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In	the	wake	of	a	volcanic	eruption,	the	rapid	assessment	of	building	damage	is	paramount	for	15 

effective	 response	 and	 recovery	 planning.	 Uninhabited	 aerial	 vehicles,	 UAVs,	 offer	 a	 unique	16 

opportunity	 for	 assessing	 damage	 after	 a	 volcanic	 eruption,	 with	 the	 ability	 to	 collect	 on	17 

demand	imagery	safely	and	rapidly	from	multiple	perspectives	at	high	resolutions.	In	this	work,	18 

we	established	a	UAV-appropriate	tephra	fall	building	damage	state	framework	and	used	it	to	19 

label	~50,000	building	bounding	boxes	around	~2,000	 individual	buildings	 in	2,811	optical	20 

images	collected	during	surveys	conducted	after	the	2021	eruption	of	La	Soufrière	volcano,	St	21 

Vincent	and	the	Grenadines.	We	used	this	labelled	data	to	train	convolutional	neural	networks	22 

(CNNs)	for:	1)	Building	localisation	(average	precision	=	0.728);	2)	Damage	classiVication	into	23 

two	levels	of	granularity:	No	damage	vs	Damage	(F1	score	=	0.809);	and	Moderate	damage	vs	24 

Major	damage,	(F1	score	=	0.838)	(1	is	the	maximum	obtainable	for	both	metrics).	The	trained	25 

models	were	incorporated	into	a	pipeline	along	with	all	the	necessary	image	processing	steps	26 

to	generate	spatial	data	(a	georeferenced	vector	with	damage	state	attributes)	for	rapid	tephra	27 

fall	building	damage	mapping.	Using	our	pipeline,	we	assessed	tephra	fall	building	damage	for	28 

the	town	of	Owia	Vinding	that	22%	of	buildings	that	received	50-90	mm	of	tephra	accumulation	29 

experienced	at	least	Moderate	damage.	The	pipeline	is	expected	to	perform	well	across	other	30 

volcanic	islands	in	the	Caribbean	where	building	types	are	similar,	though	would	beneVit	from	31 

additional	testing.	Through	cross	validation,	we	found	that	the	UAV	look	angle	had	a	minor	effect	32 

on	the	performance	of	damage	classiVication	models,	while	for	the	building	localisation	model,	33 

the	performance	was	affected	by	both	the	look	angle	and	the	size	of	the	buildings	in	images.	34 

These	observations	were	used	to	develop	a	set	of	recommendations	for	data	collection	during	35 

future	UAV	tephra	fall	building	damage	surveys.	This	is	the	Virst	attempt	to	automate	tephra	fall	36 

building	 damage	 assessment	 solely	 using	 post-event	 data.	 We	 expect	 that	 incorporating	37 

additional	 training	data	 from	future	eruptions	will	 further	reVine	our	model	and	 improve	 its	38 
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applicability	 worldwide.	 To	 facilitate	 continued	 development	 and	 collaboration	 all	 trained	45 

models	and	pipeline	code	can	be	downloaded	from	GitHub. 46 

1 Introduction	47 

Tephra	fall	produced	by	explosive	volcanic	eruptions	can	have	detrimental	effects	on	buildings,	48 

which	in	turn	affects	the	ability	for	a	community	to	recover	and	rehabilitate.	These	effects	range	49 

from	 surface-level	 issues	 such	 as	 corrosion	 of	metal	 roofs	 (e.g.,	 Rabaul,	 Papua	New	Guinea,	50 

Blong,	2003a)	or	damage	to	non-structural	components	(e.g.,	gutters:	Ambae,	Vanuatu,	Jenkins	51 

et	 al.,	 2024)	 through	 to	 complete	building	 collapse	 (e.g.,	 Pinatubo,	Philippines,	 Spence	et	 al,	52 

1996).		53 

	54 

After,	or	during,	an	eruption,	the	collection	of	empirical	data	detailing	the	damage	incurred	is	55 

critical	 to	 guiding	 the	 planning	 and	 implementation	 of	 response	 and	 recovery	 efforts.	 This	56 

involves	 estimation	 of	 damages	 and	 losses,	 which	 are	 needed	 to	 determine	 the	 necessary	57 

funding	for	repair	or	reconstruction;	along	with	an	assessment	of	building	functionality,	which	58 

can	inform	temporary	housing	requirements.	In	addition	to	its	use	in	post	disaster	recovery,	the	59 

collection	of	damage	data	are	key	to	the	development	of	vulnerability	models	(Deligne	et	al.,	60 

2022),	which	relate	hazard	intensity	to	damage	(e.g.,	Spence	et	al.,	2005;	Wilson	et	al.,	2014;	61 

Williams	et	al.,	2020),	and	can	be	used	to	inform	resilient	construction	practises	and/or	for	pre-62 

event	impact	assessments.	63 

	64 

Post-event	 building	 damage	 assessments	 usually	 consist	 of	 ground	 surveys,	 whereby	 the	65 

amount	of	damage	to	each	building	is	described	using	a	quantitative	or	qualitative	damage	state	66 

(e.g.,	Spence	et	al.,	1996;	Blong	2003a;	Jenkins	et	al.	2013;	Jenkins	et	al.	2015;	Hayes	et	al.	2019;	67 

Meredith	 et	 al.	 2022).	 However,	 tephra	 fall	 damage	 can	 extend	 tens	 or	 even	 hundreds	 of	68 

kilometres	 away	 from	 a	 volcano	 (Spence	 et	 al.,	 2005)	meaning	 that	 comprehensive	 ground	69 

based	 damage	 assessments	 can	 be	 both	 time	 consuming	 and	 costly.	 Furthermore,	 the	70 

uncertainty	that	is	often	associated	with	the	end	of	an	eruption	may	prevent	the	safe	completion	71 

of	a	ground-based	damage	assessment	before	tephra	is	remobilised	by	winds	and	rain.	This	lag	72 

between	 the	 event	 itself	 and	 the	 completion	 of	 a	 damage	 assessment,	 can	 hinder	 recovery	73 

efforts	 and	 compromise	 the	 accuracy	 of	 data	 collected	 for	 the	 development	 of	 forecasting	74 

models.		75 

	76 
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Given	 the	 need	 for,	 but	 also	 the	 challenges	 associated	with,	 conducting	 post-event	 building	86 

damage	assessments	quickly,	approaches	that	use	remotely	sensed	(RS)	data,	either	optical	or	87 

Synthetic	Aperture	Radar	(SAR)	imagery	have	been	developed	in	volcanology	(e.g.,	Jenkins	et	88 

al.	2013;	Williams	et	al.	2020;	Lerner	et	al.	2021;	Biass	et	al.	2021;	Meredith	et	al.	2022),	and	89 

operationally	by	emergency	management	services	(e.g.,	International	Charter	“Space	and	Major	90 

disasters”,	 Copernicus	 Emergency	Management	 Service,	 ARIA:	Advanced	Rapid	 Imaging	 and	91 

Analysis	 system)	 (Yun	 et	 al.,	 2015)).	 The	 use	 of	 optical	 imagery	 largely	 consists	 of	 visual	92 

inspection,	which	may	be	inVluenced	by	image	resolution	and	is	prone	to	subjectivity	(Novikov	93 

et	 al.	 2018).	 Furthermore,	 visual	 inspection	 of	 satellite	 optical	 imagery	 can	 still	 be	 time	94 

consuming	without	 crowd	 sourcing	 (e.g.,	 Ghosh	 et	 al.	 2011)	 and	 is	 constrained	 by	 satellite	95 

recurrence	intervals	and	cloud	cover.	Automated	SAR	based	methods	(e.g.,	Yun	et	al.,	2015)	are	96 

not	limited	by	cloud	cover,	but	they	may	lack	the	resolution	required	for	building	level	damage	97 

assessment	(30	m	for	damage	proxy	maps	generated	from	Sentinel	data	using	the	ARIA	system;	98 

https://aria-share.jpl.nasa.gov/20210409-LaSoufriere_volcano).		99 

	100 

To	our	knowledge,	only	one	study	attempts	 to	automate	 the	assessment	of	building	damage	101 

from	 volcanic	 hazards	 (Wang	 et	 al.,	 2024).	 In	 contrast,	 attention	 has	 been	 given	 to	 more	102 

commonly	occurring	hazards	 such	 as	 earthquakes	 and	hurricanes,	with	 the	development	 of	103 

both	mono-	temporal	(post-event	imagery	only)	and	multi-temporal	(images	taken	at	different	104 

times)	approaches	(Table	1).	Early	approaches	at	automation	with	optical	imagery	used	image	105 

processing	methods,	often	 focusing	on	 identifying	changes	 in	pixel	values	between	pre-	and	106 

post-event	 imagery	(e.g.,	Bruzzone	and	Fernàndez	Prieto	2000;	Ishii	et	al.	2002;	Zhang	et	al.	107 

2003).	Image	processing	methods	are	susceptible	to	user	biases	such	as	the	choice	of	thresholds	108 

that	 equate	 to	 distinct	 levels	 of	 damage	 severity,	 or	 damage	 states,	 and	 may	 require	109 

recalibration	 when	 applied	 to	 a	 new	 dataset.	 As	 a	 result,	 image	 processing	 methods	 were	110 

succeeded	by	the	application	of	traditional	machine	learning	algorithms	that	use	‘handcrafted’	111 

image	features.	These	features	are	observable	properties	that	can	be	extracted	from	the	image	112 

such	 as	 shape,	 colour,	 texture,	 and	 statistical	 properties	 of	 the	 image	 (e.g.,	 Li	 et	 al.	 2015;	113 

Anniballe	 et	 al.	 2018;	 Lucks	 et	 al.	 2019;	Naito	 et	 al.	 2020).	 The	 success	 of	 a	 given	machine	114 

learning	approach	is	dependent	on	the	selection	of	the	best	features	for	the	job;	for	example,	a	115 

texture-based	feature	might	be	good	for	classifying	buildings	as	damaged	or	not	damaged	due	116 

to	 an	 increased	 number	 of	 edges	 in	 damaged	 buildings	 but	 less	 useful	 for	 a	 task	 such	 as	117 

differentiating	between	building	roof	types	where	the	difference	in	textures	between	the	classes	118 
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is	less	signiVicant.	Deep	learning,	in	particular	the	use	of	convolutional	neural	networks	(CNNs),	130 

removes	this	need	for	feature	selection.	A	CNN	is	a	network	of	layers	comprising	Vilters	which	131 

are	small	matrices	of	values.	When	an	image	is	passed	through	the	network,	at	each	layer	the	132 

Vilters	are	convolved	with	the	output	from	the	previous	layer	to	create	a	new	representation	of	133 

the	image	that	is	progressively	more	abstract	with	depth	in	the	network.	This	process	reduces	134 

the	 image's	 original	 spatial	 dimensions	 (X	 and	Y)	while	 increasing	 the	number	 of	 channels,	135 

facilitating	 classiVication.	 During	 network	 training	 the	 Vilter	 values	 (known	 as	 weights)	 are	136 

optimised	 to	 reduce	 the	 loss	 between	 the	 predicted	 label	 for	 the	 image	 and	 the	 true	 label.	137 

Through	this	training	a	CNN	learns	the	features	of	the	images	that	are	useful	for	classiVication.	138 

For	a	detailed	background	on	deep	learning	see	Aggarwal,	(2018).		139 

	140 

Thus	far,	deep	learning	models	have	been	developed	for	optical	image	sets	for	hurricanes	(Li	et	141 

al.	2019a;	Dung	Cao	and	Choe	2020;	Pi	et	al.	2020;	Cheng	et	al.	2021;	Khajwal	et	al.	2023);	142 

earthquakes	 (Nex	 et	 al.	 2019;	Xu	 et	 al.	 2019;	Duarte	 et	 al.	 2020;	Moradi	 and	Shah-Hosseini	143 

2020);	wildVires	(Galanis	et	al.	2021);	volcanic	hazards	(Wang	et	al.,	2024);	and	models	that	144 

have	been	proposed	for	multiple	hazards	(e.g.,	Gupta	and	Shah	2020;	Weber	and	Kané	2020;	145 

Shen	et	al.	2021;	Bouchard	et	al.	2022)	(Table	1).	However,	building	damage	caused	by	different	146 

hazards	looks	very	different	(e.g.,	damage	caused	by	vertical	loading	from	volcanic	tephra	fall	147 

vs	 ground	 shaking	 from	an	 earthquake).	 These	 observable	 differences	mean	 that	 an	 optical	148 

imagery	multi-hazard	damage	classiVication	model	that	performs	consistently	well	across	the	149 

different	hazards	is	not	yet	achievable.	Therefore,	distinct	models	tailored	for	speciVic	hazards	150 

are	required	(Nex	et	al.,	2019,	Bouchard	et	al.,	2022).	It	follows	that	models	may	also	beneVit	151 

from	being	regionalised,	given	the	differences	in	building	typologies	(construction	material	and	152 

styles)	that	can	also	affect	the	observable	damage	(Nex	et	al.,	2019).		153 

	154 

Many	of	the	approaches	for	automating	building	damage	assessment	use	both	pre-	and	post-155 

event	imagery	(Table	1),	which	makes	the	task	more	straightforward	since	any	changes	to	the	156 

pre-event	 imagery	can	be	considered	damage.	However,	pre-event	 imagery	at	a	high-enough	157 

resolution	 is	 not	 always	 available	 in	 post-disaster	 scenarios.	 The	 automated	 assessment	 of	158 

building	damage	from	volcanic	hazards	using	only	post-event	optical	imagery	has	not	yet	been	159 

achieved	in	part	due	to	absence	of	the	large	datasets	that	are	needed	in	order	to	train	models.	160 

The	 2021	 eruption	 of	 La	 Soufrière	 volcano,	 St	 Vincent	 and	 the	 Grenadines,	 provided	161 

unprecedented	 circumstances	 allowing	 for	 the	 collection	 of	 high-resolution	 UAV	 imagery	162 
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enabling	the	development	of	fully	automated	models	that	can	assess	tephra	fall	building	damage	166 

from	post-event	data	only.	 	With	their	growing	ubiquity	and	 low	cost,	UAVs	have	become	an	167 

increasingly	useful	tool	during	and	after	volcanic	eruptions	(e.g.,	Andaru	and	Rau	2019;	Gailler	168 

et	al.	2021;	Román	et	al.	2022).	UAVs	offer	a	distinct	advantage	over	satellite	imagery	because	169 

they	can	be	scheduled	at	any	point,	they	do	not	suffer	from	cloud	obscuring	the	images	as	they	170 

Vly	at	relatively	low	altitude,	and	they	capture	imagery	from	multiple	perspectives,	which	may	171 

lead	 to	 increased	 ability	 to	 capture	 damage	 information.	 In	 this	 study	we	 used	UAV	 optical	172 

imagery	collected	after	the	2021	eruption	of	La	Soufrière	volcano	to	develop	a	methodology	for	173 

tephra	fall	building	damage	assessment;	the	main	contributions	of	our	work	are	three-fold:	174 

	175 

1. We	 have	 devised	 a	 UAV	 appropriate	 building	 damage	 state	 framework,	 laying	 the	176 

foundation	for	future	tephra	fall	UAV	building	damage	surveys.		177 

2. We	have	developed	a	deep	learning	pipeline	that	consists	of	all	trained	models	and	image	178 

processing	steps	to	rapidly	output	spatial	damage	data	that	can	facilitate	prompt,	post-179 

event	 response	 and	 recovery,	 and	 enable	 data	 collection	 prior	 to	 further	 changes	 by	180 

natural	or	human	processes	(tephra	clean-up).		181 

3. Imagery	used	in	this	work	is	diverse	in	terms	of	the	Vlight	altitude,	time	of	acquisition	182 

after	 the	 event,	 and	 UAV	 vantage	 point.	 We	 have	 conducted	 extensive	 testing	 to	183 

understand	 the	 best	 practises	 for	 building	 damage	 surveys	 and	 to	 create	 a	 series	 of	184 

recommendations	 for	 the	 collection	 of	 future	 UAV	 surveys	 for	 building	 damage	185 

assessment.	186 

	187 

	188 

Table	1.	A	non-exhaustive	 list	of	works	using	deep	 learning	on	optical	 imagery	 for	building	189 

damage	assessment.	 Studies	 use	 different	 scores	 to	 evaluate	performance:	 F1	 scores	 are	 in	190 

italics,	mean	average	precision	scores	are	underlined,	accuracy	scores	in	bold.	For	all	scores,	1	191 

represents	a	perfect	model.	A	detailed	explanation	of	the	scores	used	for	evaluation	is	provided	192 

in	Section	2.3.3.	193 

	194 
Study	 Hazard	 Number	of	

damage	
classes	

Pre-
disaster	
imagery		

Data	
type	

Building	
localisation	

Damage	
classi<ication	

Li	et	al.	
(2019a)	

Hurricane	 2	 No	 airborne	 0.448	

Weber	and	
Kane,	(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.835	 0.697	

Deleted: building	damage	maps195 

Formatted Table

Deleted: Pre	and	post?196 

Deleted: P197 

Deleted: P	&	P198 



 

 6 

Dung	Cao	and	
Choe.	(2020)	

Hurricane	 2	 No	 satellite	 -	 0.972	

Pi	et	al.	(2020)	 Hurricane	 2	 No	 UAV,	
airborne	

0.745	(UAV)	
0.807	(airborne)	

	
Cheng	et	al.	
(2021)	

Hurricane	 5	 No	 UAV	 0.656	 0.610	

Galanis	et	al.	
(2021)	

WildVire	 2	 No	 satellite		 	 0.981	

Gupta	and	Shah	
(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.840	 0.740	

Shen	et	al.	
(2021)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.864	 0.782	

Bouchard	et	al.	
(2022)	

Multi	 2	 Yes	 satellite	
(xBD)	

0.846	 0.709	

Khajwal	et	al.	
(2023)	

Hurricane	 5	 No	 ground	
airborne	

-	 0.650	

Singh	and	
Hoskere,	
(2023)	

Multi	 5	 No	 satellite	 	 0.880	

Wang	et	al	
(2024)	

Volcanic	
tephra	

4	 Yes	 satellite	 0.868	 0.783	

 199 

	200 
1.1 The	2020-2021	eruption	of	La	Soufrière	volcano	St	Vincent	201 

La	Soufrière	St	Vincent	is	an	active	stratovolcano	standing	at	1220	meters	above	sea	level	on	202 

the	 island	of	St	Vincent.	On	27th	December	2020	a	thermal	anomaly	was	detected	inside	the	203 

summit	crater	by	the	NASA	Fire	Information	for	Resource	Management	System	(FIRMS).	This	204 

was	conVirmed	by	the	Soufrière	Monitoring	Unit	to	be	caused	by	a	new	dome	growing	within	205 

the	crater.	Dome	growth	continued	for	three	months	until	9	April	2021,	when,	following	two	206 

days	of	heightened	seismic	activity	and	lava	effusion	rate,	the	ongoing	effusive	eruption	of	La	207 

Soufrière	entered	an	explosive	phase	(Joseph	et	al.	2022).	Between	9	–	22	April,	a	total	of	32	208 

distinct	explosions	occurred,	with	the	tallest	plumes	reaching	heights	of	up	to	15	kilometres	209 

above	 the	 vent	 (Joseph	 et	 al.	 2022).	 Throughout	 this	 explosive	 phase,	 tephra	 blanketed	 the	210 

island,	resulting	in	a	total	deposit	thickness	of	up	to	16	centimetres	in	coastal	communities	to	211 

the	north	of	the	island	(Cole	et	al.	2023)	(Figure	1).	212 

	213 

The	explosive	phase	was	anticipated,	and	an	evacuation	order	was	issued	on	8	April	2021	for	214 

the	~16,000	residents	in	the	northern	part	of	the	island	(Joseph	et	al.	2022).	As	a	result,	there	215 

were	 no	 reported	 fatalities	 directly	 attributable	 to	 the	 eruption,	 nevertheless,	 the	 overall	216 

damage	to	 infrastructure	services	and	physical	assets	were	estimated	at	XCD	416.07	million	217 

(equivalent	to	USD	153.29	million)	(PDNA,	2022).	Approximately	63%	of	this	monetary	impact	218 

was	borne	by	the	housing	sector.	In	St.	Vincent,	residential	buildings	are	typically	single-story,	219 
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detached	 structures,	 with	 the	 majority	 in	 the	 more	 impacted	 north	 of	 the	 island	 (census	233 

districts	of	Chateaubelair,	Georgetown,	and	Sandy	Bay:	Figure	1)	constructed	using	concrete	234 

and	blocks	(84%	in	Chateaubelair,	74%	in	Georgetown,	50%	in	Sandy	Bay),	with	sheet	metal	235 

roofs	(90-92%	of	all	buildings	in	these	areas)	(SVG	population	and	housing	census,	2012).	236 

	237 

	238 

Figure	1.	The	island	of	St	Vincent	with	UAV	survey	locations	 included	in	this	work	labelled	and	239 

marked	in	black.	Tephra	isopachs	(Cole	et	al.,	2023)	mark	lines	of	constant	total	tephra	thickness.	240 

Building	 footprints	 are	 marked	 in	 pink,	 data	 source:	 ©	 OpenStreetMap	 contributors	 2024.	241 

Distributed	 under	 the	 Open	 Data	 Commons	 Open	 Database	 License	 (ODbL)	 v1.0.	 Coordinate	242 

reference	system:	WGS	84	(EPSG:4326).	243 

	244 

2 Method		245 

After	the	2021	eruption	of	La	Soufrière	three	UAV	optical	imagery	datasets	were	collected	to	246 

assess	the	extent	of	the	damage.	These	were	collected	by	different	parties	at	separate	times	after	247 
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the	eruption.	All	UAV	survey	locations	are	shown	in	Figure	1,	and	representative	examples	of	251 

images	can	be	found	in	Section	S1	of	the	supplementary	material.	252 

	253 

2.1 Dataset	description	254 

Dataset	1:		April-May	2021	(UWI-TV)	255 

Collected	by	UWI-TV	at	 the	 request	of	The	UWI	Seismic	Research	Centre	 (SRC),	 this	dataset	256 

consists	of	video	 footage	 for	Chateaubelair,	 Fitz	Hughes,	Troumaca,	 and	Sandy	Bay	acquired	257 

with	a	frame	rate	of	30	frames	per	second	(fps)	and	a	resolution	of	1920	x	1080	pixels.	Flight	258 

paths	were	not	programmed,	and	 the	vantage	point	varies	between	at	nadir	 (directly	above	259 

buildings)	 and	 very	 off-nadir	 (showing	 the	 sides	 of	 buildings).	 Images	 do	 not	 contain	 GPS	260 

positioning	or	altitudes	and	were	not	manually	georeferenced.	261 

	262 

Dataset	2:	12th	–	14th	May	2021	(GOV)	263 

Collected	by	the	Government	of	St	Vincent	and	the	Grenadines	Ministry	of	Transport,	Works,	264 

Lands	and	Surveys,	and	Physical	Planning	for	the	purpose	of	assessing	the	eruption	impact.	This	265 

dataset	consists	of	video	footage	for	Chateaubelair,	London,	Richmond	and	Sandy	Bay	acquired	266 

with	a	frame	rate	of	30	fps	and	a	resolution	of	1920	x	1080	pixels.	Buildings	are	imaged	at	a	267 

nadir	to	off	nadir	vantage	point	with	an	altitude	of	~	200	m	(above	the	ground).	Buildings	are	268 

lower	 resolution	 in	 this	 dataset	 when	 compared	 to	 the	 other	 two.	 Images	 contain	 GPS	269 

positioning	and	altitudes.	270 

	271 

Dataset	3:	August	-September	2021	(SRC)	272 

This	 is	 the	most	 extensive	 dataset,	 collected	 by	 SRC	 for	 the	 purpose	 of	 assessing	 eruption	273 

impact.	It	consists	of	photos	and	videos	for	Belmont,	Chateaubelair,	Fancy,	London	(video	only),	274 

Orange	Hill	 (video	only),	Owia,	Point,	Rabacca	 (video	only),	Richmond,	Sandy	Bay,	Tourama,	275 

Videos	were	acquired	with	a	frame	rate	of	30	fps	and	have	a	resolution	of	1920	x	1080	pixels,	276 

while	photos	are	4056	x	3040	pixels.	Flight	paths	were	programmed	to	follow	a	linear	swath	277 

like	trajectory.	Buildings	are	captured	from	nadir	between	55-290	m	above	the	ground.	Images	278 

contain	GPS	positioning	and	altitudes.	279 

	280 

For	 all	 three	 datasets,	 image	 frames	were	 extracted	 from	 the	 videos	 every	 two	 seconds,	 an	281 

interval	 chosen	 to	 reduce	 redundant	 homogeneous	 images,	 this	 resulted	 in	 a	 total	 of	 7,956	282 

image	frames.	Due	to	the	UAV	surveying	approach	(i.e.,	hovering	in	one	place	for	a	while)	many	283 
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near-identical	 images	 were	 generated.	 To	 avoid	 potentially	 biasing	 the	 training	 towards	286 

overrepresented	buildings	we	manually	 Viltered	out	duplicate	 images.	After	 Viltering,	and	the	287 

removal	of	images	with	no	buildings	present,	the	full	combined	dataset	consisted	of	2,811	image	288 

frames.	We	labelled	all	images	by	drawing	bounding	boxes	around	each	building	present	and	289 

storing	the	bounding	box	positions.	In	total	49,173	building	bounding	boxes	were	drawn	around	290 

~2,000	individual	buildings	(with	some	buildings	being	present	in	multiple	images).	Given	the	291 

absence	 of	 individual	 building	 location	 information,	 this	 number	 was	 approximated	 by	292 

overlaying	Open	Street	Map	building	footprints	with	UAV	GPS	tracks	where	available.	Bounding	293 

boxes	were	drawn	by	a	team	of	Vive	including	the	lead	author,	and	all	boxes	were	checked	by	the	294 

lead	author.	Each	box	was	then	assigned	one	of	three	damage	states,	which	are	described	below.	295 

For	consistency	the	damage	states	were	assigned	by	the	lead	author.	All	 labelling,	modelling,	296 

and	analysis	were	conducted	using	MATLAB	2023b.	297 

	298 

2.2 Developing	and	applying	a	building	damage	state	framework	299 

 300 
The	 Virst	 tephra	 fall	 building	 damage	 state	 framework	was	 developed	 after	 the	 eruption	 of	301 

Pinatubo,	 Philippines,	 1991	 (Spence	 et	 al.,	 1996),	 and	was	 adapted	 from	 the	macro	 seismic	302 

intensity	scale	used	to	evaluate	seismic	damage	(Karnik	et	al.,	1984).	In	the	adapted	framework	303 

damage	ranges	from	DS0	–		“no	damage”,	through	to	DS5	–	“complete	roof	collapse	and	severe	304 

damage	to	the	rest	of	the	building”.		Subsequent	tephra	fall	building	damage	state	frameworks	305 

were	modiVied	 from	the	work	of	Spence	et	al.,	 (1996)	with	changes	 in	 the	wording	made	 to	306 

reVlect	the	characteristics	of	the	case	study	(Table	2).	In	the	damage	state	descriptions,	damage	307 

to	three	critical	aspects	of	a	building	is	described:	the	roof	covering,	the	roof	structure,	and	the	308 

vertical	 structure	 (Blong	2003b;	Hayes	et	al.	2019;	 Jenkins	et	al.,	 2024).	 	 In	our	 study,	most	309 

images	depict	buildings	from	an	at	nadir	or	close	to	nadir	perspective	making	roof	damage	more	310 

discernible	 than	 damage	 to	 the	 vertical	 structure.	 Thus,	 we	 generated	 a	 damage	 state	311 

framework	that	is	based	on	the	proportion	of	observable	damage	to	the	roof,	as	in	the	work	of	312 

Williams	 et	 al.	 (2020).	 Our	 Vinal	 framework,	 which	 was	 developed	 over	 several	 iterations,	313 

classiVies	 building	 damage	 into	 three	 classes:	 No	 observable	 damage	 to	 minor	 damage,	314 

Moderate	 damage,	 and	 Major	 damage	 (Table	 3,	 Figure	 2).	 Damage	 states	 are	 deliberately	315 

generic	so	 that	 the	range	of	possible	damage	 to	 the	range	of	different	building	 types	can	be	316 

captured	 (Blong,	 2003a).	 Our	 three	 classes	 are	 comparable	 to	 DS0-1,	 DS2,	 and	 DS3-5,	317 

respectively,	 of	 damage	 scales	 developed	 for	 ground	 surveys	 (Table	 2).	 In	 the	 frameworks	318 
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presented	 in	 Table	 2,	 DS1	 describes	 light/minor	 damage	 or	 superVicial	 damage	 to	 non-359 

structural	components.	In	our	framework	we	included	minor	damage	in	the	No	damage	class	360 

since	the	difference	between	the	two	can	be	subtle	and	not	easily	discernible	through	remote	361 

assessment.	Furthermore,	buildings	with	minor	damage	are	typically	habitable	and	unlikely	to	362 

require	 costly	 repairs;	 therefore,	 from	 a	 response	 and	 recovery	 perspective,	we	 considered	363 

them	better	grouped	with	undamaged	buildings.	Our	Moderate	damage	class	requires	damage	364 

or	collapse	to	up	to	50%	of	the	roof	area,	which	closely	Vits	with	damage	state	2	of	Blong,	(2003),	365 

Hayes	 et	 al.,	 (2019)	 and	 Jenkins	 et	 al.,	 (2024).	 The	 ground-based	 frameworks	 distinguish	366 

damage	states	3	through	5	by	increasing	amounts	of	damage	to	the	building	walls	(Table	2).	367 

However,	the	quantity	and	severity	of	impacted	walls	is	not	easy	to	differentiate	in	the	majority	368 

of	our	UAV	images,	which	show	buildings	from	a	nadir	or	close	to	nadir	perspective.	Therefore,	369 

in	our	framework,	we	grouped	these	states	together	under	’Major	damage’.	370 

	371 

Table	2.	A	comparison	of	tephra	fall	building	damage	state	frameworks	available	to	date.		372 
	 Pinatubo,	Philippines,	

1991	
Spence	et	al.,	(1996)	

Rabaul	caldera,	Papua	
New	Guinea,	1994	
Blong,	(2003)	

Calbuco,	Chile,	2015	
Hayes	et	al.,	(2019)	

Manaro	Vuoi,	Ambae	
island,	Vanuatu,	2017-

2018	
Jenkins	et	al.,	(2024)	

DS0	 No	damage	 	 No	damage	 No	damage	
DS1	 Light	roof	damage:		

- Gutter	damage.	
- Few	tiles	
dislodged.	

Light	damage:		
- Damage	to	gutters	
and/or	water	tanks.	

- Cleanup	required	

Minor	damage	to	non-
structural	elements:	
- Damage	to	gutters.	
- Few	tiles	dislodged.	
- Damage	to	Vittings,	e.g.	
air-conditioning	units	
and	appliances.	

- Damage	to	contents.	
- Dents	in	the	roof	
covering.	
	

Light	damage	or	
damage	to	non-
structural	elements:	
- Damage	to	gutters.	
- Damage	to	contents.	
- Dents	or	minor	
slumping	in	roof	
cover.	

DS2	 Moderate	roof	
damage:		
- Bending	or	
excessive	
deVlection	of	roof	
sheeting	or	purlins.	

- 	No	damage	to	
principal	rooVing	
supports.	

Moderate	damage:		
- Bending	or	

excessive	damage	to	
as	much	as	half	roof	
sheeting	and/or	
purlins.	

- Damage	to	roof	
overhangs	or	
verandas.		

- Slight	roof	
structural	damage	
possible.	

- Interior	requires	
cleaning,	repainting,	

Moderate	damage	but	
vertical	structure	and	
roof	supports	intact:	
- As	above.	
- Bending	or	excessive	
(e.g.,	perforation,	
cracking)	damage	
(with	or	without	
collapse)	to	up	to	half	
of	roof	covering,	e.g.	
tiles,	metal	sheet.	

Moderate	damage	but	
vertical	structure	and	
roof	supports	intact:	
- As	for	DS1,	plus:	
- Bending	or	excessive	
damage	(without	
collapse)	to	up	to	half	
of	the	roof	covering.	

- Little	or	no	damage	to	
roof	support	trusses	
and	rafters.	
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and/or	overhaul	of	
electrical	systems.	

- Solar	heater	needs	
replacing.	
	

- Little	to	no	damage	to	
principal	roof	supports,	
i.e.	rafters	or	trusses.	

- Damage	to	roof	
overhangs	or	verandas.	

- Damage	to	roof	
overhangs	or	
verandas.	

- Interior	requires	
repair.	

DS3	 Severe	roof	damage	
and	some	damage	to	
vertical	structure:		
- Severe	damage	or	
partial	collapse	of	
roof	overhangs	or	
verandahs.	

- Severe	
deformation	of	
main	roof	sheeting.		

- Some	damage	to	
roof	supporting	
structure,	columns,	
trusses.	
	

Heavy	damage:		
- Damage	to	roof	

structure	and	some	
damage	to	walls.		

- At	least	one	wall	
damaged/misaligne
d.	

- Collapse	of	part	of	
ceiling	

Severe	damage	to	the	
roof	and	supports:	
- As	above.	
- Bending	or	excessive	

(e.g.,	perforation,	
cracking)	damage	
(with	or	without	
collapse)	to	over	half	
of	roof	covering.	

- Damage	to	any	single	
principal	roof	
supports	and	some	
damage	to	walls.	

- Severe	damage	or	
partial	collapse	of	
roof	overhangs	or	
verandas.	

Severe	damage	to	the	
roof	and	supports:	
- As	for	DS2,	plus:	
- Bending	or	excessive	
damage	(with	or	
without	collapse)	to	
more	than	half	of	the	
roof	covering.	

- Damage	to	any	single	
principal	roof	
supports	and/or	
some	damage	to	
walls	(less	than	half	
of	walls	affected).	

- Severe	damage	or	
partial	collapse	of	
roof	overhangs	or	
verandas.	

DS4	 Partial	roof	collapse	
and	moderate	
damage	to	rest	of	
building:		
- Collapse	of	
sheeting	but	not	
truss.	

- Partial	collapse	of	
sheeting	and	some	
truss	failure.	

- Failure	of	
supporting	
structure.	

- Moderate	damage	
to	other	parts	of	
building	resulting	
from	roof	collapse.	

	

Severe	damage:		
- Roof	collapse	and	
moderate	to	severe	
damage	to	rest	of	the	
building.		

- Failure	of	roof	trusses	
and	supporting	
structure.		

- At	least	half	of	the	
external	walls	and/or	
internal	walls	
deformed	or	
collapsed.		

- For	two-storey	
buildings,	collapse	of	
external	and	internal	
walls	of	upper	Vloor.	

- Plumbing	and	other	
services	may	be	
damaged.	
	

Partial	or	total	collapse	
of	the	roof	and	
supports:	
- As	above	
- Collapse	of	roof	

covering	and	any	
single	principal	roof	
support(s).	

- At	least	half	of	the	
external	walls	and/or	
internal	walls	
deformed	or	
collapsed.	

Partial	collapse	of	the	
roof	and	supports:	
- As	for	DS3,	plus:	
- Collapse	to	less	than	
half	of	roof	covering	
and	principal	roof	
support(s).	

- At	least	half	of	
external	and/or	
internal	walls	
deformed	or	
collapsed.	

DS5	 Complete	roof	
collapse	and	severe	
damage	to	the	rest	
of	the	building:		
- Collapse	of	roof	
and	supporting	
structure	over	
more	than	50	
percent	of	roof	
area.	

Collapse:		
- Collapse	of	roof	and	
supporting	external	
walls	over	more	than	
50%	of	Vloor	area	of	
building.		

- Internal	walls	
collapsed.	

- Damage	to	Vloor	
and/or	foundation.		

- Structure	is	
irreparable,	not	

Building	collapse:	
- As	above.	
- Collapse	of	roof,	

principal	roof	
supports	and/or	
supporting	external	
walls	over	>50%	of	
Vloor	area	of	building.	

	
	

Building	collapse:	
- As	for	DS4,	plus:	
- Collapse	of	roof,	

principal	roof	
supports	and/or	
supporting	external	
walls	over	more	
than	half	of	Vloor	
area	of	building.	
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- Partition	walls	
destroyed.	

- External	walls	
destabilized.	

	

salvageable,	beyond	
economic	repair.	

	
	
	
	

	
	
	
	

	

	398 

Table	3.		The	damage	state	framework	developed	for	our	UAV	optical	imagery	dataset		399 
 400 

	401 

Damage	state	 Description	of	the	damage	

No	damage	to	

minor	damage	

-	No	visible	damage/or	

- Up	to	10%	of	the	roof	covering	missing;	and/or		

- No	roof	or	structural	collapse;	and/or.		

- Visible	damage	to	non-structural	elements	e.g.,	gutters	or	

decorative	elements	(fascia).	

- Comparable	to	DS0-1	(Table	2).	

Moderate	

damage	

- Up	to	50%	roof	area	damaged	(evidence	of	bending)	or	

collapsed;	may	include	light	damage	to	vertical	structure	

(e.g.	wooden	slats	above	windows	broken).		

- Comparable	to	DS2	(Table	2).	

Major	damage	 - More	than	50%	roof	area	damaged	or	collapsed;	may	

include	damage	to	the	vertical	structure	including	total	

building	collapse.	

- Comparable	to	DS3-5	(Table	2).		
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	406 

Figure	2.	Example	of	the	three	damage	states	used	in	this	work:	No	damage	to	minor	damage,	407 

Moderate	damage	and,	Major	damage.	408 

	409 

2.3 Model	development		410 

 411 
After	labelling,	we	split	the	full	combined	image	dataset	(2,811	frames	from	the	UWI-TV,	GOV	412 

and	SRC	sets)	 into	 train/validation/test	 sets	 (Figure	3).	Given	 that	many	 images	 lacked	GPS	413 

positions,	 we	 grouped	 images	 by	 location	 to	 ensure	 independence	 among	 the	 sets.	 The	414 

partitioning	was	chosen	to	include	diversity	in	both	the	image	sets	(UWI-TV/GOV/SRC)	and	in	415 

the	 location,	 which	 affects	 the	 tephra	 fall	 thickness.	We	 aimed	 for	 a	 standard	 data	 split	 of	416 

80%/10%/10%,	for	train/validation/test,	however	given	the	above	constraints,	this	produced	417 

a	split	of	80/8/12	(considering	the	number	of	bounding	boxes	and	not	the	number	of	images).	418 

These	datasets	were	used	to	develop	our	approach	for	building	damage	assessment.	In	line	with	419 

studies	shown	in	Table	1,	we	chose	to	split	the	damage	assessment	task	into	two	subtasks:	i)	420 

building	localisation	(i.e.,	identiVication	of	building	bounding	boxes	within	the	images)	and	ii)	421 

damage	classiVication.	While	 it	 is	possible	to	develop	a	model	that	can	simultaneously	 locate	422 

and	classify	buildings	with	different	levels	of	damage,	model	training	under	this	approach	can	423 

take	signiVicantly	more	time	and	resources	 to	converge	when	compared	to	an	approach	that	424 

splits	 the	 tasks	 (Bouchard	 et	 al.,	 2022).	 Furthermore,	 decoupling	 the	 two	 tasks	 allows	 for	425 
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greater	 Vlexibility;	 for	 example,	 if	 building	 locations	 are	 already	 known	 then	 only	 the	436 

classiVication	can	be	run,	speeding	up	the	remote	assessment.	437 

	438 

In	machine	learning,	the	performance	of	a	model	and	its	optimal	hyperparameters	can	be	highly	439 

dependent	on	 the	characteristics	of	 the	dataset	used	 for	 training,	and	hyperparameters	 that	440 

work	well	for	one	dataset	may	not	work	well	for	another.	Therefore,	it’s	common	practice	to	441 

optimise	 hyperparameters,	 model	 architectures,	 and	 training	 strategies	 to	 Vind	 the	442 

conViguration	 that	performs	 the	best	 for	a	particular	problem.	 	For	building	 localisation	and	443 

damage	classiVication	we	conducted	a	series	of	independent	experiments	using	different	image	444 

preprocessing	approaches,	CNN	architectures,	and	combinations	of	hyperparameters	with	the	445 

aim	of	iterating	towards	the	best	experimental	setup	(Model	selection:	Section	3.1.1;	Section	446 

3.2.1).	Each	experiment	consisted	of	three	replicates	of	a	given	combination	of	these	aspects.	447 

Replicates	were	conducted	since	the	stochastic	nature	of	the	training	process	can	cause	models	448 

to	converge	at	slightly	different	points	(Aggarwal,	2018).	For	each	experiment	the	replicate	with	449 

the	highest	evaluation	metric	was	the	one	compared	against	the	other	experiments.	450 

	451 

Once	we	identiVied	the	best	performing	experimental	setup	for	each	task,	we	conducted	K-fold	452 

cross	validation	on	the	combined	training	and	validation	sets	to	understand	how	the	choice	of	453 

these	affects	model	performance	(see	Section	3.1.3,	Section	3.2.2).		454 

	455 

Following	model	selection	and	cross	validation	we	calculated	the	performance	of	the	best	model	456 

identiVied	for	each	task	on	the	test	set.	Finally,	to	see	if	better	performance	could	be	achieved	457 

with	more	data	available	for	training,	we	retrained	the	models	on	the	combined	training	and	458 

validation	 data	 before	 evaluating	 on	 the	 test	 data	 (Evaluation	 on	 the	 test	 set:	 Section	 3.1.3,	459 

Section	3.2.3).	All	stages	of	model	development,	including	model	selection,	cross	validation,	and	460 

Vinal	evaluation,	are	shown	in	Figure	4	and	more	information	about	the	speciVic	experiments	461 

conducted	for	model	selection	is	given	in	Section	S3	of	the	supplementary	material.	462 

	463 

Past	studies	have	trained	deep	learning	algorithms	on	georeferenced	images	(i.e.,	each	pixel	has	464 

a	geographical	 location	attached)	 (Gupta	and	Shah,	2020;	Shen	et	al.,	2021;	Bouchard	et	al.,	465 

2022)	and	non-georeferenced	images	(e.g.,	Li	et	al.,	2019a;	Pi	et	al.,	2020;	Cheng	et	al.,	2021).	In	466 

this	work	we	 labelled	 the	non-georeferenced	 images	and	 trained	models	on	 these.	This	was	467 

done	Virstly,	to	preserve	the	multiple	viewing	angles	that	we	have	of	each	building	with	each	468 
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image	counting	as	a	different	data	point,	and	secondly,	due	to	the	absence	of	GPS	locations	on	a	547 

large	portion	of	the	dataset.	In	an	operational	context,	spatial	information	must	be	tied	to	the	548 

assessed	damage.	Therefore,	beyond	the	creation	of	distinct	models	for	each	task,	we	designed	549 

a	comprehensive,	fully	automated	pipeline	that	integrates	models	for	building	localisation	and	550 

damage	classiVication.	Our	pipeline	contains	all	the	necessary	processing	steps	to	guide	images	551 

through	the	separate	models	enabling	them	to	operate	on	a	georeferenced	orthomosaic	image	552 

(to	be	generated	separately)	or	on	non-georeferenced	images.	When	applied	to	an	orthomosaic	553 

image	the	output	from	the	pipeline	is	a	georeferenced	vector	dataset	that	can	readily	be	plotted	554 

in	a	GIS	to	generate	damage	maps.			555 

	556 

In	Section	4	we	apply	the	pipeline	to	assess	building	damage	in	Owia,	St	Vincent,	which	received	557 

50-90	mm	of	tephra	fall	during	the	2020-2021	eruption	(Figure	1).		Owia	was	selected	out	of	558 

the	three	possible	 test	set	 locations	(Figure	3)	due	to	 its	 large	size	and	the	existence	of	GPS	559 

locations	that	enabled	the	generation	of	a	georeferenced	orthomosaic	image;	for	this	we	used	560 

Agisoft	Metashape	software.	To	compare	the	assessed	building	damage	with	tephra	thickness,	561 

we	 used	 the	 TephraFits	 code	 (Biass	 et	 al.,	 2019)	 to	 identify	 the	 theoretical	 maximum	562 

accumulation	using	the	isopachs	from	Cole	et	al.,	(2023).	This	maximum	accumulation	and	the	563 

isopachs	were	interpolated	using	cubic	splines	and	the	surface	was	exported	at	a	resolution	of	564 

10	m	to	provide	a	tephra	thickness	value	for	each	building.		565 
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 601 

Figure	3.	The	number	of	bounding	boxes	of	each	damage	state	in	each	UAV	imagery	dataset	(UWI-602 

TV,	 GOV,	 SRC)	 for	 each	 of	 the	 locations	 in	 this	 study.	 Imagery	 was	 divided	 into	 three	 groups:	603 

training,	validation,	and	testing.	The	division	of	datasets	between	the	three	groups	was	chosen	to	604 

incorporate	diversity	in	the	image	sets	(UWI-TV/GOV/SRC),	whilst	keeping	images	from	the	same	605 

location	together	and	maintaining	an	approximate	split	of	80%	training/10%	validation/10%	606 

testing.607 
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Figure	 4.	 A	 schematic	 showing	 the	 full	 methodology	 for	 a)	 developing	 a	 model	 for	 building	610 

localisation,	b)	developing	a	sieve	network,	which	acts	as	an	add	on	to	the	building	localisation	611 

model,	c)	developing	a	model	for	damage	classi^ication	and	d)	the	building	damage	assessment	612 

pipeline	developed	in	this	work.	The	pipeline	operates	on	an	orthomosaic	image	(to	be	generated	613 

separately)	and	incorporates	the	^inal	trained	models	for	building	localisation	and	two	stages	of	614 

damage	classi^ication	along	with	all	 the	necessary	processing	steps	to	 link	the	models.	Dataset	615 

locations	referred	to	are:	Bl	–	Belmont,	Ch	–	Chateaubelair,	Fc	–	Fancy,	Ftz	–	Fitz	Hughes,	Ldn	–	616 

London,	OH	–	Orange	Hill,	Ow	–	Owia,	Pt	–	Point,	Rb	–	Rabacca,	Rc	–	Richmond,	SB	–	Sandy	Bay,	Tr	617 

–	Tourama,	Tm-	Troumaca.	Pipeline	schematic	generated	using	draw.io.	618 
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	622 

2.3.1 Building	localisation	623 
 624 
For	building	localisation,	we	used	the	cutting	edge	two-stage	object	detector	Faster	R-CNN	(Ren	625 

et	al.	2017).	When	applied	to	a	test	image	containing	the	relevant	objects,	Faster	R-CNN	outputs	626 

the	positions	within	the	image	(X,	Y,	width,	and	height	in	pixels)	of	bounding	boxes	containing	627 

the	object,	and	a	conVidence	score	for	each	box.	As	per	customary	practice	(Zou	et	al.	2019)	we	628 

used	a	conVidence	of	>	0.5	meaning	that	only	boxes	with	conVidence	greater	than	this	are	output.		629 

	630 

For	object	detection,	to	reduce	model	training	and	inference	time,	full	sized	images	were	split	631 

into	 image	 blocks.	 Experiments	 conducted	 as	 part	 of	 building	 localisation	 model	 selection	632 

included	 variations	 in	 block	 size	 and	 the	 proportion	 of	 block	 overlap,	 along	 with	 the	633 

development	of	separate	models	for	images	captured	with	different	viewing	angles,	training	for	634 

only	the	SRC	portion	of	the	dataset	(images	mostly	at	nadir)	and	the	combined	UWI-TV-GOV	635 

portion	 (images	mostly	 off-nadir).	 A	 total	 of	 34	 experiments	were	 conducted	 to	 include	 all	636 

credible	combinations	of	the	varied	hyperparameters	and	to	Vind	the	best	experimental	setup	637 

(Table	S2,	supplementary	material).		638 

	639 
To	improve	the	performance	of	the	building	localisation	model	we	developed	a	sieve	network	640 

that	runs	as	an	add	on	to	the	Faster	R-CNN	building	detector.	The	sieve	network	reduces	false	641 

positives	 which	 occur	 when	 the	 detector	 predicts	 a	 bounding	 box	 that	 does	 not	 have	 an	642 

overlapping	labelled	building	(i.e.,	detects	a	building	when	there	is	not	one).	More	details	on	its	643 

development	are	provided	in	Section	3.2	of	the	supplementary	material.		644 

	645 

2.3.2 Damage	classiUication	646 
 647 
We	chose	to	divide	building	damage	classiVication	into	two	separate	classiVications,	ClassiVier	1	648 

distinguishes	between	‘No	damage	to	minor	damage’	versus	the	combined	classes	of	‘Moderate	649 

damage’	 and	 ‘Major	 damage’,	 while	 ClassiVier	 2	 further	 differentiates	 between	 ‘Moderate	650 

damage’	and	‘Major	damage’.	A	hierarchical	approach	to	classiVication	has	been	found	effective	651 

when	the	number	of	samples	 is	 limited	or	classes	are	unbalanced	(Li	et	al.,	2019b;	An	et	al.,	652 

2021).	We	conducted	experiments	separately	for	ClassiViers	1	and	2.	Experiments	consisted	of	653 

Vine-tuning	two	different	pretrained	CNNs	to	determine	which	was	better	and	should	be	used	654 

in	 the	 Vinal	models	 for	 each	 classiVier:	 ResNet50	 (He	 et	 al.,	 2015)	 trained	 on	 the	 ImageNet	655 
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dataset	 (Deng	 et	 al.	 2009),	 and	 GoogleNet	 (Szegedy	 et	 al.,	 2015)	 trained	 on	 the	 places365	748 

dataset	(López-Cifuentes	et	al.,	2019).	Fine-tuning	is	a	common	approach	to	computer	vision	749 

tasks	where	sufViciently	large,	labelled	datasets	are	not	available	for	the	task	at	hand	(typically	750 

hundreds	of	thousands	of	 images	are	needed:	Aggarwal,	2015).	During	Vine-tuning,	the	high-751 

level	features	that	were	learnt	during	the	initial	training	on	the	large	dataset	can	be	leveraged	752 

for	the	new	task.	In	addition	to	the	different	pretrained	CNNs	used,	experiments	also	considered	753 

different	ways	of	balancing	the	number	of	images	for	each	damage	state	class	(over-sampling	754 

the	minority	class,	under-sampling	the	majority	class	and	no	balancing).	When	applied	to	a	test	755 

building	image,	the	trained	classiVier	outputs	the	highest	probability	class	and	the	associated	756 

probability.	A	total	of	15	experiments	were	conducted	for	each	of	the	classiVication	tasks.	For	757 

each	experiment	three	replicates	were	conducted,	each	consisting	of	a	grid	search	to	Vind	the	758 

best	combination	of	learning	rate,	batch	size	and	L2	regularisation.	For	more	information	on	759 

this	see	Section	3.3	of	the	supplementary	material.	760 
	761 

2.3.3 Model	evaluation	metrics	762 

For	 building	 localisation	 Faster	 R-CNN	 experiments,	 we	 evaluated	 performance	 using	 the	763 

average	precision	(AP)	at	an	intersection	over	union	(IoU)	threshold	of	0.5,	and	the	F1	score.	764 

AP,	a	common	metric	for	evaluating	object	detection	(Zou	et	al.,	2019),	measures	how	often	the	765 

detector	gets	it	right	(true	positives,	TP)	versus	wrong	(false	positives,	FP,	and	false	negatives,	766 

FN).	A	TP	occurs	when	a	predicted	box	overlaps	a	labelled	box	by	more	than	50%	(IoU	>	0.5),	a	767 

FP	when	there	is	no	overlapping	labelled	box,	and	a	FN	when	the	detector	misses	a	labelled	box.	768 

When	the	detector	is	run	on	a	test	image	a	conVidence	score	is	output	for	each	predicted	box	(0-769 

1).	Once	the	trained	detector	has	been	run	over	the	full	test	set,	the	precision	(TP/TP+FP),	and	770 

recall	 (TP/TP+FN)	 are	 calculated	 at	 different	 conVidence	 score	 thresholds	 and	 the	 area	771 

underneath	 the	 resulting	 precision-recall	 curve	 represents	 the	 AP.	 AP	 depicts	 the	 trade-off	772 

between	precision	and	recall	and	provides	an	overall	measure	of	detection	performance.	AP	773 

values	range	between	0-1,	where	a	higher	value	indicates	a	better	performance.		774 

	775 

For	building	localisation,	the	F1	score	was	calculated	at	IoU	and	conVidence	thresholds	of	0.5.	776 

The	F1	score	is	calculated	as:	F1	=	2x	(Precision	x	Recall)/	(Precision	+	Recall).	To	evaluate	the	777 

performance	of	 classiVication	models,	we	used	 the	macro-F1	score,	which	 is	 the	unweighted	778 

mean	of	the	F1	scores	calculated	for	each	of	the	classes.	Similarly	to	the	AP,	values	of	the	F1	779 

score	range	between	0-1,	where	a	higher	value	indicates	a	better	performance.		780 
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3 Results	815 

3.1 	Building	localisation	816 

3.1.1 Model	selection		817 
 818 
The	Vive	experiments	with	the	highest	average	precision	are	shown	in	Table	4,	with	the	full	list	819 

of	experiments	provided	in	Table	S2	of	the	supplementary	material.	Average	precisions	across	820 

the	34	experiments	ranged	from	0.295	to	0.701	(Table	4	and	Table	S2).	We	found	that	block	size	821 

played	an	important	role	in	model	performance;	out	of	the	34	experiments	conducted,	the	top	822 

three	used	a	block	size	of	550	x	550	pixels,	which	was	the	middle	of	the	sizes	tested	(450,	550,	823 

650).	We	observed	that	models	trained	on	the	full	dataset	performed	better	than	models	trained	824 

separately	 for	 the	nadir	 (SRC)	and	off-nadir	 imagery	 sets	 (UWI-TV	and	GOV	sets	 combined)	825 

(Table	4	and	Table	S2).		826 

	827 

Table	4.	Hyperparameters	for	the	^ive		experiments	with	the	highest	average	precision	conducted	828 

for	 building	 localisation,	 ordered	 by	 average	 precision.	 The	 full	 table	 consisting	 of	 all	 34	829 

experiments	is	provided	in	the	supplementary	material.	Columns	marked	with	‘*’	contain	Yes/No	830 

information.	Training	dataset	**:	a=	all,	b=	UWI-TV	and	GOV,	c=	SRC.		831 

	832 

Row	
ID	

Block	
size	

Mixed	
block	
size*	

Block	
overlap	

Block	
resized*	

Training	
dataset	**	

Max	
Average	
Precision	

F1	
score	

1	 550	 N	 50%	 Y	 a	 0.701	 0.669	

2	 550	 N	 20%	 Y	 a	 0.700	 0.668	

3	 550	 N	 20%	 Y	 a	 0.700	 0.642	

4	 650	 N	 50%	 Y	 a	 0.691	 0.654	

5	 650	 N	 20%	 Y	 a	 0.678	 0.670	

	833 

All	 trained	sieve	networks	achieved	macro	and	class	F1	scores	 that	were	>	0.973	 (Table	S3,	834 

Supplementary	 material).	 The	 sieve	 networks	 efVicacy	 at	 improving	 building	 localisation	 is	835 

demonstrated	by	 comparing	 the	 results	 of	 the	 best	 detector	when	 applied	 to	 the	 validation	836 

dataset	pre-sieving	(Table	4	row	ID	1)	with	the	post-sieving	results.		Pre-sieving	there	were	a	837 

large	number	of	false	positive	detections,	resulting	in	a	precision	of	0.588,	post-sieving	these	838 

were	reduced	and	the	precision	increased	to	0.695	(Table	5).		839 
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Table	5.	Comparing	the	performance	of	the	best	building	localisation	model	when	applied	to	the	879 

validation	dataset	before	and	after	running	the	results	through	the	sieve	network.		880 

	 	 Precision	 Recall	 F1 
Best	detector	pre-sieving	 0.588	 0.776	 0.669 
Best	detector	post-sieving	 0.695	 0.730	 0.712 

	881 
 882 
 883 
3.1.2 Cross	validation		884 

Cross	 validation	 was	 conducted	 for	 the	 single	 best	 performing	 building	 localisation	 model	885 

(without	the	sieve	network)	to	understand	how	the	choice	of	training	and	validation	data	affects	886 

performance.	 Analysing	 performance	 variations	 across	 different	 testing	 datasets	 can	 then	887 

inform	recommendations	for	future	data	collection	strategies	(see	Section	6).		888 

	889 

We	 found	 that	 the	 performance	 of	 the	 selected	 object	 detector	 varied,	 depending	 upon	 the	890 

location	 (Figure	 5a)	 or	 imagery	 dataset	 (Figure	 5b)	 used	 for	 testing.	 For	models	 tested	 on	891 

different	 locations	average	precisions	 in	 line	with	 the	AP	achieved	on	 the	 full	 validation	 set	892 

(0.701)	were	obtained	for	Point	and	Fancy	(Figure	5a).	The	lowest	AP	values	were	for	London	893 

(0.063)	and	Fitz	Hughes	(0.187).	The	standard	deviation	(SD)	(Figure	5)	shows	the	variability	894 

in	performance	between	the	three	replicates	that	were	trained	for	each	test,	which	arises	due	895 

to	 the	 stochastic	 nature	 of	 the	 training	process.	 For	models	 tested	on	 the	different	 imagery	896 

datasets	individually	the	AP	was	low,	with	a	mean	value	across	all	datasets	of	<	0.2	(Figure	5b).	897 

For	all	three	locations	(Chateaubelair,	Sandy	Bay,	London),	AP	for	models	evaluated	on	the	SRC	898 

dataset	were	lower	than	for	the	UWI-TV	or	GOV	datasets.		899 
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 927 

Figure	5.	Cross	validation	of	the	best	experimental	setup	for	building	localisation	models	which	928 

are	 trained	 to	 predict	 building	 box	 positions	 within	 the	 image.	 a)	 The	 effect	 of	 changing	 the	929 

location	used	as	the	test	set	on	detector	average	precision	(AP)	and	b)	the	effect	of	changing	the	930 

imagery	 dataset	 (UWI-TV/GOV/SRC)	 used	 as	 the	 test	 set	 on	 AP.	 For	 b)	 cross	 validation	 of	 the	931 

imagery	dataset,	models	are	trained	on	all	data	from	that	location	excluding	the	location	used	for	932 

testing	as	indicated	by	the	bar.	For	London	there	is	data	from	the	GOV	dataset,	however	the	number	933 

of	images	in	the	SRC	dataset	is	insuf^icient	for	training,	so	no	bar	is	shown	for	GOV.		The	AP	shown	934 

is	the	mean	value	from	three	trained	models	with	the	same	setup	while	the	error	bars	show	the	935 

standard	deviation.	Black	dashed	lines	show	the	mean	AP	value	across	all	cross	validation	trained	936 

models;	red	dashed	lines	show	the	best	AP	from	the	experiments	(0.701:	Table	4).	937 

 938 
3.1.3 Evaluation	on	the	test	set	939 

Evaluation	of	the	best	detection	model	on	the	test	set,	which	consists	of	completely	unseen	data	940 

from	Owia,	Richmond	and	Troumaca	(Figure	3)	produced	an	AP	value	that	is	the	same	as	the	941 

value	on	the	validation	data	(0.701)	(Table	6).	To	understand	if	a	better	model	could	be	achieved	942 

with	more	data	available	for	training,	we	combined	the	training	and	validation	data	and	used	943 

this	to	retrain	the	best	experimental	setup	for	the	detector.	Evaluation	of	the	retrained	model	944 

on	the	test	set	resulted	in	an	average	precision	increase	from	0.701	to	0.751	for	the	non-sieved	945 

detector,	 and	 from	 0.668	 to	 0.728	 for	 the	 sieved	 detector,	 showing	 that	 having	 more	 data	946 

available	for	training	produced	a	better	model	(Table	6).		947 
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higher	F1	score	(Table	6).	For	the	present	application	equal	importance	is	given	to:	1)	making	968 

correct	predictions	about	building	locations,	and	2)	identifying	as	many	buildings	as	possible.	969 

Consequently,	striking	the	balance	between	precision	and	recall	is	crucial.	We	therefore	selected	970 

the	retrained	detector	+	sieve	network	as	the	Vinal	building	localisation	model	and	the	model	971 

that	is	incorporated	into	the	damage	assessment	pipeline	(Table	6).	972 

	973 

Table	6.	Comparison	of	the	best	building	localisation	models’	performance	when	evaluated	on	the	974 

validation	and	the	test	sets.	AP	is	average	precision,	P	is	precision,	and	R	is	recall.	*	Retrain	975 

models	are	trained	on	the	combined	training	and	validation	sets.	Results	for	the	^inal	model	that	976 

is	used	in	the	damage	assessment	pipeline	are	in	bold.		977 

	 Validation	set		 Test	set	
	 AP	 P	 R	 F1	 AP	 P	 R	 F1	

Detector	
(0.5	conf)	 0.701	 0.588	 0.776	 0.669	 0.701	 0.604	 0.776	 0.679	

Detector	+	
Sieve	

(0.5	conf)	
0.681	 0.695	 0.730	 0.712	 0.668	 0.606	 0.757	 0.673	

Detector	
retrain	 	 0.751	 0.642	 0.816	 0.719	

Detector	
retrain	
+sieve	

	 0.728	 0.710	 0.782	 0.744	

	978 

	979 

3.2 Damage	classiUication	980 

3.2.1 Model	selection	981 

The	Vive	experiments	with	the	highest	macro	F1	score	are	shown	in	Table	7,	with	the	full	lists	982 

provided	in	Tables	S4	and	S5	of	the	supplementary	material.	For	ClassiVier	1,	Macro	F1	scores	983 

across	all	15	experiments	ranged	from	0.753	to	0.836,	while	for	ClassiVier	2	scores	ranged	from	984 

0.776	to	0.810	(Tables	7,	S4,	S5).	Models	 trained	 to	differentiate	between	the	No	damage	 to	985 

minor	damage	and	Damaged	 classes	performed	better	 for	 the	No	damage	 to	minor	damage	986 

class,	 while	 those	 trained	 to	 differentiate	 between	Moderate	 and	Major	 damage	 performed	987 

better	for	the	Major	damage	class	(Table	7).	The	best	performing	models	for	both	classiViers	988 

used	 the	 ResNet50	 architecture	 rather	 than	 GoogleNet	 with	 an	 unbalanced	 dataset.	 For	989 

ClassiVier	1	the	best	model	had	F1	=	0.962	for	the	No	damage	to	minor	damage	class	and	F1	=	990 

0.710	for	the	Damaged	class.	While	for	ClassiVier	2	the	Moderate	damage	class	had	F1	=	0.770	991 

and	Major	damage	F1	=	0.851.		992 
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Table	7.	The	top	^ive	experiments	conducted	for	each	of	the	building	damage	classi^iers,	ordered	1015 

by	the	macro	F1	score.	The	full	list	consisting	of	all	15	experiments	for	each	classi^ier	is	provided	1016 

in	Tables	S4	and	S5	of	the	supplementary	material.		1017 

	1018 

ClassiUier	1	

Row	
ID	

Architectu
re	

Class	
balancing:	

	Not	Balanced/	
under-

sampled/	over-
sampled	

F1	No	
damage	to	
minor	
damage	

F1	
Damaged	

F1	
Macro	

1	 Resnet50	 not	 0.962	 0.710	 0.836	

2	 Resnet50	 not	 0.960	 0.696	 0.828	

3	 Resnet50	 not	 0.957	 0.699	 0.828	

4	 Resnet50	 not	 0.962	 0.692	 0.827	

5	 Resnet50	 under	 0.951	 0.646	 0.799	

ClassiUier	2	

Row	
ID	

Architectu
re	

Class	
balancing:	

	Not	Balanced/	
under-

sampled/	over-
sampled	

F1	Mod	
damage	

F1	Maj	
damage	

F1	
Macro	

1	 Resnet50	 not	 0.770	 0.851	 0.810	

2	 GoogleNet	 over	 0.737	 0.848	 0.793	

3	 Resnet50	 over	 0.749	 0.835	 0.792	

4	 Resnet50	 not	 0.749	 0.835	 0.792	

5	 Resnet50	 under	 0.735	 0.845	 0.790	

	1019 

	1020 

3.2.2 Cross	validation		1021 

Cross	validation	was	conducted	for	both	of	the	single	best	performing	models	for	ClassiViers	1	1022 

and	2	 identiVied	 through	model	 selection.	As	was	 the	 case	 for	 the	 best	 building	 localisation	1023 

model,	this	was	done	to	understand	how	the	choice	of	training	and	validation	datasets	affected	1024 

model	performance	and	to	understand	how	our	model	might	perform	on	a	new	dataset.			1025 
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 1034 

Figure	6.	Cross	validation	for	Classi^iers	1	and	2.		For	rows	1	and	3	the	best	experimental	setup	was	1035 

retrained	 on	 all	 the	 data	 from	 locations	 in	 the	 combined	 training	 and	 validation	 data	 and	1036 

evaluated	on	the	location	shown.	For	rows	2	and	4	the	best	experimental	setup	was	retrained	on	1037 

Deleted: 1038 
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all	 the	 data	 from	 the	 location	 shown	 and	 evaluated	 on	 each	 dataset	 (UWI-TV/GOV/SRC)	1040 

separately.	Each	training	was	conducted	three	times,	the	value	plotted	is	the	mean,	and	the	error	1041 

bars	 show	 the	 standard	deviation.	Black	dashed	 lines	 show	 the	mean	F1	 score	across	all	 cross	1042 

validation	 trained	 models,	 red	 dashed	 lines	 show	 the	 best	 F1	 score	 for	 each	 class	 from	 the	1043 

experiments	(Table	6).	1044 

	1045 

The	performance	of	ClassiVier	1	for	the	No	damage	to	minor	damage	class	is	consistent	across	1046 

the	distinct	 locations	and	datasets	used	 for	evaluation	with	mean	F1	scores	between	0.913-1047 

0.983	for	locations	and	0.898-0.976	for	datasets	(Figure	6).	For	the	Damaged	class	there	is	more	1048 

variety	in	the	performance	across	the	locations	and	datasets	used	for	evaluation.	The	mean	F1	1049 

scores	for	the	separate	locations	range	from	0.588	(Fitz	Hughes)	to	0.779	(Tourama)	while	for	1050 

the	different	datasets	the	range	is	0.393	(London-SRC)	to	0.745	(Sandy	Bay-SRC).		1051 

	1052 

For	 ClassiVier	 2,	 the	Moderate	 damage	 class	 is	more	 sensitive	 to	 the	 choice	 of	 location	 and	1053 

dataset	 used	 for	 the	 evaluation	 than	 the	 Major	 damage	 class	 (Figure	 6).	 For	 the	 different	1054 

locations	the	mean	F1	score	ranged	from	0.583-0.974.	Similarly	to	ClassiVier	1,	the	location	with	1055 

the	lowest	mean	F1	score	is	Fitz	Hughes,	whereas	the	highest	score	was	produced	for	Orange	1056 

Hill.	For	the	different	datasets	the	range	for	the	Moderate	damage	class	is	between	0.522-0.746.	1057 

For	the	Major	damage	class	F1	scores	for	the	distinct	locations	are	between	0.728-0.933	while	1058 

for	the	different	datasets	the	range	is	between	0.711-0.867.	1059 

	1060 

3.2.3 Evaluation	on	the	test	set	1061 

Evaluation	 of	 the	 single	 best	models	 for	 ClassiVier	 1	 and	 ClassiVier	 2	 on	 the	 unseen	 test	 set	1062 

produced	Macro	F1	scores	that	were	comparable	with	the	scores	for	the	validation	set:	0.829	1063 

for	ClassiVier	1	and	0.791	for	ClassiVier	2	(Table	8).	For	ClassiVier	2,	retraining	the	model	on	the	1064 

combined	training	and	testing	data	increased	the	Macro	F1	score	from	0.791	to	0.838.	Whereas	1065 

for	ClassiVier	1	retraining	produced	a	slightly	lower	Macro	F1	score	(0.809	compared	to	0.829).	1066 

Nevertheless,	the	retrained	model	for	ClassiVier	1	achieved	a	higher	recall	on	the	Damaged	class	1067 

than	 the	non-retrained	model.	 In	an	operational	setting	 it’s	desirable	 to	correctly	classify	as	1068 

many	of	 the	damaged	buildings	 as	possible,	 since	 in	 our	pipeline	 these	will	 be	passed	onto	1069 

ClassiVier	2,	therefore	we	took	the	retrained	models	for	both	classiViers	as	the	Vinal	models	and	1070 

the	models	that	are	incorporated	into	the	damage	assessment	pipeline.		1071 
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Table	8.	Comparison	of	the	best	damage	classi^ication	models’	performance	when	evaluated	on	1112 

the	validation	and	the	test	sets.	AP	is	average	precision,	P	is	precision,	and	R	is	recall.	*	Retrain	1113 

models	are	trained	on	the	combined	training	and	validation	sets.	Results	for	the	^inal	models	that	1114 

are	used	in	the	damage	assessment	pipeline	are	in	bold.		1115 

 1116 
	 Validation	set		 Test	set	

	 	 	

	 No	damage	to	minor	
damage	 Damaged	 	 No	damage	to	minor	

damage	 Damaged	 	

	 P	 R	 F1	 P	 R	 F1	 F1	
Macro	 P	 R	 F1	 P	 R	 F1	 F1	

Macro	
Classi0ier	1	 0.950	 0.976	 0.962	 0.793	 0.643	 0.710	 0.836	 0.891	 0.940	 0.915	 0.809	 0.689	 0.744	 0.829	
Classi0ier	1	

retrain	 	 	 	 	 	 	 	 0.899	 0.894	 0.896	 0.717	 0.728	 0.722	 0.809	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 Mod	Damage	
	

Maj	Damage	
	 	 Mod	Damage	

	
Maj	Damage	

	 	

Classi0ier	2	 0.769	 0.660	 0.770	 0.852	 0.825	 0.851	 0.810	 0.903	 0.663	 0.765	 0.730	 0.927	 0.817	 0.791	
Classi0ier	2	

retrain	 	 	 	 	 	 	 	 0.861	 0.809	 0.834	 0.817	 0.866	 0.841	 0.838	

	1117 

4 Application	of	the	full	damage	assessment	pipeline:	Assessing	tephra	fall	building	1118 

damage	in	Owia	1119 

	1120 

In	 this	work	we	have	developed	separate	models	 for	building	 localisation	and	 two	stages	of	1121 

damage	classiVication.	However,	 in	an	operational	context	models	need	to	work	sequentially,	1122 

this	 led	to	 the	development	of	our	damage	assessment	pipeline	(outlined	 in	Figure	4d).	The	1123 

pipeline	operates	on	an	orthomosaic	image	and	outputs	a	georeferenced	vector	set,	with	the	1124 

following	 attributes	 for	 each	 building	 that	 is	 detected:	 detection	 (box	 conVidence	 score),	1125 

ClassPred_1	 (output	 class	 from	 ClassiVier	 1,	 Damaged	 or	 No	 damage	 to	 minor	 damage),	1126 

ClassProb_1	(the	probability	of	that	class),	ClassPred_2	(output	class	from	ClassiVier	2,	Moderate	1127 

damage	 or	Major	 damage,	 this	 is	 only	 run	 if	 ClassiVier	 1	 outputs	 damage),	ClassProb_2	 (the	1128 

probability	of	the	class	output	by	ClassiVier	2),	damageState	(the	Vinal	damage	state).		1129 

	1130 

The	 tephra	 fall	 building	 damage	map	 shown	 in	 Figure	 7a	 was	 produced	 by	 overlaying	 the	1131 

georeferenced	vector	that	was	output	by	the	pipeline	with	the	orthomosaic	image	in	QGIS.	Our	1132 

remote	damage	assessment	pipeline	identiVied	442	buildings.	 	Of	these,	78%	(N	=	343)	were	1133 

classiVied	as	having	No	damage	to	minor	damage,	9%	(N	=	40)	as	having	Moderate	damage	and	1134 

13%	(N	=	59)	as	having	Major	damage.	We	observed	that	the	two	upper	tephra	fall	thickness	1135 
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bins	(70-80	mm	and	80-90	mm),	both	had	a	higher	proportion	of	buildings	with	Major	damage	1197 

compared	to	the	lower	thickness	bins	(Figure	7b,	c),	indicating	a	correlation	between	tephra	fall	1198 

thickness	and	building	damage	though	it	is	not	very	pronounced.	These	Vindings	are	discussed	1199 

in	Section	5.3.	1200 

	1201 

The	full	pipeline	took	1	hour	to	run	on	a	standard	16GB	RAM	2021	MacBook	Pro,	with	an	M1	1202 

Pro	chip.		Most	of	the	inference	time	was	attributed	to	the	building	localisation	module	in	the	1203 

pipeline,	which	may	be	bypassed	 if	building	 footprints	are	already	available.	When	only	 the	1204 

classiViers	were	run	the	time	taken	to	run	was	reduced	to	<	5	mins. 1205 

 1206 

Figure	 7.	 Application	 of	 our	 remote	 tephra	 fall	 building	 damage	 assessment	 pipeline	 to	Owia,	1207 

located	in	the	north	of	St.	Vincent.		a)	The	damage	map	produced	by	overlaying	the	spatial	data	1208 

generated	 by	 our	 pipeline	 onto	 the	 orthomosaic	 image,	 black	 lines	 are	 tephra	 isopachs	1209 

interpolated	 from	Cole	et	al.,	2023;	b)	 the	proportion	of	damage	states	with	 increasing	 tephra	1210 
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thickness;	 c)	 the	proportion	of	 tephra	 thickness	bins	with	 increasing	damage	state.	Coordinate	1217 

reference	system:	WGS	84	(EPSG:4326).	Satellite	basemap	©	Google	Maps	2024.	1218 

	1219 

5 Discussion		1220 
	1221 

In	 this	work	we	have	developed	models	 for	 building	 localisation,	 and	 two	 levels	 of	 damage	1222 

classiVication	 for	 building	 damage	 resulting	 from	 tephra	 fall.	 Our	 Vinal	models	 demonstrate	1223 

strong	 performance	 for	 both	 building	 localisation	 (AP	 =	 0.728;	 F1	 =	 0.744)	 and	 damage	1224 

classiVication	(ClassiVier	1,	F1	=	0.809,	ClassiVier	2,	F1	=	0.838).	Despite	using	post-event	imagery	1225 

only,	which	makes	the	task	more	challenging	than	approaches	using	multi-temporal	imagery,	1226 

our	results	are	comparable	to	existing	optical	imagery	building	damage	assessments	developed	1227 

for	various	hazards	 that	use	both	mono-temporal	and	multi-temporal	 images	(F1	scores	are	1228 

between	0.656-0.868	for	building	localisation	and	0.650-0.981	for	damage	classiVication,	Table	1229 

1).		1230 

	1231 

5.1 Building	localisation	1232 
 1233 
Through	 running	our	building	 localisation	experiments	we	 found	 that	 the	pre-processing	of	1234 

images	before	detector	training	(particularly	the	block	size)	signiVicantly	inVluenced	detector	1235 

performance.	The	block	sizes	tested	were	chosen	as	a	trade-off	between	reducing	image	size	1236 

sufViciently	to	reduce	computational	cost,	and	retaining	a	large	enough	size	such	that	buildings	1237 

were	not	dissected	unnecessarily.	Given	that	the	optimum	block	size	was	the	middle	size	of	the	1238 

range	 tested,	 we	 are	 conVident	 that	 this	 balance	 was	 achieved.	 Cross-validation	 results	1239 

demonstrated	variability	in	average	precision	(AP)	for	models	trained	on	different	locations	and	1240 

imagery	 datasets	 (UWI-TV/GOV/SRC)	 (Section	 3.1.2;	 Figure	 5).	 Deep	 learning	 models	 are	1241 

known	to	perform	well	when	the	data	they	are	evaluated	on	have	similar	characteristics	to	the	1242 

data	they	were	trained	on,	though	have	more	difViculty	when	working	with	‘out	of	distribution’	1243 

samples	 (Ben-David	 et	 al.,	 2010).	 Given	 the	 relatively	 consistent	 building	 typology	 across	1244 

locations	(most	buildings	observed	are	detached	single	storey	buildings	with	either	a	gable	or	1245 

hip	shaped	metal	sheet	roof;	a	lesser	proportion	have	Vlat	concrete	roofs),	the	differences	in	AP	1246 

are	likely	due	to	observable	variations	in	UAV	altitude,	off-nadir	angles,	tephra	thicknesses,	and	1247 

varying	training	sample	sizes.		1248 
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The	cross-validation	AP	was	notably	lower	for	the	London	and	Fitz	Hughes	datasets	(Section	1263 

3.1.2).	For	the	London	images	(from	SRC	and	GOV	datasets)	this	is	likely	caused	by	the	smaller	1264 

apparent	size	of	buildings	in	these	images	compared	to	the	other	locations,	due	to	the	higher	1265 

UAV	altitude.	Variations	in	object	size	within	the	training	and	testing	data	has	been	found	to	1266 

affect	the	performance	of	deep	learning	models	developed	for	building	localisation,	with	models	1267 

often	performing	better	for	objects	that	are	the	same	size	as	those	in	the	training	data	(Nath	1268 

and	Benzadan,	2020;	Cheng	et	al.,	2021;	Bouchard	et	al.,	2022).	Fitz	Hughes	images	were	all	1269 

from	 the	 UWI-TV	 image	 dataset	 which	 contributed	 just	 17%	 to	 the	 combined	 training	 and	1270 

validation	set	used	for	cross	validation.	This	dataset	was	collected	closer	in	time	to	the	eruption,	1271 

therefore	as	a	whole	had	more	 tephra	on	the	ground	than	the	SRC	and	GOV	datasets,	which	1272 

affects	background	colour.	Furthermore,	the	UWI-TV	dataset	viewed	buildings	mostly	from	an	1273 

off-nadir	perspective,	while	the	other	datasets	were	predominantly	nadir	images.	The	effect	of	1274 

image	background	 colour	on	 localisation	performance	 is	 expected	 to	be	minor,	Cheng	et	 al.,	1275 

(2021)	 found	 that	 for	 the	same	event	 localisation	AP	dropped	 from	65.6	 to	63.3	when	 their	1276 

model	 was	 tested	 on	 images	 containing	 buildings	 surrounded	 by	 vegetation	 compared	 to	1277 

buildings	with	an	ocean	backdrop.	While	Bouchard	et	al.,	(2022)	suggested	that	models	quickly	1278 

learn	to	ignore	background	pixels.	On	the	other	hand,	variation	in	off-nadir	angles	is	a	widely	1279 

acknowledged	challenge	of	working	with	UAV	or	aerial	images	(Cotrufo	et	al.,	2018;	Nex	et	al.,	1280 

2019;	 Pi	 et	 al.,	 2020).	 Under	 representation	 of	 the	 mostly	 off-nadir	 UWI-TV	 images	 in	 the	1281 

training	data	may	have	impacted	the	model's	ability	to	recognise	such	instances	in	the	test	data.	1282 

During	model	development	we	experimented	with	different	models	for	the	different	datasets	1283 

(UWI-TV,	 GOV,	 SRC),	 but	 found	 that	models	 developed	 on	 the	 combined	 dataset	 performed	1284 

better	 than	 those	 developed	 on	 the	 separate	 datasets	 and	 a	 combined	model	 was	 the	 one	1285 

selected	and	used	for	cross	validation.	Rather	than	suggesting	that	variations	in	off-nadir	angle	1286 

are	 not	 important,	 this	 Vinding	 likely	 reVlects	 the	 smaller	 size	 of	 the	 individual	 datasets	1287 

compared	to	the	combined	datasets,	meaning	that	less	information	was	available	to	learn	from.	1288 

The	 application	 of	 sampling	 approaches	 like	 those	 used	 for	 the	 damage	 states	 in	 the	1289 

classiVication	model	development	(over	or	under	sampling)	could	have	been	applied	to	balance	1290 

the	 data.	However,	 the	 SRC	 dataset	 is	much	 larger	 than	 either	 of	 the	UWI-TV	 and	GOV	 sets	1291 

(Figure	3),	therefore	we	considered	that	oversampling	would	introduce	signiVicant	bias	towards	1292 

the	speciVic	examples	in	the	under-represented	dataset,	whereas	through	under	sampling	we	1293 

would	lose	a	large	amount	of	the	data	that	are	available	to	learn	from.	Given	these	factors,	we	1294 

did	not	use	sampling	approaches.	Future	work	might	consider	the	application	of	generative	AI	1295 
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algorithms	such	as	generative	adversarial	networks	(GANs)	to	expand	the	dataset	(e.g.,	Yi	et	al.	1333 

2018;	Yorioka	et	al.,	2020),	although	more	work	needs	to	be	done	to	quantify	the	diversity	in	1334 

the	generated	data.				1335 

	1336 

The	variability	in	cross-validation	results	for	the	building	localisation	model	likely	comes	from	1337 

a	 combination	 of	 the	 above	 factors	 (differences	 in	 UAV	 altitude,	 off-nadir	 angles,	 tephra	1338 

thickness,	 and	 varying	 training	 sample	 sizes),	 and	 suggests	 that	 there	 was	 insufVicient	1339 

information	in	the	training	data	for	our	detection	models	to	perform	well	across	the	range	of	1340 

characteristics	 present.	 This	 is	 supported	 by	 the	 increased	 performance	 when	 the	 best	1341 

localisation	 model	 was	 retrained	 on	 the	 combined	 training	 and	 validation	 data.	 However,	1342 

further	investigation	is	required	to	separate	the	unique	effect	of	each	aspect.	1343 

	1344 

5.2 Damage	classiUication		1345 
 1346 
The	Vinal	classiVication	models	achieved	better	performance	than	the	Vinal	localisation	model	1347 

with	macro	F1	scores	of	0.809	and	0.838	on	the	test	data	(Table	8).	Cross-validation	showed	1348 

that	 classiVication	 models	 were	 less	 sensitive	 than	 the	 localisation	 model	 to	 the	 choice	 of	1349 

datasets	used	for	training	and	evaluation	(Section	3.2.2).	We	found	that	class	wise	our	models	1350 

performed	better	on	the	No	damage	to	minor	damage	class	followed	by	the	Major	damage	class.	1351 

This	agrees	with	other	multi-class	studies	that	have	found	the	extremities	of	the	damage	state	1352 

scheme	applied	easier	to	classify	than	the	intermediate	ones	(Kerle	et	al.,	2019,	Valentijn	et	al.,	1353 

2020).		1354 

	1355 

5.3 Application	of	the	full	damage	assessment	pipeline:	Assessing	tephra	fall	building	1356 

damage	in	Owia	1357 

 1358 
Application	of	our	remote	damage	assessment	pipeline	to	the	town	of	Owia	found	that	22%	of	1359 

buildings	that	received	tephra	accumulation	in	the	range	of	50-90	mm	experienced	Moderate	1360 

damage	or	Major	damage.	Within	 this	 range,	 the	relationship	between	 tephra	 thickness	and	1361 

building	damage	was	not	as	pronounced	as	in	other	studies	(Blong,	2003b;	Hayes	et	al.,	2019;	1362 

Jenkins	et	al.,	2024).	This	may	be	attributed	to	the	small	geographic	area	and	therefore	small	1363 

range	of	tephra	thicknesses	considered	in	our	application	when	compared	to	other	studies.	In	1364 

the	 damage	 assessments	 of	 Blong,	 (2003b),	 Hayes	 et	 al.,	 (2019)	 and	 Jenkins	 et	 al.,	 (2024)	1365 

buildings	 received	~100	 to	 950	mm,	 trace	 to	 600	mm	 and,	 trace	 to	 >220	mm	 respectively.	1366 
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Spence	 et	 al.,	 (1996)	 assessed	 building	 damage	 over	 a	 similarly	 narrow	 range	 of	 tephra	1381 

thicknesses	to	this	work	(~150-200	mm)	and	found	that	there	was	considerable	variation	in	1382 

the	 level	of	damage	despite	the	majority	of	buildings	having	a	metal	sheet	roof.	The	spacing	1383 

between	the	principal	roof	supports	(roof	span)	was	found	to	be	important	for	the	amount	of	1384 

damage	observed,	with	 long	span	buildings	experiencing	higher	 levels	of	damage	than	short	1385 

span	ones	(Spence	et	al.,	1996).	There	are	limited	long	span	buildings	in	the	Owia	case	study,	1386 

however	additional	characteristics	such	as	construction	style	and	material,	building	layout,	age,	1387 

condition,	height,	and	roof	pitch	can	all	affect	a	buildings	ability	to	withstand	tephra	loading	1388 

(Spence	et	al.,	1996;	Pomonis	et	al.,	1999;	Blong,	2003b;	Jenkins	et	al.,	2014).	Variation	in	these	1389 

characteristics	across	Owia	could	be	responsible	for	the	observed	variation	in	building	damage	1390 

over	the	narrow	range	of	thicknesses	considered.		1391 

	1392 

If	we	convert	tephra	thickness	to	loading,	we	can	compare	the	results	of	our	assessment	with	1393 

existing	relationships	between	tephra	loading	and	damage	for	similar	building	types.	Using	a	1394 

density	of	1500	kg/m!	(Cole	et	al.,	2023)	suggests	that	a	loading	of	at	least	75-135	kg/m!	was	1395 

applied	to	buildings	for	the	range	of	thicknesses	considered	(50	mm-90	mm).	Census	data	for	1396 

Owia	states	that	90	%	of	buildings	have	metal	sheet	roofs	(SVG	population	and	housing	census,	1397 

2012),	with	the	remaining	8%	comprised	of	reinforced	concrete	roofs	and	2%	‘other	material’.	1398 

Given	 the	 higher	 resistance	 of	 the	 8%	of	 non-metal	 sheet	 roof	 buildings	 in	Owia,	we	might	1399 

expect	 vulnerability	models	 developed	 for	metal	 sheet	 roofs	 to	 overestimate	 damage	 in	 the	1400 

town.	 Fragility	 functions	 developed	 for	 Indonesian	 style	 buildings	 with	 metal	 sheet	 roofs	1401 

(Williams	et	al.,	2020),	calculate	a	48-80%	probability	of	Owia	buildings	experiencing	damage	1402 

exceeding	Damage	State	2,	higher	than	the	22%	experiencing	Moderate	or	Major	damage	in	our	1403 

study.	Fragility	curves	for	roof	failure	(Major	damage)	of	old	or	poor	condition	metal	sheet	roofs	1404 

(Jenkins	 et	 al.,	 2014),	 calculate	 that	 just	 over	 10%	 of	 buildings	 in	 Owia	 would	 experience	1405 

sufVicient	 loading	 for	 roof	 collapse,	 comparable	 to	 the	 13%	 observed	 in	 our	 study.	 These	1406 

comparisons	 highlight	 some	 of	 the	 challenges	 associated	 with	 using	 vulnerability	 models	1407 

developed	for	different	locations.	Moreover,	they	reiterate	the	need	for	the	collection	of	both	1408 

post-event	 impact	 data	 and	 building	 typology	 information	 that	 can	 be	 used	 to	 increase	 the	1409 

amount	 of	 empirical	 data	 available	 for	 vulnerability	model	 development	 and	 allow	 regional	1410 

vulnerability	models	to	be	developed	for	speciVic	building	types.		1411 
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Like	the	studies	presented	in	Table	1,	our	pipeline	consists	of	separate	models	for	localisation	1426 

and	damage	classiVication.	One	of	the	beneVits	of	this	is	that	in	locations	where	precise	building	1427 

location	information	is	available	for	the	assessment	area,	the	localisation	step	can	be	bypassed	1428 

and	only	the	classiViers	run.	This	not	only	enhances	overall	performance	but	also	signiVicantly	1429 

reduces	 computation	 time.	 Furthermore,	 either	 of	 the	 classiViers	 can	 be	 run	 independently	1430 

and/or	combined	with	other	damage	assessment	procedures;	for	example,	an	initial	synthetic	1431 

aperture	 radar	 (SAR)	 based	 assessment	 (e.g.,	 Yun	 et	 al.	 2015,	 Jung	 et	 al.,	 2016),	 could	 be	1432 

followed	with	our	ClassiVier	2	to	provide	additional	granularity	on	the	severity	of	the	damage	at	1433 

a	building	level	rather	than	a	pixel	level.		1434 

	1435 

5.4 Generalisability	to	other	locations	1436 

	1437 

Our	models	have	performed	well	for	images	collected	on	the	island	of	St	Vincent	where	building	1438 

typologies	are	relatively	consistent.	We	therefore	expect	that	our	models	will	perform	well	in	1439 

other	locations	with	similar	building	types,	such	as	the	other	islands	in	the	Lesser	Antilles.	This	1440 

hypothesis	should	be	validated	through	further	testing.	In	absence	of	additional	UAV	datasets	1441 

that	include	damaged	buildings,	testing	can	be	done	by	conducting	pre-event	surveys	to	test	the	1442 

performance	of	 the	building	 localisation	model	and	ClassiVier	1	 for	 the	No	damage	 to	minor	1443 

damage	class.	While	this	is	unable	to	assess	the	ability	of	our	approach	to	classify	damage,	it	1444 

would	provide	some	indication	of	performance	following	an	event	in	a	new	location.		1445 

	1446 

To	 develop	 a	 model	 that	 is	 robust	 to	 the	 diverse	 building	 types	 found	 across	 the	 world	1447 

necessitates	assembling	diverse	datasets	showcasing	potential	variations	in	building	types	and	1448 

the	associated	tephra	fall	damage.	To	our	knowledge	the	UAV	datasets	described	in	this	work	1449 

are	the	Virst	of	their	kind.	However,	the	increasing	utilisation	of	UAVs	during	and	after	volcanic	1450 

events	suggests	 the	possibility	of	 the	emergence	of	more	datasets	 in	 the	years	 to	come.	Our	1451 

model	represents	a	crucial	initial	step	towards	the	operational	implementation	of	this	approach	1452 

globally.	The	compilation	of	global	tephra	fall	building	damage	UAV	datasets	will	facilitate	the	1453 

ongoing	reVinement	of	building	damage	assessment	approaches,	including	the	one	presented	1454 

here.	In	pursuit	of	this	objective,	our	models	stand	ready	for	retraining	as	more	data	becomes	1455 

available.	While	our	approach	leverages	images	captured	under	a	spectrum	of	Vlight	conditions	1456 

(off-nadir	 angle,	 altitude,	 Vlight	 trajectory),	 our	 investigation	 has	 both	 pinpointed	 speciVic	1457 
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conditions	that	are	best	suited	for	capturing	building	damage,	which	are	detailed	in	Section	6,	1465 

and	highlighted	the	importance	of	consistency	in	data	collection.	1466 

	1467 

5.5 Improving	model	performance	and	future	perspectives	1468 

	1469 

The	advantages	of	acquiring	additional	UAV	datasets	both	before	and	after	an	event	have	been	1470 

outlined	in	Section	5.4.	In	addition	to	this,	pre-event	imagery	can	be	used	to	construct	building	1471 

inventories	manually	or	using	machine	learning	methods	(e.g.,	Iannelli	and	Dell’Acqua,	2017;	1472 

Gonzalez	 et	 al.,	 2020;	 Meng	 et	 al.,	 2023).	 Prior	 to	 an	 eruption,	 information	 about	 how	 the	1473 

building	 typologies	 present	 will	 respond	 under	 certain	 tephra	 loadings	 (i.e.,	 the	 forecasted	1474 

damage	state)	can	be	obtained	through	the	application	of	fragility	functions.	This	information	1475 

could	enhance	our	model	by	serving	as	prior	information	that	is	updated	with	outputs	from	our	1476 

remote	damage	assessment	using	Bayesian	statistics.	A	similar	approach	has	been	suggested	1477 

for	 updating	 the	 United	 States	 Geological	 Survey’s	 (USGS)	 Prompt	 Assessment	 of	 Global	1478 

Earthquakes	 for	 Response	 (PAGER)	 system	 (Noh	 et	 al.,	 2020).	 The	 framework	 provides	 a	1479 

structured	 way	 of	 incorporating	 the	 PAGER	 forecasted	 loss	 with	 the	 potentially	 noisy	 and	1480 

incomplete	observations	of	loss	in	the	early	stages	of	response.		1481 

	1482 

Alternatively,	 with	 ample	 individual	 building	 inventory	 data	 available,	 tailored	 damage	1483 

classiVication	 models	 for	 speciVic	 building	 typologies	 could	 be	 developed	 and	 applied.	 The	1484 

rationale	 is	 that	 a	model	 dedicated	 to	 a	 speciVic	 building	 type	 is	 expected	 to	 outperform	 a	1485 

generic	multi-typology	model.	1486 

	1487 

In	this	work,	we	established	a	three-class	damage	state	framework.	Existing	frameworks	that	1488 

were	developed	for	ground	based	tephra	fall	damage	assessment	split	damage	into	Vive	damage	1489 

states	classes	and	one	non-damage	class	(Spence	et	al,	1996;	Blong,	2003;	Hayes	et	al.,	2019;	1490 

Jenkins	et	al.,	2024,	Table	2)	however	in	our	preliminary	analyses	we	found	that:	1)	in	many	1491 

images	we	were	unable	to	conVidently	apply	a	six-class	scheme	due	to	only	being	able	to	see	one	1492 

side	of	the	building,	and	2)	there	were	not	enough	examples	of	each	damage	state	class	to	be	1493 

able	to	train	a	six-class	model.	With	the	addition	of	future	tephra	fall	building	damage	datasets	1494 

it	may	be	possible	to	apply	a	Viner	resolution	damage	state	framework	that	can	provide	more	1495 

detail	on	the	observable	damage.	However,	it	is	unlikely	that	the	resolution	of	ground-surveys	1496 

can	be	achieved	using	optical	 imagery,	since	lower	damage	states	are	still	difVicult	to	resolve	1497 
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even	with	very	high-resolution	images	(Cotrufo	et	al.,	2018).	Some	studies	have	incorporated	1530 

3D	point-cloud	information	into	analyses	(Cusicanqui	et	al.,	2018;	Vetrivel	et	al.,	2018).	While	1531 

these	approaches	have	shown	potential,	 and	could	potentially	be	used	 to	provide	additional	1532 

granularity	to	our	damage	states,	we	opted	against	 integrating	point	cloud	analyses	 into	our	1533 

model	 due	 to	 the	 considerably	 longer	 processing	 times	 associated	 with	 such	 an	 approach.	1534 

Longer	processing	times	would	undermine	the	swift	processing	requirement	inherent	in	our	1535 

methodology.	1536 

	1537 

5.6 Caveats	1538 

 1539 
During	the	assignment	of	building	damage	states,	uncertainties	arose,	particularly	concerning	1540 

the	interpretation	of	tarpaulins	and,	pre-existing	damage.	For	tarpaulins,	the	ambiguity	arose	1541 

from	 whether	 these	 were	 either	 strategically	 placed	 prior	 to	 the	 eruption	 as	 preventative	1542 

measures	to	cause	tephra	to	slide	off	the	roof	more	easily;	or	they	were	placed	post	event	to	1543 

cover	damage	caused	by	tephra	fall.	Additionally,	in	certain	instances,	distinguishing	between	a	1544 

collapsed	 roof	 and	 a	 section	 of	 the	 building	 initially	 lacking	 rooVing	 material—possibly	1545 

functioning	as	a	walled	storage	area	—proved	challenging.		Pre-existing	damage	not	related	to	1546 

volcanic	activity	or	buildings	that	were	under	construction	at	the	time	of	image	acquisition	were	1547 

considered	 as	 damaged	 and	 classiVied	 accordingly.	 The	 presence	 of	 buildings	 under	1548 

construction	at	the	time	of	image	acquisition	has	been	recognised	as	a	challenge	in	studies	using	1549 

mono-temporal	imagery	(Nex	et	al.,	2019;	Cheng	et	al.,	2021).	Pre-event	imagery	would	have	1550 

provided	 clarity	 on	 both	 of	 these	 matters,	 however	 this	 was	 not	 available	 at	 high	 enough	1551 

resolution	for	this	region.	1552 

	1553 

The	majority	of	images	used	for	training	and	evaluating	our	models	came	from	the	SRC	dataset,	1554 

which	was	collected	several	months	after	the	eruption.	As	a	result,	the	majority	of	images	do	1555 

not	have	much	tephra	present.	In	an	operational	context,	to	expedite	the	recovery	process,	data	1556 

would	 ideally	be	collected	as	quickly	after	the	eruption	as	 it	 is	safe	to	do	so,	 therefore	more	1557 

tephra	would	be	present	in	the	images.	Given	the	compound	effects	of	variations	in	Vlight	angle,	1558 

image	lighting,	resolution	and	also	the	presence	of	tephra,	we	do	not	have	enough	information	1559 

to	test	the	effect	of	tephra	thickness	on	model	performance,	and	caution	should	be	taken	when	1560 

using	the	model	on	data	collected	at	different	times	after	the	eruption.	1561 
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6 Recommendations	for	UAV	building	damage	assessment	data	collection	1579 

 1580 
In	the	future	we	advocate	for	the	adoption	of	a	standardised	protocol	for	data	collection	for	the	1581 

purpose	of	UAV	damage	assessment.	While	our	model	was	developed	using	a	diverse	dataset,	1582 

there	 were	 some	 disparities	 in	 performance	 across	 distinct	 data	 types.	 Consequently,	 the	1583 

standardisation	 of	 image	 collection	 serves	 two	 purposes,	 1)	 to	 allow	 the	 best	 results	 to	 be	1584 

achieved	when	implementing	our	models,	and	2)	to	collect	data	that	is	rich	in	information	useful	1585 

for	damage	assessment	with	the	aim	of	working	towards	the	development	of	global	datasets	for	1586 

tephra	fall	damage.	For	best	results	we	have	the	following	recommendations:	1587 

	1588 

• The	bulk	of	our	dataset	was	collected	several	months	after	the	eruption	of	La	Soufrière	1589 

however,	 for	 generating	a	 global	dataset	 that	 can	be	used	 for	 response	and	 recovery,	1590 

models	should	ideally	be	trained	on	images	collected	shortly	(days	to	weeks)	after	an	1591 

event.	1592 

• Flight	paths	should	be	pre-programmed	to	ensure	comprehensive	coverage	of	the	area	1593 

and	limit	bias	associated	with	overrepresentation	of	certain	buildings.	Ideally	two	Vlights	1594 

would	be	conducted	with	two	sets	of	perpendicular	Vlight	lines	to	capture	buildings	from	1595 

a	different	perspective.	GPS	positioning	should	be	enabled.		1596 

• A	Vixed	altitude	of	50-80	m	above	the	ground	should	be	maintained	where	possible.	This	1597 

is	appropriate	to	capture	sufVicient	data	for	accurate	damage	classiVication	based	on	the	1598 

established	framework	and	strikes	a	balance	between	detailed	information	capture	and	1599 

overall	coverage.	In	mountainous	areas	this	may	not	be	achievable	for	some	UAV	types.	1600 

In	which	case	a	uniform	height	should	be	maintained	such	that	the	size	of	buildings	is	1601 

consistent	across	image	frames.	1602 

• We	 suggest	 a	 slightly	 off-nadir	 camera	 positioning	 (~5-15°),	 which	 is	 sufVicient	 to	1603 

capture	any	bending	in	the	roof	that	may	not	be	captured	from	a	nadir	perspective.	1604 

• Overlap	between	images	should	be	enough	to	generate	orthoimages,	80%	forward	and	1605 

70%	lateral	overlap	is	sufVicient.	1606 

	1607 

In	addition	to	the	development	of	optimum	post-event	data	collection	practises	we	advocate	1608 

for	the	collection	of	pre-event	UAV	datasets.	Ideally,	pre-	and	post-event	imagery	is	collected	1609 

using	 the	 same	 Vlight	 paths,	 altitudes,	 and	 camera	 positioning.	 Pre-event	 datasets	 serve	1610 

multiple	purposes:		1611 
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o Facilitates	the	creation	of	building	inventories.	1613 

o Enables	precise	comparison	of	pre-	and	post-event	imagery,	reducing	uncertainty	1614 

regarding	initial	building	conditions.	1615 

o Supports	 the	 development	 of	 high-resolution	 change	 detection	 models	1616 

potentially	 yielding	 more	 accurate	 results	 than	 relying	 solely	 on	 post-event	1617 

imagery.		1618 

o Provides	an	opportunity	for	UAV	pilots	to	gain	experience	in	capturing	building	1619 

datasets	during	‘quiet	times’.		1620 

7 Conclusions	1621 

 1622 
Following	a	large	tephra	fall	event,	building	damage	assessment	needs	to	be	conducted	rapidly	1623 

for	 the	purpose	of	 response	and	recovery,	and	 for	 the	collection	of	data	 that	 can	be	used	 to	1624 

forecast	building	damage	from	future	events.	By	leveraging	post-event	optical	imagery	obtained	1625 

after	the	2021	eruption	of	La	Soufrière	volcano	on	the	island	of	St	Vincent,	and	convolutional	1626 

neural	 networks,	we	 have	 developed	 an	 automated	 tephra	 fall	 building	 damage	 assessment	1627 

pipeline.	The	pipeline	incorporates	models	for	building	localisation	and	two	distinct	levels	of	1628 

damage	classiVication:	distinguishing	between	No	damage	to	minor	damage	and	damage,	as	well	1629 

as	between	Moderate	and	Major	damage,	which	were	trained	and	evaluated	separately.	When	1630 

provided	with	UAV	optical	imagery,	our	pipeline	can	rapidly	generate	spatial	building	damage	1631 

information.	Our	models	perform	well	for	the	St	Vincent	datasets	and	are	anticipated	to	perform	1632 

well	 in	 locations	 where	 building	 typologies	 are	 similar,	 but	 this	 requires	 more	 testing	 to	1633 

understand	the	limits	of	their	application.	1634 

	1635 

Building	localisation	model	cross	validation	results	underscore	the	inVluence	of	factors	such	as	1636 

UAV	 altitude,	 off-nadir	 angles,	 tephra	 thickness,	 and	 training	 sample	 sizes	 on	 model	1637 

performance,	 while	 results	 show	 that	 damage	 classiVication	models	 were	 affected	 by	 these	1638 

factors	to	a	 lesser	extent.	 	We	acknowledge	the	challenges	posed	by	diverse	datasets	and	by	1639 

limited	data,	and	we	propose	a	series	of	recommendations	to	guide	the	collection	of	future	UAV	1640 

building	damage	datasets.	In	addition	to	the	collection	of	post-event	datasets	we	advocate	for	1641 

the	 collection	 and	 incorporation	 of	 pre-event	 datasets,	 which	 can	 be	 used	 to	 support	 the	1642 

advancement	 of	 change	 detection	 models;	 to	 partially	 evaluate	 the	 models	 presented	 here	1643 

during	quiescent	times,	and	to	develop	building	inventories	that	can	be	used	along	with	fragility	1644 

functions	for	forecasting	building	damage.		1645 
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	1647 

Our	 research	 marks	 a	 step	 forward	 in	 tephra	 fall	 building	 damage	 assessment,	 offering	 a	1648 

versatile	and	effective	pipeline	with	the	potential	for	regional	applicability.	As	the	Vield	of	UAV-1649 

based	damage	assessment	in	volcanology	continues	to	evolve,	our	work	lays	a	foundation	for	1650 

further	 advancements,	 contributing	 to	 the	 resilience	 of	 communities	 in	 the	 face	 of	 volcanic	1651 

eruptions.		1652 
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reviewer	 for	 their	 detailed	 and	 constructive	 reviews	 that	 considerably	 improved	 the	1673 

manuscript	and,	Giovanni	Macedonio	for	their	editorial	handling.	1674 

	1675 

11 Data	availability	1676 

 1677 

Deleted: and	1678 



 

 39 

All	trained	models	along	with	the	code	required	to	execute	the	damage	assessment	pipeline	1679 

and	instructions	for	usage	are	provided	at:	1680 

https://github.com/EllyTennant/UAVdamageAssessment	1681 

 1682 

12 Funding	1683 

 1684 
This	research	was	supported	by	the	Earth	Observatory	of	Singapore	via	its	funding	from	the	1685 

National	Research	Foundation	Singapore	and	the	Singapore	Ministry	of	Education	under	the	1686 

Research	 Centres	 of	 Excellence	 initiative	 and	 comprises	 EOS	 contribution	 number	 596.	1687 

Additional	 support	 was	 provided	 by	 the	 AXA	 Research	 Fund	 as	 part	 of	 the	 Joint	 Research	1688 

Initiative	on	Volcanic	Risk	in	Asia.		1689 

 1690 

13 References	
 
An,	G.,	Akiba,	M.,	Omodaka,	K.,	Nakazawa,	T.,	&	Yokota,	H.	(2021).	Hierarchical	deep	learning	models	

using	transfer	learning	for	disease	detection	and	classiHication	based	on	small	number	of	
medical	images.	ScientiHic	Reports,	11(1).	https://doi.org/10.1038/s41598-021-83503-7	

Andaru,	R.	and	Rau,	J.Y.	2019.	Lava	dome	changes	detection	at	agung	mountain	during	high	level	of	
volcanic	activity	using	uav	photogrammetry.	In:	International	Archives	of	the	Photogrammetry,	
Remote	Sensing	and	Spatial	Information	Sciences	-	ISPRS	Archives.	International	Society	for	
Photogrammetry	and	Remote	Sensing,	pp.	173–179.	doi:	10.5194/isprs-archives-XLII-2-W13-
173-2019.	

Anniballe,	R.,	Noto,	F.,	Scalia,	T.,	Bignami,	C.,	Stramondo,	S.,	Chini,	M.	and	Pierdicca,	N.	2018.	Earthquake	
damage	mapping:	An	overall	assessment	of	ground	surveys	and	VHR	image	change	detection	
after	L’Aquila	2009	earthquake.	Remote	Sensing	of	Environment	210,	pp.	166–178.	doi:	
10.1016/j.rse.2018.03.004.	

Aggarwal,	C.	C.	(2018).	Neural	Networks	and	Deep	Learning.	In	Neural	Networks	and	Deep	Learning.	
https://doi.org/10.1007/978-3-319-94463-0	

Ben-David,	S.,	Blitzer,	J.,	Crammer,	K.,	Kulesza,	A.,	Pereira,	F.,	&	Vaughan,	J.	W.	(2010).	A	theory	of	
learning	from	different	domains.	Machine	Learning,	79(1–2),	151–175.	
https://doi.org/10.1007/s10994-009-5152-4	

Biass,	S.,	Bonadonna,	C.,	&	Houghton,	B.	F.	2019.	A	step-by-step	evaluation	of	empirical	methods	to	
quantify	eruption	source	parameters	from	tephra-fall	deposits.	Journal	of	Applied	Volcanology,	
8(1).	https://doi.org/10.1186/s13617-018-0081-1	

Biass,	S.,	Jenkins,	S.,	Lallemant,	D.,	Lim,	T.N.,	Williams,	G.	and	Yun,	S.H.,	2021.	Remote	sensing	of	volcanic	
impacts.	In	Forecasting	and	Planning	for	Volcanic	Hazards,	Risks,	and	Disasters	(pp.	473-491).	
Elsevier.	

Biass,	S.,	Reyes-Hardy,	M.	P.,	Gregg,	C.,	di	Maio,	L.	S.,	Dominguez,	L.,	Frischknecht,	C.,	Bonadonna,	C.,	&	
Perez,	N.	2024.	The	spatiotemporal	evolution	of	compound	impacts	from	lava	Hlow	and	tephra	
fallout	on	buildings:	lessons	from	the	2021	Tajogaite	eruption	(La	Palma,	Spain).	Bulletin	of	
Volcanology,	86(2).	https://doi.org/10.1007/s00445-023-01700-w	

Blong,	R.	2003a.	A	Review	of	Damage	Intensity	Scales.	Available	at:	
http://www.es.mq.edu.au/NHRC/web/scales/scalesindes.htm.	

Blong,	R.	2003b.	Building	damage	in	Rabaul,	Papua	New	Guinea,	1994.	Bulletin	of	Volcanology	65(1),	
pp.	43–54.	doi:	10.1007/s00445-002-0238-x.	

Formatted: Font: Cambria, 11 pt

https://doi.org/10.1007/978-3-319-94463-0


 

 40 

Bouchard,	I.,	Rancourt,	M.Eh .,	Aloise,	D.	and	Kalaitzis,	F.	2022.	On	Transfer	Learning	for	Building	Damage	
Assessment	from	Satellite	Imagery	in	Emergency	Contexts.	Remote	Sensing	14(11),	pp.	1–29.	
doi:	10.3390/rs14112532.	
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