquake
		х	1881 CE
		х	1869 CE
x	x		1822 CE
			1784 CE
		x	1754 CE

33

34 Given the depositional time uncertainties, relative comparisons (see table above) of historical earthquakes archived in 35 regional lakes Aiguebelette, Le Bourget and Paladru suggest the possibility of synchronous to quasi-synchronous event 36 layers:

 $\frac{1754 \text{ CE}}{1754 \text{ CE}}$ According to Chapron et al. (2016), the event layer labelled MWD3 in lake Paladru is described as possibly contemporary to the 1754 CE Voreppe event. The age of this event layer is estimated at 1660 ± 100 CE based on seismic stratigraphy and the age-depth model available in Simonneau et al. (2013). Given the broad range of this estimate, the possibility that both Lake Aiguebelette and Lake Paladru may have archived the 1784 CE Chartreuse earthquake is not

41 excluded. This indicates that the 1784 CE event, not discussed in other regional studies until now, may have had an

42 influence on event layer deposition at a regional scale.

43 <u>1822 CE</u>: In Chapron (1999), the depositional time of a homogenite identified in Lake Bourget was constrained by an 44 extrapolation of the sedimentation rate with a 10-yr resolution, based on the upper sediment ²¹⁰Pb data. This gives an age 45 of 1831 CE at the top of this homogenite. This event layer was correlated to the seismic event of 1822 CE. Since then, no

46 new data constrained its depositional date. This "1822 CE" homogenite is considered as a chronological marker in Lake

47 Bourget.

48 In Lake Aiguebelette, the 1784 CE seismic event was favoured over the 1822 CE earthquake as the triggering mechanism

49 for the homogenite that deposited in the 1760-1824 CE range (see section 5.2.2.). Even if the depositional time window

50 of this event layer in Lake Aiguebelette is compatible with the 1822 CE seismic event and homogenite in Lake Bourget,

51 it is unlikely that the two event layers in each lake deposited at the same time.

53 LP).

54

- 55 <u>SM-7</u>: Age and thickness of the Hm and Tu+Hm event layers (≥ 0.5 cm) archived in the studied cores of Lake Aiguebette
- 56 deep basin. The "best age" in CE is estimated based on the multi-proxy age-depth model (Fig. 8). This data table was
- 57 used to generate the histograms (Fig. 12 and Fig. 13).
- 58

Age	
(CE)	Thickness (cm)
1760	0.8
1581	0.7
1327	0.5
1288	4.8
1186	4
1143	0.6
1031	1.2
775	1.7
380	0.8
316	0.5
277	0.6
-2164	2.5
-2261	0.5
-2936	4.3
-3449	0.7
-3469	0.5

Age	
(CE)	Thickness (cm)
-4221	1
-4600	0.5
-4982	0.6
-5053	0.7
-5914	0.8
-5967	1.2
-6242	0.5
-6780	0.5
-6783	6.3
-7570	1.2
-8427	2.2
-9044	2.4
-9340	1.8
-9508	1.8
-9785	83.6
-9884	1.1

⁵² More recent historical earthquakes have not been archived at a regional scale (one or more lakes, including AIG, LDB or

61	References (Supplementary Materials):
62	Chapron, E., Beck, C., Pourchet, M., and Deconinck, J. F.: 1822 earthquake-triggered homogenite in Lake Le Bourget
63	(NW Alps), Terra Nova, 11, 86-92, 1999.
64	
65	Chapron, E., Simonneau, A., Ledoux, G., Arnaud, F., Lajeunesse, P., and Albéric, P.: French Alpine Foreland Holocene
66	paleoseismicity revealed by coeval mass wasting deposits in glacial lakes, In Submarine Mass Movements and their
67	Consequences: 7th International Symposium, Springer International Publishing, 341-349, 2016.
68	
69	Crouzet, C., Wilhelm, B., Sabatier, P., Demory, F., Thouveny, N., Pignol, C., Arnaud, F.: Palaeomagnetism for
70	chronologies of recent Alpine lake sediments: successes and limits, Journal of Paleolimnology, 62, 259-278, 2019a.
71	
72	Lund, S. P., and Platzman, E.: Paleomagnetic chronostratigraphy of late Holocene Zaca Lake, California, The Holocene,
73	26, 814-821, 2016.
74	
75	Monecke, K., Anselmetti, F. S., Becker, A., Sturm, M., and Giardini, D.: The record of historic earthquakes in lake
76	sediments of Central Switzerland, Tectonophysics, 394, 21-40, 2004.
77	
78	Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., and Ward, S. N.: Prehistoric earthquake history
79	revealed by lacustrine slump deposits, Geology, 30, 1131-1134, 2002.
80	
81	Simonneau, A., Doyen, E., Chapron, E., Millet, L., Vannière, B., Di Giovanni, C., Arnaud, F.: Holocene land-use
82	evolution and associated soil erosion in the French Prealps inferred from Lake Paladru sediments and archaeological
83	evidences, Journal of Archaeological Science, 40, 1636-1645, 2013.
84	
85	Strasser, M., Monecke, K., Schnellmann, M., Anselmetti, F. S.: Lake sediments as natural seismographs: A compiled
80	record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation, Sedimentology,
ð/ 00	00, 319-341, 2013.
88	