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We	sincerely	thank	both	reviewers	for	their	detailed	and	constructive	feedback,	and	the	time	taken	to	
review	this	manuscript.	We	have	addressed	all	comments	and	provide	a	response	below.	

 
Reviewer	comments	are	in	black,	our	responses	are	in	green,	and	excerpts	from	the	revised	manuscript	
are	in	blue.		

 
Reviewer	1	
 
General	comments	

	
My	main	impression	from	reading	this	manuscript	is	the	focus	on	the	method.	The	method	is	long,	and	
although	I	understand	the	complexity	of	finding	a	balance	between	conciseness	and	thoroughness	in	
describing	the	development	of	such	a	pipeline,	some	parts	are	hard	to	follow,	and	some	aspects	remain	
somehow	obscure	after	multiple	reads.	Everything	is	documented	below,	but	two	aspects	that	remain	
puzzling	at	this	point	are:	

1. The	introduction	to	the	two	classiDier	tasks	-	which	are	mentioned	early	in	the	method	section	
with	reference	to	a	more	detailed	description	that,	unless	I	am	mistaken,	never	really	comes	
	

• For	clarity	we	have	added	in	the	following	explanation	to	section	2.3.2:	
	

2.3.2	 Damage	classiDication	
	
We	chose	to	divide	building	damage	classiDication	into	two	separate	classiDications,	
ClassiDier	 1	 distinguishes	 between	 ‘No	 damage	 to	 minor	 damage’	 versus	 the	
combined	 classes	 of	 ‘Moderate	 damage’	 and	 ‘Major	 damage’,	 while	 ClassiDier	 2	
further	differentiates	between	‘Moderate	damage’	and	‘Major	damage’.	A	hierarchical	
approach	to	classiDication	has	been	found	effective	when	the	number	of	samples	is	
limited	or	classes	are	unbalanced	(Li	et	al.,	2019b;	An	et	al.,	2021).	We	conducted	
experiments	separately	for	ClassiDiers	1	and	2.	
	

2. The	generation	and	use	of	the	orthomosaic,	which	raises	several	question	(i.e.,	georeferencing	of	
some	 of	 the	 datasets,	 whether	 the	 training	 and	 further	 predictions	 are	 performed	 on	 the	
orthomosaic	or	individual	images).	

	
• All	 bounding	 box	 labelling,	 training,	 and	 evaluation	 described	 in	 Section	 3	 is	

conducted	 on	 the	 individual	 non-georeferenced	 images.	 	 This	 was	 done	 for	 two	
reasons,	Dirstly	to	preserve	the	multiple	viewing	angles	that	we	have	in	the	images;	
and	secondly	since	Dataset	1	does	not	contain	GPS	positioning	or	altitudes.	However,	
we	recognize	that	for	operational	purposes	spatial	information	is	required,	therefore	
we	 generated	 the	 pipeline	 which	 can	 operate	 over	 both	 georeferenced	 or	 non-
georeferenced	 images.	 To	 demonstrate	 its	 application,	 we	 generated	 the	
orthomosaic	images	of	the	town	of	Owia,	the	only	location	in	our	testing	dataset	that	
has	 sufDicient	 images	with	 spatial	 information	 to	 do	 so.	We	 have	 clariDied	 this	 in	
Section	2.3,	which	now	reads:	
Past	 studies	have	 trained	deep	 learning	algorithms	on	georeferenced	 images	 (i.e.,	
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each	pixel	has	a	geographical	location	attached)	(Gupta	and	Shah,	2020;	Shen	et	al.,	
2021;	Bouchard	et	al.,	2022)	and	non-georeferenced	images	(e.g.,	Li	et	al.,	2019a;	Pi	
et	 al.,	 2020;	 Cheng	 et	 al.,	 2021).	 In	 this	work	we	 labelled	 the	 non-georeferenced	
images	and	trained	models	on	these.	This	was	done	Dirstly,	to	preserve	the	multiple	
viewing	angles	that	we	have	of	each	building	with	each	image	counting	as	a	different	
data	point,	and	secondly,	due	to	the	absence	of	GPS	locations	on	a	large	portion	of	
the	 dataset.	 In	 an	 operational	 context,	 spatial	 information	 must	 be	 tied	 to	 the	
assessed	damage.	Therefore,	beyond	the	creation	of	distinct	models	for	each	task,	we	
designed	 a	 comprehensive,	 fully	 automated	 pipeline	 that	 integrates	 models	 for	
building	 localisation	 and	 damage	 classiDication.	 Our	 pipeline	 contains	 all	 of	 the	
necessary	processing	steps	to	guide	images	through	the	separate	models	enabling	
them	to	operate	on	a	georeferenced	orthomosaic	image	(to	be	generated	separately)	
or	on	non-georeferenced	images.	When	applied	to	an	orthomosaic	image	the	output	
from	the	pipeline	is	a	georeferenced	vector	dataset	that	can	readily	be	plotted	in	a	
GIS	to	generate	damage	maps.			
	
In	Section	4	we	apply	 the	pipeline	 to	assess	building	damage	 in	 the	 town	of	Owia,	
which	is	in	the	north	of	St	Vincent	and	received	50-90	mm	of	tephra	fall	(Figure	1).		
Owia	was	selected	out	of	the	three	possible	test	set	locations	(Figure	3)	due	to	its	large	
size	and	the	existence	of	GPS	locations	that	enabled	the	generation	of	a	georeferenced	
orthomosaic	 image;	 for	 this	we	 used	 Agisoft	Metashape	 software.	 To	 compare	 the	
assessed	building	damage	with	tephra	thickness,	we	used	the	TephraFits	code	(Biass	
et	 al.,	 2019)	 to	 identify	 the	 theoretical	maximum	accumulation	using	 the	 isopachs	
from	 Cole	 et	 al.,	 (2023).	 This	 maximum	 accumulation	 and	 the	 isopachs	 were	
interpolated	using	cubic	splines	and	the	surface	was	exported	at	a	resolution	of	10	m	
to	provide	a	tephra	thickness	value	for	each	building.		
	

• We	 did	 not	 manually	 georeference	 the	 image	 datasets	 that	 did	 not	 have	 GPS	
positioning	or	altitudes.	We	now	specify	 this	 in	 the	description	of	 the	datasets	 in	
Section	2.1:	
Images	 do	 not	 contain	 GPS	 positioning	 or	 altitudes	 and	 were	 not	 manually	
georeferenced.	
	
	

The	second	aspect	is	the	balance	between	methodology	and	application.	Although	the	case-study	serves	
as	a	basis	for	the	development	of	a	method,	its	application	in	section	4	is	less	than	20	lines,	which	felt	
anticlimatic!	 Perhaps	 is	 there	 a	political	 context	 that	 prevents	 further	 analyses	 as	 it	 is	 often	 the	 case	
following	 recent	 eruptions,	 and	 I	don't	 expect	 the	authors	 to	 remodel	 the	manuscript	 around	a	more	
detailed	analysis.	However,	even	without	a	direct	application	to	la	Soufrière	volcano,	some	aspects	could	
be	discussed	in	the	context	of	physical	impacts	to	buildings	to	widen	the	very	method-oriented	message	
to	a	broader	audience.		

• We	do	not	present	a	full	damage	assessment	for	all	locations	because	the	bulk	of	the	
data	 that	 we	 have	 were	 used	 for	 training	 and	 evaluating	 the	 model,	 and	 so	 we	
considered	 that	 applying	 our	model	 to	 data	 that	 it	was	 trained	 on	was	 somewhat	
circular.	In	the	testing	dataset	there	were	three	locations	that	were	not	used	for	model	
development:	Owia,	Richmond	and	Troumaca	(see	Figure	3	main	text),	we	used	the	
largest	of	these	(Owia)	to	run	our	example	application.	Nevertheless,	we	agree	that	



 3 

more	 analysis	 in	 the	 context	 of	 damage	 assessment	 is	 a	 good	 idea	 and	 we	 have	
elaborated	on	the	Owia	example.	We	interpolated	between	the	isopachs	and	extracted	
a	tephra	thickness	per	building.	We	have	adapted	Figure	7	to	include	plots	that	show	
the	number	of	each	damage	state	as	a	function	of	tephra	thickness	bins	(see	below),	
and	added	in	the	following	description	of	the	Owia	results:	
	
The	tephra	fall	building	damage	map	shown	in	Figure	7a	was	produced	by	overlaying	
the	pipeline	output	georeferenced	vector	with	 the	orthomosaic	 image	 in	QGIS.	Our	
remote	damage	assessment	pipeline	identiDied	442	buildings.		Of	these,	78%	(N	=	343)	
were	 classiDied	 as	 having	 No	 damage	 to	 minor	 damage,	 9%	 (N	 =	 40)	 as	 having	
Moderate	damage	and	13%	(N	=	59)	as	having	Major	damage.	We	observed	that	the	
two	upper	tephra	fall	thickness	bins	(70-80	mm	and	80-90	mm),	both	had	a	higher	
proportion	 of	 buildings	with	Major	 damage	 compared	 to	 the	 lower	 thickness	 bins	
(Figure	 7b,	 c),	 indicating	 a	 correlation	 between	 tephra	 fall	 thickness	 and	 building	
damage	though	it	is	not	very	pronounced.	These	Dindings	are	discussed	in	Section	5.3.	

We	have	adapted	the	discussion	Section	5.3	to	include	discussion	of	our	findings	for	
Owia	in	the	context	of	the	damage	assessment	literature:	

Application	of	our	remote	damage	assessment	pipeline	to	the	town	of	Owia	found	
that	22%	of	buildings	that	received	tephra	accumulation	in	the	range	of	50-90	mm	
experienced	Moderate	damage	or	Major	damage.	Within	this	range,	the	relationship	
between	tephra	thickness	and	building	damage	was	not	as	pronounced	as	in	other	
studies	(Blong,	2003b;	Hayes	et	al.,	2019;	Jenkins	et	al.,	2024).	This	may	be	attributed	
to	 the	 small	 geographic	 area	 and	 therefore	 small	 range	 of	 tephra	 thicknesses	
considered	 in	 our	 application	 when	 compared	 to	 other	 studies.	 In	 the	 damage	
assessments	 of	 Blong,	 (2003b),	 Hayes	 et	 al.,	 (2019)	 and	 Jenkins	 et	 al.,	 (2024)	
buildings	received	100-950	mm,	1-600	mm,	and	1-175	mm	respectively.	Spence	et	
al.,	 (1996)	 assessed	 building	 damage	 over	 a	 similarly	 narrow	 range	 of	 tephra	
thicknesses	 to	 this	 work	 (150-200	 mm)	 and	 found	 that	 there	 was	 considerable	
variation	 in	 the	 level	 of	 damage	despite	 the	majority	 of	 buildings	having	 a	metal	
sheet	roof.	The	spacing	between	the	principal	roof	supports	(roof	span)	was	found	
to	 be	 important	 for	 the	 amount	 of	 damage	 observed,	 with	 long	 span	 buildings	
experiencing	higher	 levels	 of	 damage	 than	 short	 span	ones	 (Spence	 et	 al.,	 1996).	
There	are	 limited	 long	span	buildings	 in	the	Owia	case	study,	however	additional	
characteristics	 such	 as	 construction	 style	 and	 material,	 building	 layout,	 age,	
condition,	height,	and	roof	pitch	can	all	affect	a	buildings	ability	to	withstand	tephra	
loading	(Spence	et	al.,	1996;	Pomonis	et	al.,	1999;	Blong,	2003b;	Jenkins	et	al.,	2014).	
Variation	in	these	characteristics	across	Owia	could	be	responsible	for	the	observed	
variation	in	building	damage	over	the	narrow	range	of	thicknesses	considered.		

If	 we	 convert	 tephra	 thickness	 to	 loading,	 we	 can	 compare	 the	 results	 of	 our	
assessment	 with	 existing	 relationships	 between	 tephra	 loading	 and	 damage	 for	
similar	building	types.	Using	a	density	of	1500	kg/m!	(Cole	et	al.,	2023)	suggests	that	
a	 loading	 of	 at	 least	 75-135	 kg/m!	 was	 applied	 to	 buildings	 for	 the	 range	 of	
thicknesses	considered	(50	mm-90	mm).	Census	data	for	Owia	states	that	90	%	of	
buildings	have	metal	sheet	roofs	(SVG	population	and	housing	census,	2012),	with	
the	remaining	8%	comprised	of	reinforced	concrete	roofs	and	2%	‘other	material’.	
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Given	the	higher	resistance	of	the	8%	of	non-metal	sheet	roof	buildings	in	Owia,	we	
might	expect	vulnerability	models	developed	for	metal	sheet	roofs	to	overestimate	
damage	 in	 the	 town.	 Fragility	 functions	 developed	 for	 Indonesian	 style	 buildings	
with	metal	sheet	roofs	(Williams	et	al.,	2020),	calculate	a	48-80%	probability	of	Owia	
buildings	 experiencing	 damage	 exceeding	 Damage	 State	 2,	 higher	 than	 the	 22%	
experiencing	 Moderate	 or	 Major	 damage	 in	 our	 study.	 Fragility	 curves	 for	 roof	
failure	 (Major	damage)	of	 old	or	poor	 condition	metal	 sheet	 roofs	 (Jenkins	 et	 al.,	
2014),	calculate	that	just	over	10%	of	buildings	in	Owia	would	experience	sufficient	
loading	 for	 roof	 collapse,	 comparable	 to	 the	 13%	 observed	 in	 our	 study.	 These	
comparisons	highlight	 some	of	 the	 challenges	associated	with	using	vulnerability	
models	developed	for	different	locations.	Moreover,	they	reiterate	the	need	for	the	
collection	 of	 building	 typology	 and	 post-event	 impact	 data	 that	 can	 be	 used	 to	
increase	the	amount	of	empirical	data	available	for	vulnerability	model	development	
and	allow	regional	vulnerability	models	to	be	developed	for	specific	building	types.		

	

	
One	component	I	felt	was	lacking	is	the	analysis	of	how	the	deDined	damage	states	Dit	in	a	wider	damage	
classiDication	scheme.	The	only	mention	to	this	aspect	is	found	in	Section	5.5.	However,	discussion	points	
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raised	only	seem	to	focus	on	the	number	of	classes	on	the	scale,	but	miss	a	more	systematic	comparison	
with	 other	 schemes	 as	 well	 as	 a	 critical	 interpretation	 of	 the	 damages	 captured	 by	 the	 present	
methodology.	As	a	result,	the	reader	is	left	with	a	long	list	of	computed	parameters	to	assess	the	quality	
of	the	impact	assessment,	but	with	no	concrete	link	to	reality.	Would	it	be	possible	to	add:	
	

• Images	of	a	limited	number	of	buildings	illustrating	each	damage?	
o We	have	added	the	following	Digure	to	show	examples	of	the	different	damage	states.	

	
Figure	2.	Example	of	the	three	damage	states	used	in	this	work:	No	damage	to	
minor	damage,	Moderate	damage	and,	Major	damage.	

	
	

	
• A	description	of	what	 these	damages	capture?	→	i.e.	 is	 the	difference	between	moderate	and	

heavy	a	structural	component?	Roof	collapse?	
	

• We	have	added	a	new	table	(Table	2)	that	shows	existing	tephra	fall	damage	schemes	
(Spence	et	al.,	1996;	Blong,	2003;	Hayes	et	al.,	2019;	Jenkins	et	al.,	2024)	and	have	
adapted	Section	2.2	 to	 include	more	discussion	around	how	our	scheme	 Dits	with	
existing	schemes:	
	
Developing	and	applying	a	building	damage	state	framework	
	
The	 Dirst	 tephra	 fall	 building	 damage	 state	 framework	 was	 developed	 after	 the	
eruption	of	Pinatubo,	Philippines,	1991	(Spence	et	al.,	1996),	and	was	adapted	from	
the	macroseismic	 intensity	 scale	 used	 to	 evaluate	 seismic	 damage	 (Karnik	 et	 al.,	
1984).	In	the	adapted	framework	damage	ranges	from	DS0	–		“no	damage”,	through	
to	DS5	 –	 “complete	 roof	 collapse	 and	 severe	 damage	 to	 the	 rest	 of	 the	 building”.		
Subsequent	tephra	fall	building	damage	state	frameworks	were	modiDied	from	the	
work	 of	 Spence	 et	 al.,	 (1996)	 with	 changes	 in	 the	 wording	 made	 to	 reDlect	 the	
characteristics	of	the	case	study	(Table	2).	In	the	damage	state	descriptions,	damage	
to	 three	 critical	 aspects	 of	 a	 building	 is	 described:	 the	 roof	 covering,	 the	 roof	
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structure,	and	the	vertical	structure	(Blong	2003b;	Hayes	et	al.	2019;	Jenkins	et	al.,	
2024).		In	our	study,	most	images	depict	buildings	from	an	at	nadir	or	close	to	nadir	
perspective	 making	 roof	 damage	 more	 discernible	 than	 damage	 to	 the	 vertical	
structure.	 Thus,	 we	 generated	 a	 damage	 state	 framework	 that	 is	 based	 on	 the	
proportion	of	observable	damage	to	the	roof,	as	in	the	work	of	Williams	et	al.	(2020).	
Our	Dinal	framework,	which	was	developed	over	several	iterations,	classiDies	building	
damage	 into	 three	 classes:	 No	 observable	 damage	 to	 minor	 damage,	 Moderate	
damage,	and	Major	damage	(Table	3).	Damage	states	are	deliberately	generic	so	that	
the	range	of	possible	damage	to	the	range	of	different	building	types	can	be	captured	
(Blong,	 2003a).	 Our	 three	 classes	 are	 comparable	 to	 DS0-1,	 DS2,	 and	 DS3-5,	
respectively,	 of	 damage	 scales	 developed	 for	 ground	 surveys	 (Table	 2).	 In	 the	
frameworks	presented	in	Table	2,	DS1	describes	light/minor	damage	or	superDicial	
damage	to	non-structural	components.	In	our	framework	we	included	minor	damage	
in	the	No	damage	class	since	the	difference	between	the	two	can	be	subtle	and	not	
easily	discernible	through	remote	assessment.	Furthermore,	buildings	with	minor	
damage	are	typically	habitable	and	unlikely	to	require	costly	repairs;	therefore,	from	
a	 response	 and	 recovery	 perspective,	 we	 considered	 them	 better	 grouped	 with	
undamaged	buildings.	Our	Moderate	damage	class	requires	damage	or	collapse	to	up	
to	50%	of	the	roof	area,	which	closely	Dits	with	damage	state	2	of	Blong,	(2003),	Hayes	
et	al.,	(2019)	and	Jenkins	et	al.,	(2024).	The	ground-based	frameworks	distinguish	
damage	states	3	through	5	by	increasing	amounts	of	damage	to	the	building	walls	
(Table	3).	The	quantity	and	severity	of	impacted	walls	is	not	easy	to	differentiate	in	
the	majority	of	our	UAV	images,	which	show	buildings	from	a	nadir	or	close	to	nadir	
perspective.	 Therefore	 in	 our	 framework,	 we	 group	 these	 states	 together	 under	
’Major	damage’.	
	
	

• Our	damage	assessment	scheme	is	provided	in	Table	3,	we	have	now	added	to	the	
table	a	translation	between	our	scheme	and	existing	schemes.	

• Regarding	the	long	list	of	computed	parameters	we	have	revised	parts	of	the	results	
(Section	3)	to	provide	higher	level	oversight	of	what	the	numbers	mean.	Considering	
this	we	have	also	removed	one	of	the	figures	(confusion	matrix-original	manuscript	
figure	6)	 to	 simplify	 the	message	and	 to	make	 the	writing	more	direct.	Rephrased	
sections	include:	

• Section	3.1.1:	

All	 trained	 sieve	 networks	 achieved	macro	 and	 class	 F1	 scores	 that	were	 >	 0.973	
(Table	 5).	 The	 sieve	 networks	 efficacy	 at	 improving	 building	 localisation	 is	
demonstrated	by	comparing	the	results	of	the	best	detector	pre-sieving	(Table	4	row	
ID	1)	with	the	post-sieving	results.	 	Pre-sieving	there	were	a	 large	number	of	 false	
positive	detections,	resulting	in	a	precision	of	0.588,	post-sieving	these	were	reduced	
and	the	precision	increased	to	0.695	(Table	5).		

• Section	3.1.2:	
Analysing	performance	variations	across	different	 testing	datasets	can	 then	 inform	
recommendations	for	future	data	collection	strategies	(see	Section	6).		
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• Section	3.1.3:	
	To	 understand	 if	 a	 better	 model	 could	 be	 achieved	 with	 more	 data	 available	 for	
training,	we	combined	the	training	and	validation	data	and	used	this	 to	retrain	the	
best	experimental	setup	for	the	detector.	Evaluation	of	the	retrained	model	on	the	test	
set	resulted	in	an	average	precision	increase	from	0.701	to	0.751	for	the	non-sieved	
detector,	and	from	0.668	to	0.728	for	the	sieved	detector,	showing	that	having	more	
data	available	for	training	produced	a	better	model	(Table	6).		
	
While	the	AP	is	higher	for	the	retrained	detector	without	the	sieve,	the	addition	of	the	
sieve	 network	 creates	 a	 better	 balance	 between	 the	 precision	 and	 recall	 which	 is	
reDlected	 in	 the	 higher	 F1	 score	 (Table	 6).	 For	 the	 present	 application	 equal	
importance	is	given	to:	1)	making	correct	predictions	about	building	locations,	and	2)	
identifying	as	many	buildings	as	possible.	Consequently,	striking	the	balance	between	
precision	and	recall	is	crucial.	
	

• Section	3.2.1:	
The	Dive	experiments	with	the	highest	macro	F1	score	are	shown	in	Table	7,	with	the	
full	lists	provided	in	Tables	S3	and	S4	of	the	supplementary	material.	For	ClassiDier	1,	
Macro	 F1	 scores	 across	 all	 15	 experiments	 ranged	 from	 0.753	 to	 0.836,	while	 for	
ClassiDier	2	scores	ranged	from	0.776	to	0.810	(Tables	7,	S3,	S4).	Models	trained	to	
differentiate	 between	 the	 No	 damage	 to	 minor	 damage	 and	 Damaged	 classes	
performed	better	for	the	No	damage	to	minor	damage	class,	while	those	trained	to	
differentiate	between	Moderate	and	Major	damage	performed	better	 for	 the	Major	
damage	class	(Table	7).	

	
• Section	3.2.2:	

For	ClassiDier	2,	the	Moderate	damage	class	is	more	sensitive	to	the	choice	of	location	
and	dataset	used	for	the	evaluation	than	the	Major	damage	class	(Figure	6).	For	the	
different	locations	the	mean	F1	score	ranged	from	0.583-0.974.	Similarly	to	ClassiDier	
1,	the	location	with	the	lowest	mean	F1	score	is	Fitz	Hughes,	whereas	the	highest	score	
was	produced	for	Orange	Hill.	For	the	different	datasets	the	range	for	the	Moderate	
damage	class	is	between	0.522-0.746.	For	the	Major	damage	class	F1	scores	for	the	
distinct	locations	are	between	0.728-0.933	while	for	the	different	datasets	the	range	
is	between	0.711-0.867.	
	

	

	

In	any	case,	I	suggest	adding	-	where	possible	-	a	couple	of	bridges	that	help	interpreting	the	model	
results	beyond	the	simple	application	of	the	method,	and	broadening	findings	to	the	actual	literature	
on	 impact	 assessments	 on	 buildings	 (note:	 the	 discussion	 could	 also	 be	 more	 supported	 by	
references!).	

• We	 have	 updated	 the	 discussion	 to	 include	 a	 section	 that	 considers	 our	 damage	
assessment	for	Owia	in	the	context	of	the	literature	on	impact	assessment,	see	earlier	
comment	on	page	3	



 8 

• We	have	revised	the	discussion	to	include	the	relevant	references:	

Section	5.1	now	reads	as	follows:	

Through	 running	 our	 building	 localisation	 experiments	 we	 found	 that	 the	 pre-
processing	 of	 images	 before	 detector	 training	 (particularly	 the	 block	 size)	
significantly	influenced	detector	performance.	The	block	sizes	tested	were	chosen	as	
a	trade-off	between	reducing	image	size	sufficiently	to	reduce	computational	cost,	
and	 retaining	 a	 large	 enough	 size	 such	 that	 buildings	 were	 not	 dissected	
unnecessarily.	Given	that	the	optimum	block	size	was	the	middle	size	of	the	range	
tested,	 we	 are	 confident	 that	 this	 balance	was	 achieved.	 Cross-validation	 results	
demonstrated	variability	in	average	precision	(AP)	for	models	trained	on	different	
locations	and	imagery	datasets	(UWI-TV/GOV/SRC)	(Section	3.1.2;	Figure	5).	Deep	
learning	models	are	known	to	perform	well	when	the	data	 they	are	evaluated	on	
have	 similar	 characteristics	 to	 the	 data	 they	were	 trained	 on,	 though	 have	more	
difficulty	when	working	with	‘out	of	distribution’	samples	(Ben-David	et	al.,	2010).	
Given	 the	relatively	consistent	building	 typology	across	 locations	 (most	buildings	
observed	 are	 detached	 single	 storey	 buildings	with	 either	 a	 gable	 or	 hip	 shaped	
metal	sheet	roof;	a	lesser	proportion	have	flat	concrete	roofs),	the	differences	in	AP	
are	 likely	 due	 to	 observable	 variations	 in	 UAV	 altitude,	 off-nadir	 angles,	 tephra	
thicknesses,	and	varying	training	sample	sizes.		

The	cross-validation	AP	was	notably	lower	for	the	London	and	Fitz	Hughes	datasets	
(Section	3.1.2).	For	the	London	images	(from	SRC	and	GOV	datasets)	this	 is	 likely	
caused	by	the	smaller	apparent	size	of	buildings	in	these	images	compared	to	the	
other	locations,	due	to	the	higher	UAV	altitude.	Variations	in	object	size	within	the	
training	and	testing	data	has	been	found	to	affect	the	performance	of	deep	learning	
models	developed	for	building	localisation,	with	models	often	performing	better	for	
objects	that	are	the	same	size	as	those	in	the	training	data	(Nath	and	Benzadan,	2020;	
Cheng	et	al.,	2021;	Bouchard	et	al.,	2022).	Fitz	Hughes	images	were	all	from	the	UWI-
TV	 image	 dataset	 which	 contributed	 just	 17%	 to	 the	 combined	 training	 and	
validation	set	used	for	cross	validation.	This	dataset	was	collected	closer	in	time	to	
the	eruption,	therefore	as	a	whole	had	more	tephra	on	the	ground	than	the	SRC	and	
GOV	datasets,	which	affects	background	colour.	Furthermore	 the	UWI-TV	dataset	
viewed	 buildings	mostly	 from	 an	 off-nadir	 perspective,	 while	 the	 other	 datasets	
were	 predominantly	 nadir	 images.	 The	 effect	 of	 image	 background	 colour	 on	
localisation	performance	is	expected	to	be	minor,	Cheng	et	al.,	(2021)	found	that	for	
the	same	event	 localisation	AP	dropped	 from	65.6	 to	63.3	when	 their	model	was	
tested	 on	 images	 containing	 buildings	 surrounded	 by	 vegetation	 compared	 to	
buildings	with	 an	 ocean	 backdrop.	While	 Bouchard	 et	 al.,	 (2022)	 suggested	 that	
models	quickly	learn	to	ignore	background	pixels.	On	the	other	hand,	differences	in	
off-nadir	angle	is	a	widely	acknowledged	challenge	of	working	with	UAV	or	aerial	
images	(Cotrufo	et	al.,	2018;	Nex	et	al.,	2019;	Pi	et	al.,	2020).	Under	representation	
of	the	mostly	off-nadir	UWI-TV	images	in	the	training	data	may	have	impacted	the	
model's	 ability	 to	 recognise	 such	 instances	 in	 the	 test	 data.	 During	 model	
development	 we	 experimented	 with	 different	 models	 for	 the	 different	 datasets	
(UWI-TV,	 GOV,	 SRC),	 but	 found	 that	models	 developed	 on	 the	 combined	 dataset	
performed	better	 than	 those	developed	on	 the	separate	datasets	and	a	combined	
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model	was	the	one	selected	and	used	for	cross	validation.	Rather	than	suggesting	
that	variations	 in	off-nadir	angle	are	not	 important,	 this	 finding	 likely	reflects	the	
smaller	size	of	the	individual	datasets	compared	to	the	combined	datasets,	meaning	
that	 less	 information	 was	 available	 to	 learn	 from.	 The	 application	 of	 sampling	
approaches	 like	 those	 used	 for	 the	 damage	 states	 in	 the	 classification	 model	
development	(over	or	under	sampling)	could	have	been	applied	to	balance	the	data.		
However,	the	SRC	dataset	 is	much	larger	than	either	of	the	UWI-TV	and	GOV	sets	
(Figure	3),	therefore	we	considered	that	oversampling	would	introduce	significant	
bias	 towards	 the	 specific	 examples	 in	 the	 under-represented	 dataset,	 whereas	
through	under	sampling	we	would	lose	a	large	amount	of	the	data	that	are	available	
to	learn	from.	Given	these	factors,	we	did	not	use	sampling	approaches.	Future	work	
might	 consider	 the	 application	 of	 generative	 AI	 algorithms	 such	 as	 generative	
adversarial	networks	(GANs)	to	expand	the	dataset	(e.g.,	Yi	et	al.	2018;	Yorioka	et	al.,	
2020),	 although	 more	 work	 needs	 to	 be	 done	 to	 quantify	 the	 diversity	 in	 the	
generated	data.				

The	variability	in	cross-validation	results	for	the	building	localisation	model	likely	
comes	from	a	combination	of	the	above	factors	(differences	in	UAV	altitude,	off-nadir	
angles,	tephra	thickness,	and	varying	training	sample	sizes),	and	suggests	that	there	
was	insufficient	information	in	the	training	data	for	our	detection	models	to	perform	
well	across	the	range	of	characteristics	present.	This	is	supported	by	the	increased	
performance	 when	 the	 best	 localisation	 model	 was	 retrained	 on	 the	 combined	
training	and	validation	data.	However,	further	investigation	is	required	to	separate	
the	unique	effect	of	each	aspect.	

	

Specific	comments	
	
Line	84-89:	I	suggest	rephrasing	this	sentence	as	it	is	both	long	and	in	which	parts	in	brackets	could	be	
better	integrated.	Maybe	something	along	the	lines	of:	

	
To	our	knowledge,	only	one	study	attempts	automating	the	assessment	of	building	damage	for	volcanic	
hazards	(Wang	et	al.,	2024).	In	contrast,	attention	has	been	given	to	more	commonly	occurring	hazards	
such	as	earthquakes	and	hurricanes,	with	the	development	of	both	mono-	temporal	(post-event	imagery	
only)	and	multi-temporal	(uses	pre-	and	post-event	imagery)	approaches	(Table	1).	

In	addition,	some	"multi-temporal"	studies	might	also	differ	in	the	use	of	either	a	"before-after"	approach	
(i.e.,	the	comparison	of	two	images)	vs	time-series	approach.	Maybe	worth	specifying	if	applicable	to	your	
problem.	

• We	have	adopted	both	suggestions,	the	text	now	reads:	

To	our	knowledge,	only	one	study	attempts	to	automate	the	assessment	of	building	
damage	for	volcanic	hazards	(Wang	et	al.,	2024).	In	contrast,	attention	has	been	given	
to	more	commonly	occurring	hazards	such	as	earthquakes	and	hurricanes,	with	the	
development	of	both	mono-	temporal	(post-event	imagery	only)	and	multi-temporal	
(images	 taken	 at	 different	 times)	 approaches	 (Table	 1).	 Line	 101-102:	 I	 like	 the	
example!	I	might	use	a	closer	analogy	to	the	problem	tackled	here,	but	I	leave	that	to	
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you.	

• We	have	changed	dogs	and	cats	to:	

“between	different	roof	types”	

Line	 135:	 Not	 wanting	 to	 open	 a	 can	 of	 worms	 -	 and	 totally	 aware	 of	 the	 use	 of	 post-disaster	
"opportunities",	I	find	the	use	of	the	term	"opportunity"	perhaps	a	bit	misplaced	(i.e.,	using	impacts	on	
people's	homes	as	the	basis	for	research).	I	know	this	is	not	the	case,	but	perhaps	a	more	neutral	phrasing	
would	be	more	appropriate?	(something	along	the	lines	of	"prospect"	-	though	I	leave	the	selection	of	the	
most	appropriate	word	to	the	native	English-speaker	authors).	

• We	agree	that	a	more	neutral	phrasing	would	be	better,	we	have	changed	this	to:	

The	2021	eruption	of	La	Soufrière	volcano,	St	Vincent	and	the	Grenadines,	provided	
unprecedented	circumstances	for	the	collection	of	high-resolution	UAV	imagery	

Line	205:	Was	the	dataset	manually	geo-referenced?	If	yes	-	how?	

• Images	 were	 not	 manually	 georeferenced,	 for	 model	 development	 we	 used	 the	
relative	 positions	 of	 bounding	 boxes	 within	 the	 images.	 This	 is	 now	 clarified	 as	
follows:	

Images	do	not	contain	GPS	positioning	or	altitudes.	

	

Line	213:	This	dataset	does	not	contain	any	information	regarding	the	flight	path,	which	also	raises	the	
question	regarding	why	buildings	are	captured	with	a	lower	resolution.	

• This	dataset	(Dataset	2)	does	have	GPS	information	as	stated	in	original	manuscript	
line	 220.	 The	 drone	 was	 flown	 higher	 in	 this	 dataset	 than	 in	 the	 other	 two	 and	
buildings	are	visibly	smaller,	i.e.	they	cover	less	of	the	image	frame.		

Line	240:	The	reason	behind	this	is	not	100%	clear	

• Changed	to:	

Given	 the	 absence	 of	 individual	 building	 location	 information,	 this	 number	 was	
approximated	by	overlaying	Open	Street	Map	building	footprints	with	UAV	GPS	tracks	
where	available.	

Line	242:	For	off-nadir	or	very-off	nadir	images,	how	did	you	ensure	that	single	bounding	boxes	did	not	
overlap	over	buildings	in	the	background?	

• We	have	added	in	the	following	clarification:	

Boxes	were	drawn	to	fit	the	buildings	closely	and	minimise	background	information.	
In	areas	where	buildings	are	 close	 together,	off-nadir	 images	may	 include	parts	of	
other	buildings.		Nevertheless,	this	was	not	considered	an	issue	since	deep	learning	
models	 for	 object	 localisation	 will	 quickly	 learn	 to	 ignore	 background	 pixels	
(Bouchard	et	al.,	2022).	

Line	254:	That	is	not	clearly	intuitive	given	your	description	of	the	datasets.	Did	you	filter	out	off-	nadir	
images?		
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• We	did	not	filter	out	off	nadir	images.	We	have	removed	and	reworded	this	section,	
which	now	reads:	

The	 first	 tephra	 fall	 building	 damage	 state	 framework	 was	 developed	 after	 the	
eruption	of	Pinatubo,	Philippines,	1991	(Spence	et	al.,	1996),	and	was	adapted	from	
the	 macroseismic	 intensity	 scale	 used	 to	 evaluate	 seismic	 damage	 (Karnik	 et	 al.,	
1984).	In	the	adapted	framework	damage	ranges	from	DS0	–		“no	damage”,	through	
to	 DS5	 –	 “complete	 roof	 collapse	 and	 severe	 damage	 to	 the	 rest	 of	 the	 building”.		
Subsequent	 tephra	 fall	building	damage	state	 frameworks	were	modified	 from	the	
work	 of	 Spence	 et	 al.,	 (1996)	 with	 changes	 in	 the	 wording	 made	 to	 reflect	 the	
characteristics	of	the	case	study	(Table	2).	In	the	damage	state	descriptions,	damage	
to	three	critical	aspects	of	a	building	is	described:	the	roof	covering,	the	roof	structure,	
and	the	vertical	structure	(Blong	2003b;	Hayes	et	al.	2019;	Jenkins	et	al.,	2024).		In	
our	study,	most	images	depict	buildings	from	an	at	nadir	or	close	to	nadir	perspective	
making	roof	damage	more	discernible	than	damage	to	the	vertical	structure.	Thus,	we	
generated	a	damage	state	framework	that	is	based	on	the	proportion	of	observable	
damage	 to	 the	 roof,	 as	 in	 the	work	of	Williams	et	 al.	 (2020).	Our	 final	 framework,	
which	was	developed	over	several	 iterations,	 classifies	building	damage	 into	 three	
classes:	 No	 observable	 damage	 to	 minor	 damage,	 Moderate	 damage,	 and	 Major	
damage	(Table	3).	Damage	states	are	deliberately	generic	so	that	the	range	of	possible	
damage	to	the	range	of	different	building	types	can	be	captured	(Blong,	2003a).	Our	
three	classes	are	comparable	to	DS0-1,	DS2,	and	DS3-5,	respectively,	of	damage	scales	
developed	for	ground	surveys	(Table	2).	

	

Line	282/Section	2.3:	This	section	is	not	the	easiest	to	follow.	For	instance,	from	the	first	paragraph	you	
mention	splitting	the	classification	task	in	two,	a	theme	that	you	refer	to	in	almost	every	paragraph,	but	
without	stating	how	or	why.	Can't	this	introduced	and	adequately	presented	in	Section	2.3.3?	Also,	this	
section	keeps	on	referring	to	sections	ahead.	Isn't	it	possible	to	optimise	the	writing	to	better	integrate	
the	development	of	the	pipeline	with	its	model	components?	

• We	have	revised	the	first	paragraph	to	refer	to	only	splitting	the	damage	assessment	
into	 localisation	and	classification.	The	 reference	 to	 splitting	 the	 classification	 into	
two	is	now	moved	down	to	the	classification	section.	We	now	provide	more	rationale	
for	our	decision	to	split	both	aspects.	The	first	paragraph	of	Section	2.3	now	reads:	

	
After	labelling,	we	split	the	full	combined	image	dataset	(2,811	frames	from	the	UWI-
TV,	GOV	and	SRC	sets)	into	train/validation/test	sets	(Figure	3).	Given	that	a	sizable	
proportion	of	the	data	did	not	contain	GPS	positions,	images	from	each	location	were	
kept	 together	 to	 assure	 the	 train,	 validation,	 and	 test	 sets	were	 independent.	 The	
partitioning	 was	 chosen	 to	 include	 diversity	 in	 both	 the	 image	 sets	 (UWI-
TV/GOV/SRC)	and	in	the	location,	which	affects	the	thickness	of	tephra	fall	received.	
We	aimed	for	a	standard	data	split	of	80/10/10,	with	the	majority	of	data	assigned	for	
training,	however	given	the	above	constraints,	this	produced	a	split	of	80%	train,	8%	
validation,	 and	 12%	 test	 (considering	 the	 number	 of	 bounding	 boxes	 and	 not	 the	
number	of	images).	These	datasets	were	used	to	develop	our	approach	for	building	
damage	assessment.	Most	previous	 studies	have	 split	 the	damage	assessment	 task	
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into	 two	 subtasks:	 i)	 building	 localisation	 (i.e.,	 identiDication	 of	 building	 bounding	
boxes	within	the	images)	and	ii)	damage	classiDication	(Table	1).	While	developing	a	
model	 that	can	simultaneously	 locate	and	classify	buildings	with	different	 levels	of	
damage	 is	 feasible,	model	 training	under	 this	approach	can	take	signiDicantly	more	
time	and	resources	to	converge	when	compared	to	an	approach	that	splits	the	tasks	
(Bouchard	et	al.,	2022).	Moreover,	 from	an	operational	perspective,	decoupling	 the	
two	 tasks	makes	 the	 approach	more	 Dlexible,	 for	 example,	 if	 building	 locations	 are	
already	 known	 then	 only	 the	 classiDication	 can	 be	 run,	 speeding	 up	 the	 remote	
assessment.	For	these	reasons,	we	opted	to	split	the	building	damage	assessment	task	
into	two	subtasks.	
	

• The	first	paragraph	of	section	2.3.2	now	reads:	

We	chose	to	divide	building	damage	classification	into	two	separate	classifications,	
Classifier	1	distinguishes	between	‘No	damage	to	minor	damage’	versus	the	combined	
classes	 of	 ‘Moderate	 damage’	 and	 ‘Major	 damage’,	 while	 Classifier	 2	 further	
differentiates	 between	 ‘Moderate	 damage’	 and	 ‘Major	 damage’.	 A	 hierarchical	
approach	to	classification	has	been	found	effective	when	the	number	of	samples	 is	
limited	or	 classes	are	unbalanced	 (Li	 et	 al.,	 2019b;	An	et	 al.,	 2021).	We	conducted	
experiments	separately	for	Classifiers	1	and	2.	

Line	292:	Datasets?	

• Changed	

	

Line	294:	In	general,	I	personally	recommend	a	more	direct	writing	style,	for	instance	changing:	“we	split	
the	 building	 damage	 assessment	 task	 into	 two	 subtasks,	 training	 and	 evaluating	models	 for	 building	
localisation,	 which	 consists	 of	 identifying	 building	 bounding	 boxes	 within	 the	 images	 and	 building	
damage	classification	separately”	to:		

we	split	the	building	damage	assessment	task	into	two	subtasks	that	include	i)	building	localisation	 (i.e.	
identification	 of	 building	 bounding	 boxes	within	 the	 images)	 and	 ii)	building	damage	classification.	

• We	have	edited	this	section	as	per	the	comment	above	(line	282).		We	have	attempted	
to	be	more	direct	 throughout,	 see	 revised	Section	5.1	and	excerpts	 from	Section	3	
above.	

Line	299:	This	is	true	of	most	ML	algorithms,	not	only	deep	learning	

• Changed	this	to	‘machine	learning’.		

Line	301:	"experiment	with	different	hyperparameter	settings"	or	"optimise	hyperparameters"?	

• Changed	as	suggested.	

Line	304:	 I	don't	 think	you	need	to	state	"(localisation,	classification	1,	classification	2)"	at	all	 in	 this	
section,	especially	if	just	added	in	brackets.	That	makes	reading	heavy.	(Same	for	line	309).	

• Removed	from	both	locations.	

Line	309:	Rephrase:	“Once	we	identified	the	best	performing	experimental	setup	for	each	task	(building	
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localisation,	 classification	 1,	 classification	 2),	 we	 combined	 the	 training	 and	 validation	 datasets	 and	
conducted	K-fold	 cross-validation	 using	 the	 experimental	 setup	 and	 optimal	 hyperparameters	that	were	
identified	(Cross	validation:	Section	3.1.3,	Section	3.2.2)”	To:		

After	 hyperparameter	 tuning,	 model	 accuracy	 was	 assessed	 using	 K-fold	 cross-validation	(Cross	
validation:	Section	3.1.3,	Section	3.2.2)	

• Changed	to:	

Once	 we	 identified	 the	 best	 performing	 experimental	 setup	 for	 each	 task,	 we	
conducted	 K-fold	 cross	 validation	 to	 understand	 how	 the	 choice	 of	 training	 and	
validation	data	affects	model	performance	(see	Section	3.1.3,	Section	3.2.2).	

	
Line	316:	In	general,	"data"	is	used	in	a	very	loose	way.	Would	it	work	to	change:	“have	data	from	more	
than	one	dataset”to:	contains	images	from	more	than	one	dataset	

• Changed.	

Line	328:	This	statement	is	a	bit	out	of	place	in	a	methodology	section	(plus	it	is	somehow	true	for	all	
contexts!)	

• We	have	removed	this	sentence.		

Line	331:	Two	comments	here:	

1. Following	the	comment	on	line	205,	there	seems	to	be	georeferencing.	This	should	be	explained	

2. Following	the	comment	on	line	242,	the	definition	of	the	bounding	boxes	seems	to	be	done	on	the	
orthomosaic?	If	yes,	if	I	understand	well,	i)	impact	state	is	inferred	from	individual	images	ii)	this	
is	added	as	a	label	to	the	bounding	boxes	defined	on	the	orthomosaic?	This	needs	more	clarity.	I	
don't	see	any	reference	to	the	generation	of	the	orthomosaic	on	Fig	3.	The	input	to	the	model	
pipeline	should	probably	be	stated	earlier.	

• We	regret	the	confusion	around	the	use	of	the	orthomosaic	image,	bounding	boxes	
were	drawn	on	the	non-georeferenced	images	and	not	on	the	orthomosaic.	This	has	
been	clarified	in	response	to	general	comment	#2.		

• The	generation	of	the	orthomosaic	is	not	included	in	the	pipeline	and	should	be	done	
separately.	We	have	now	stated	this	both	in	Section	2.3	and	in	the	caption	for	Figure	
4.	In	Figure	4c,	we	mislabelled	the	orthomosaic	‘Geotiff’	which	may	have	added	to	the	
confusion,	we	have	now	changed	this.	Figure	4	caption	now	reads:	

Figure	4.	A	 schematic	 showing	 the	 full	methodology	 for	a)	developing	a	model	 for	
building	localisation,	b)	developing	a	sieve	network,	which	acts	as	an	add	on	to	the	
building	localisation	model,	c)	developing	a	model	for	building	damage	classification	
and	d)	the	building	damage	assessment	pipeline	developed	in	this	work.	The	pipeline	
operates	on	an	orthomosaic	image	(to	be	generated	separately)	and	incorporates	the	
final	 trained	 models	 for	 building	 localisation	 and	 two	 stages	 of	 building	 damage	
classification	along	with	all	the	necessary	processing	steps	to	link	the	models.	

	

Line	349:	Support	opensource	by	citing	the	software	used	to	produce	the	figure!	
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• Have	added	in	the	following	to	the	figure	caption:	

Pipeline	generated	using	draw.io.	

	

Line	362:	Here	again,	unclear	if	"image	feature"	refers	to	individual	images	or	the	orthomosaic	

• Here	we	are	explaining	generally	how	Faster	R-CNN	works,	we	have	adapted	the	text	
to	make	this	clear:	

Faster	R-CNN	is	an	improvement	on	the	Fast	R-CNN	algorithm	proposed	by	Girshick,	
(2015).	The	improvement	comprises	an	initial	region	proposal	network	(RPN)	which	
speeds	up	performance.	In	Faster	R-CNN,	image	feature	maps	are	extracted	by	passing	
the	input	image	through	a	pretrained	backbone	CNN.	

	

Line	377:	Here	-	and	anywhere	else	where	you	describe	these	"experiments",	can	you	please	specified	
how	they	were	performed?	Was	it	manually?	In	which	case,	is	there	any	guidance	on	how	you	chose	the	
ranges	of	each	parameter?	Or	did	you	use	optimisation	algorithms?	

• We	 have	 now	 included	 a	more	 thorough	 description	 of	 what	 a	 single	 experiment	
consists	of	however	we	have	 left	 the	ranges	considered	and	 their	rationale	 for	 the	
supplementary	material.	Section	2.3.1	now	reads:	

	
For	object	detection,	to	reduce	model	training	and	inference	time,	full	sized	images	
were	split	into	image	blocks.	Experiments	conducted	as	part	of	building	localisation	
model	selection	included	variations	in	the	size	of	these	blocks,	the	amount	of	overlap	
between	 blocks,	 and	whether	 blocks	were	 resized	 before	 training	 or	 not.	We	 also	
experimented	with	 the	 development	 of	 separate	models	 for	 images	 captured	with	
different	 viewing	 angles,	 training	 for	 only	 the	 SRC	 portion	 of	 the	 dataset	 (images	
mostly	at	nadir)	and	the	combined	UWI-TV-GOV	portion	(images	mostly	off-nadir).	
One	experiment	consisted	of	three	replicates	of	a	given	combination	of	these	aspects.	
Three	replicates	were	conducted	since	the	stochastic	nature	of	the	training	process	
can	cause	models	to	converge	at	slightly	different	points	(Aggarwal,	2018).	For	each	
experiment	the	replicate	with	the	highest	evaluation	metric	was	the	one	compared	
against	the	other	experiments.	A	total	of	34	experiments	were	conducted	to	include	
all	 credible	 combinations	 of	 the	 varied	 hyperparameters	 and	 to	 Dind	 the	 best	
experimental	 setup	 for	 building	 localisation.	 More	 information	 on	 the	
hyperparameter	 values	 used	 in	 experiments	 can	 be	 found	 in	 the	 supplementary	
material.		

Section	2.3.2	now	reads:	

For	each	experiment	three	replicates	were	conducted,	each	consisting	of	a	grid	search	
to	 find	 the	best	combination	of	 learning	rate,	batch	size	and	L2	regularization.	For	
more	information	on	this	see	the	supplementary	material.	

	

Line	381:	This	heading	is	inadequate	(i.e.,	2.3.1	is	"Building	localisation",	why	does	2.3.2.	-	and	2.3.3	too	
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-	need	a	"building"?).	In	addition,	why	not	keeping	these	heading	conceptual	-	e.g.,	"Building	localisation"	
and	"Building	classification"?	It	seems	to	me	that	the	sieve	network	is	part	of	the	building	localisation	
task.	

• We	 have	 removed	 the	 ‘sieve	 network’	 heading	 throughout	 and	 text	 is	 now	
incorporated	 into	 the	 localisation	 section.	 We	 have	 changed	 building	 damage	
classification	->	damage	classification	throughout.	

Line	383:	Define	"small"	or	remove	

• Removed.	

	

Line	386:	Rephrase:	The	dataset	used	for	training	and	evaluating	the	sieve	network	consists	of	randomly	
cropped	background	samples	from	full	sized	images	in	the	training	and	validation	sets	

• Changed	as	suggested.		

Line	397:	It	seems	that	up	to	this	point,	the	purposes	of	classifiers	1	and	2	have	not	been	defined	(unless	
we	count	Figure	3	as	doing	so).	I	might	be	mistaken,	but	I	think	this	highlights	the	need	of	rethinking	a	
bit	the	structure	of	Section	2.3.	

• We	have	now	explained	in	more	detail	the	purpose	of	each	classifier	and	the	rationale	
for	splitting	the	classification	into	two	tasks:	

We	chose	to	divide	building	damage	classification	into	two	separate	classifications,	
Classifier	1	distinguishes	between	‘No	damage	to	minor	damage’	versus	the	combined	
classes	 of	 ‘Moderate	 damage’	 and	 ‘Major	 damage’,	 while	 Classifier	 2	 further	
differentiates	 between	 ‘Moderate	 damage’	 and	 ‘Major	 damage’.	 A	 hierarchical	
approach	to	classification	has	been	found	effective	when	the	number	of	samples	 is	
limited	or	classes	are	unbalanced	(Li	et	al.,	2019b;	An	et	al.,	2021).		

Line	419:	"False	positive"	has	been	used	in	line	385	but	not	defined	

• We	now	define	false	positives	in	line	385:	

Bounding	boxes	produced	by	the	detector	are	passed	to	the	sieve	network	to	filter	out	
detections	that	are	false	positives.	A	false	positive	occurs	when	the	detector	predicts	
a	bounding	box	 that	does	not	have	an	overlapping	 labelled	building	 (i.e.,	detects	a	
building	when	there	is	not	one).	

Line	444:	The	five	experiments	with	the	highest	average	precision	

• Changed.	

	

Line	455/Table	3:	Hyperparameters	for	the	5	experiments	with	highest	average	precision	conducted	for	

building...	

• Changed.		

	



 16 

By	this	point,	the	use	of	blocks	vs	boxes	etc	gets	confusing	for	the	reader.	Maybe	a	conceptual	sketch	could	
help?	Specifically,	I	don't	think	"block	resizing"	has	been	described	in	the	text.	I	understand	that	a	lot	of	
the	method	is	described	 in	the	SM,	but	the	main	m/s	should	be	self-	sufficient,	 therefore	any	concept	
shown	in	table/figures	should	be	described	in	the	text.	

• In	section	2.3.1	where	we	explain	the	building	localisation	method,	we	had	previously	
mistakenly	referred	to	the	image	blocks	as	patches.	This	has	now	been	corrected,	so	
this	should	make	more	sense	now.	Section	2.3.1	now	reads:	

For	object	detection,	to	reduce	model	training	and	inference	time,	full	sized	images	
were	split	into	image	blocks.	Experiments	conducted	as	part	of	building	localisation	
model	selection	included	variations	in	the	size	of	these	blocks,	the	amount	of	overlap	
between	blocks,	and	whether	blocks	were	resized	before	training	or	not.		

I	suggest	renaming	the	column	"All	training/	UWITV&	GOV/	SRC"	to	"training	dataset",	assigning	a	letter	
to	each	dataset	and	defining	it	on	a	table	footnote	

• We	have	renamed	the	column	as	suggested.		

	

Line	464:	I	think	you	are	citing	Table	6	before	5	

• This	has	been	rectified	by	adding	the	results	described	to	the	previous	Table	4,	and	
splitting	what	was	previously	Table	6	into	two	tables,	one	for	localisation	and	one	for	
classification	and	moving	them	to	the	associated	sections.	All	tables	are	now	cited	in	
turn.	

Line	519:	Same	as	444:	The	five	experiments	with	the	highest	macro	F1	score	

• Changed.	

Line	537:	What	do	 you	mean	by:	 “to	understand	 the	potential	 for	 our	model	 to	 generalize	 to	 a	new	
dataset”	

• Changed	to:	

…	to	understand	how	our	model	might	perform	on	a	new	dataset.	

	

Section	 3:	 This	 section	 is	 very	 technical.	 Since	 the	 manuscript	 is	 rather	 oriented	 towards	 an	
impact/operational	 rather	 than	 a	 computer	 science	 audience,	would	 it	 be	 possible	 to	 attempt	 better	
extracting	what	the	raw	values	of	model	validation	imply	for	a	further	application	of	the	model?	Discard	
this	comment	if	you	don't	believe	this	is	applicable.	

• With	this	paper	we	were	aiming	to	appeal	to	multiple	audiences,	striking	a	balance	
between	the	impact/operational	perspective	and	the	technical	computer	science	side,	
with	the	majority	of	the	technical	results	appearing	in	the	supplementary	material.	
Nevertheless,	 we	 have	 reframed	 parts	 of	 the	 writing	 to	 be	 oriented	 towards	 an	
impact/operational	as	well	as	computing	audience.	We	have	added	in	further	impact-
oriented	 results	 and	 discussion	 through	 interpolation	 of	 the	 tephra	 isopachs	 and	
comparison	with	 other	 existing	works.	We	 have	 added	 the	 following	 sentences	 to	
provide	 additional	 context	 for	 impact/	 operational	 audiences.	 Hopefully	 the	 edits	
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have	made	it	clearer	for	all:	

For	 the	 present	 application	 equal	 importance	 is	 given	 to:	 1)	 making	 correct	
predictions	about	building	locations,	and	2)	identifying	as	many	buildings	as	possible.	
Consequently,	 striking	 the	 balance	 between	 precision	 and	 recall	 is	 crucial.	 We	
therefore	 selected	 the	 retrained	 detector	 +	 sieve	 network	 as	 the	 final	 building	
localisation	model	(Table	6).	

To	 understand	 if	 a	 better	 model	 could	 be	 achieved	 with	 more	 data	 available	 for	
training,	we	combined	the	training	and	validation	data	and	used	this	to	retrain	the	
best	experimental	setup	for	the	detector.	Evaluation	of	the	retrained	model	on	the	test	
set	resulted	in	an	average	precision	increase	from	0.701	to	0.751	for	the	non-sieved	
detector,	and	from	0.668	to	0.728	for	the	sieved	detector,	showing	that	having	more	
data	available	for	training	produced	a	better	model	(Table	6).	

Models	 trained	 to	 differentiate	 between	 the	 No	 damage	 to	 minor	 damage	 and	
Damaged	classes	performed	better	for	the	No	damage	to	minor	damage	class,	while	
those	trained	to	differentiate	between	Moderate	and	Major	damage	performed	better	
for	the	Major	damage	class	(Table	7).	
	
The	tephra	fall	building	damage	map	shown	in	Figure	7a	was	produced	by	overlaying	
the	pipeline	output	georeferenced	vector	with	 the	orthomosaic	 image	 in	QGIS.	Our	
remote	damage	assessment	pipeline	identiDied	442	buildings.		Of	these,	78%	(N	=	343)	
were	 classiDied	 as	 having	 No	 damage	 to	 minor	 damage,	 9%	 (N	 =	 40)	 as	 having	
Moderate	damage	and	13%	(N	=	59)	as	having	Major	damage.	We	observed	that	the	
two	upper	tephra	fall	thickness	bins	(70-80	mm	and	80-90	mm),	both	had	a	higher	
proportion	 of	 buildings	with	Major	 damage	 compared	 to	 the	 lower	 thickness	 bins	
(Figure	 7b,	 c),	 indicating	 a	 correlation	 between	 tephra	 fall	 thickness	 and	 building	
damage	though	it	is	not	very	pronounced.	These	Dindings	are	discussed	in	Section	5.3.	

Line	598:	I	would	rephrase	to:			

In	order	to	optimise	the	application	of	separate	models	for	building	localisation	and	two	stages	

of	damage	classification	for	operational	contexts,	we	have	integrated	a	damage	assessment	

pipeline.	

• We	prefer	to	keep	the	initial	phrasing.	

Line	601:	Again,	here	the	use	of	orthomosaics	is	unclear.	Also:	

- Do	you	need	to	state	these	softwares?	Isn't	"computer	vision"	or	"structure-from-motion"	sufficient?	

- Do	you	need	to	state	"shapefile"	-	which	is	a	proprietary	file	format?	What	about	"georeferenced	
vector	dataset"?	

• Removed	the	list	of	potential	softwares,	and	changed	shapefile	as	suggested.	The	text	
now	reads:	

	
The	pipeline	operates	on	an	orthomosaic	image	and	outputs	a	georeferenced	vector	
set,	with	 the	 following	attributes	 for	 each	 building	 that	 is	 detected:	detection	 (box	
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conDidence	score),	ClassPred_1	(output	class	from	ClassiDier	1,	Damaged	or	No	damage	
to	minor	 damage),	 ClassProb_1	 (the	 probability	 of	 that	 class),	 ClassPred_2	 (output	
class	from	ClassiDier	2,	Moderate	damage	or	Major	damage,	this	is	only	run	if	ClassiDier	
1	outputs	damage),	ClassProb_2	(the	probability	of	the	class	output	by	ClassiDier	2),	
damageState	(the	Dinal	damage	state).		

	

Line	637-638:	I	don't	understand	this	statement.	What	do	you	mean	by	distributions?	Datasets?	Building	
typology?	If	datasets,	does	it	mean	that	your	model	is	not	generalisable?	

	Note:	I	see	that	some	precisions	are	provided	later.	I	still	believe	this	should	be	clear	from	the	beginning.	

• Changed	to:	

Deep	learning	models	are	known	to	perform	well	when	the	data	they	are	evaluated	
on	have	similar	characteristics	to	the	data	they	were	trained	on,	though	have	more	
difficulty	when	working	with	‘out	of	distribution’	samples	(Ben-David	et	al.,	2010).	

 
 
 
 
Reviewer	2	

	
1. The	manuscript	is	too	focused	on	methodology.	I	understand	that	it	represents	the	heart	

of	the	work,	but	the	text	seems	too	unbalanced	in	relation	to	the	results	and	the	chosen	
volcanic	application	(the	2021	eruption	of	the	La	Soufrière	volcano,	St	Vincent	and	the	
Grenadines).	 I	 suggest	 lightening	Sections	2	 and	3,	moving	even	more	details	 into	 the	
supplementary	 material	 and	 simplifying	 the	 main	 text.	 This	 would	 deNinitely	 make	
reading	faster	and	more	Nluent.	
	

o We	 have	 signiNicantly	 reworked	 the	 manuscript	 reducing	 the	 focus	 on	
methodology	by	removing	some	of	the	details	in	Section	2	to	the	supplementary	
material	as	suggested.		
	

§ The	 following	 description	 of	 the	 UAV	 labelling	 has	 been	 moved	 to	 the	
supplementary:	
In	some	images	tarpaulins	can	be	seen	partially	or	fully	covering	roofs	(~30	
buildings).	These	were	potentially	placed	to	cover	damage	that	occurred	
during	 the	 eruption,	 including	 corrosion	 due	 to	 prolonged	 presence	 of	
tephra	on	metal	roofs	or,	holes	generated	by	nails	lifted	out	through	sub-
optimal	cleaning	approaches	(VM	personal	communication).	Alternatively,	
tarpaulins	may	have	been	placed	as	a	preventative	measure	to	help	shed	
tephra	 (e.g.,	 Ambae	 Vanuatu,	 Jenkins	 et	 al.,	 2024).	 Erring	 on	 the	
conservative	side,	we	considered	buildings	with	a	tarpaulin	to	be	damaged;	
we	assessed	the	severity	of	the	damage	for	each	building	based	on	the	level	
of	 visible	 deformation.	 We	 assigned	 buildings	 with	 a	 tarpaulin	 and	 no	
visible	 deformation	 to	 the	 moderately	 damaged	 class	 and	 those	 with	 a	
tarpaulin	and	visible	deformation	to	the	major	damage	class.	
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§ All	 of	 the	 description	 of	 the	 sieve	 network	 has	 been	 moved	 to	 the	
supplementary:	
To	 improve	 the	 performance	 of	 the	 building	 localisation	 model	 we	
developed	 a	 sieve	 network	 that	 runs	 as	 an	 add	 on	 to	 the	 Faster	 R-CNN	
building	detector.	Bounding	boxes	produced	by	the	detector	are	passed	to	
the	sieve	network	 to	 Nilter	out	detections	 that	are	 false	positives.	A	 false	
positive	occurs	when	the	detector	predicts	a	bounding	box	that	does	not	
have	an	overlapping	labelled	building	(i.e.,	detects	a	building	when	there	is	
not	one).		
	
The	dataset	used	for	training	and	evaluating	the	sieve	network	consists	of	
randomly	 cropped	 background	 samples	 from	 full	 sized	 images	 in	 the	
training	 and	 validation	 sets.	 Samples	 were	 cropped	 from	 each	 of	 the	
datasets,	 and	 samples	 containing	 buildings	were	 removed	 until	 100	 no-
building	 samples	 were	 achieved	 for	 each	 dataset.	 These	 samples	 were	
supplemented	 with	 an	 additional	 10%	 targeted	 image	 samples	 on	 the	
observation	 that	 trained	 detectors	 were	 mistakenly	 detecting	 cars	 and	
boats.	 For	 the	building	dataset	we	 stochastically	 sampled	 the	equivalent	
number	 (n=990	 train,	 660	 validation)	 from	 the	 building	 images.	
Experiments	 for	 the	 sieve	 network	 were	 conducted	 using	 two	 different	
CNN	architectures	(ResNet50	and	GoogleNet),	and	by	undertaking	a	grid	
search	to	Nind	the	best	hyperparameter	combination	(learning	rate,	batch	
size,	 and	L2	 regularisation).	A	 total	of	 Nive	experiments	were	 conducted,	
each	consisting	of	three	replicates.	
	

§ The	 reference	 in	 the	main	manuscript	 to	 the	 sieve	 network	 now	
reads:	
To	improve	the	performance	of	the	building	localisation	model	we	
developed	a	sieve	network	that	runs	as	an	add	on	to	the	Faster	R-
CNN	 building	 detector.	 The	 sieve	 network	 reduces	 false	 positives	
which	occur	when	the	detector	predicts	a	bounding	box	that	does	
not	 have	 an	 overlapping	 labelled	 building	 (i.e.,	 detects	 a	 building	
when	 there	 is	 not	 one).	 More	 details	 on	 its	 development	 are	
provided	in	the	supplementary	material.	

	
§ The	following	text	regarding	details	of	the	cross	validation	has	been	moved	

to	the	supplementary:	
§ 	The	 full	 image	 set	 consists	of	 images	 collected	by	 three	different	

parties	 across	 13	 different	 locations	 on	 the	 island.	 To	 test	 the	
robustness	of	our	models	to	location,	we	trained	on	nine	out	of	the	
ten	locations	present	in	the	combined	training	and	validation	sets	
and	evaluated	each	model’s	performance	on	the	remaining	location.	
To	 test	 the	 robustness	 to	 the	 dataset,	 we	 trained	 models	 and	
evaluated	 the	 performance	 for	 each	 of	 the	 three	 locations	 that	
contain	 images	 from	more	 than	 one	 dataset	 (e.g.,	 Chateaubelair-
GOV,	Chateaubelair-UWI-TV,	Chateaubelair-SRC)	separately.		
	

§ The	 caption	 of	 Figure	 5	 contains	 sufNicient	 information	 to	
understand	the	process	of	cross	validation:	
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For	b)	cross	validation	of	the	imagery	dataset,	models	are	trained	on	
all	data	from	that	location	excluding	the	location	used	for	testing	as	
indicated	by	the	bar.	

	
§ We	have	shortened	the	description	of	the	model	evaluation	metrics	which	

now	reads:	
For	 building	 localisation	 Faster	 R-CNN	 experiments,	 we	 evaluated	
performance	using	the	average	precision	(AP)	at	an	intersection	over	union	
(IoU)	threshold	of	0.5,	and	the	F1	score.	AP,	a	common	metric	for	evaluating	
object	detection	(Zou	et	al.,	2019),	measures	how	often	the	detector	gets	it	
right	 (true	 positives,	 TP)	 versus	 wrong	 (false	 positives,	 FP,	 and	 false	
negatives,	FN).	A	TP	occurs	when	a	predicted	box	overlaps	a	labelled	box	
by	more	than	50%	(IoU	>	0.5),	a	FP	when	there	is	no	overlapping	labelled	
box,	and	a	FN	when	the	detector	misses	a	labelled	box.	When	the	detector	
is	run	on	a	test	image	a	conNidence	score	is	output	for	each	predicted	box	
(0-1).	 Once	 the	 trained	 detector	 has	 been	 run	 over	 the	 full	 test	 set,	 the	
precision	 (TP/(TP+FP)),	 and	 recall	 (TP/(TP+FN))	 are	 calculated	 at	
different	 conNidence	 score	 thresholds	 and	 the	 area	 underneath	 the	
resulting	 precision-recall	 curve	 represents	 AP.	 	 AP	 depicts	 the	 trade-off	
between	precision	and	recall	and	provides	an	overall	measure	of	detection	
performance.	AP	values	range	between	0-1,	where	a	higher	value	indicates	
a	better	performance.		
	
For	building	localisation,	the	F1	score	was	calculated	at	IoU	and	conNidence	
thresholds	of	0.5.	The	F1	score	is	calculated	as:	F1	=	2x	(Precision	x	Recall)/	
(Precision	+	Recall).	To	evaluate	the	performance	of	classiNication	models,	
we	used	the	macro-F1	score,	which	is	the	unweighted	mean	of	the	F1	scores	
calculated	for	each	of	the	classes.	Similarly,	to	the	AP,	values	of	the	F1	score	
range	between	0-1,	where	a	higher	value	indicates	a	better	performance.	
	

§ We	have	moved	details	of	the	faster	RCNN	detector	to	the	supplementary,	
the	new	text	is	now	signiNicantly	reduced	and	reads:	
	
For	 building	 localisation,	 we	 used	 the	 cutting	 edge	 two-stage	 object	
detector	 Faster	 R-CNN	 (Ren	 et	 al.	 2017).	When	 applied	 to	 a	 test	 image	
containing	the	relevant	objects,	Faster	R-CNN	outputs	the	positions	within	
the	image	(X,	Y,	width,	and	height	in	pixels)	of	bounding	boxes	containing	
the	object,	and	a	conNidence	score	for	each	box.	As	per	customary	practice	
(Zou	et	al.	2019)	we	used	a	conNidence	of	>	0.5	meaning	that	only	boxes	
with	conNidence	greater	than	this	are	output.		
	
For	object	detection,	to	reduce	model	training	and	inference	time,	full	sized	
images	 were	 split	 into	 image	 blocks.	 Experiments	 conducted	 as	 part	 of	
building	localisation	model	selection	included	variations	in	block	size	and	
the	proportion	of	block	overlap,	along	with	 the	development	of	separate	
models	for	images	captured	with	different	viewing	angles,	training	for	only	
the	SRC	portion	of	the	dataset	(images	mostly	at	nadir)	and	the	combined	
UWI-TV-GOV	portion	(images	mostly	off-nadir).	A	total	of	34	experiments	
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were	 conducted	 to	 include	 all	 credible	 combinations	 of	 the	 varied	
hyperparameters	 and	 to	 Nind	 the	 best	 experimental	 setup	 (see	
supplementary	material	for	details).		
	
To	 improve	 the	 performance	 of	 the	 building	 localisation	 model	 we	
developed	 a	 sieve	 network	 that	 runs	 as	 an	 add	 on	 to	 the	 Faster	 R-CNN	
building	detector.	The	sieve	network	reduces	 false	positives	which	occur	
when	 the	 detector	 predicts	 a	 bounding	 box	 that	 does	 not	 have	 an	
overlapping	 labelled	 building	 (i.e.,	 detects	 a	 building	 when	 there	 is	 not	
one).	More	details	on	its	development	are	provided	in	the	supplementary	
material.		

	
o In	 addition	 to	 the	 aforementioned	 reworking	 of	 the	 text	 and	 in	 response	 to	

comments	 from	reviewer	1,	we	have	elaborated	on	 the	case	study.	This	 further	
improves	 the	 balance	 between	 methodology	 and	 damage	 assessment	 results	
making	 the	 manuscript	 more	 appealing	 to	 a	 wider	 audience.	 To	 do	 this	 we	
interpolated	between	the	tephra	isopachs	to	extract	tephra	thicknesses	for	each	
building.	The	results	of	this	are	described	in	Section	4	(below),	and	discussed	in	
the	 context	 of	 physical	 impacts	 to	 buildings	 in	 Section	 5.3	 (below).	 	 We	 have	
adapted	Figure	7	to	reNlect	this.	
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Section	4	now	reads:	

4.	 Application	 of	 the	 full	 damage	 assessment	 pipeline:	 Assessing	 tephra	 fall	 building	
damage	in	Owia	

In	 this	work	we	 have	 developed	 separate	models	 for	 building	 localisation	 and	 two	 stages	 of	
damage	classiNication.	However,	in	an	operational	context	models	need	to	work	sequentially,	this	
led	to	the	development	of	our	damage	assessment	pipeline	(outlined	in	Figure	4d).	The	pipeline	
operates	on	an	orthomosaic	image	and	outputs	a	georeferenced	vector	set,	with	the	following	
attributes	 for	 each	 building	 that	 is	 detected:	 detection	 (box	 conNidence	 score),	 ClassPred_1	
(output	 class	 from	 ClassiNier	 1,	 Damaged	 or	 No	 damage	 to	minor	 damage),	ClassProb_1	 (the	
probability	of	that	class),	ClassPred_2	(output	class	from	ClassiNier	2,	Moderate	damage	or	Major	
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damage,	this	is	only	run	if	ClassiNier	1	outputs	damage),	ClassProb_2	(the	probability	of	the	class	
output	by	ClassiNier	2),	damageState	(the	Ninal	damage	state).		
	
The	tephra	fall	building	damage	map	shown	in	Figure	7a	was	produced	by	overlaying	the	pipeline	
output	 georeferenced	 vector	 with	 the	 orthomosaic	 image	 in	 QGIS.	 Our	 remote	 damage	
assessment	pipeline	identiNied	442	buildings.		Of	these,	78%	(N	=	343)	were	classiNied	as	having	
No	damage	to	minor	damage,	9%	(N	=	40)	as	having	Moderate	damage	and	13%	(N	=	59)	as	
having	Major	damage.	We	observed	that	the	two	upper	tephra	fall	thickness	bins	(70-80	mm	and	
80-90	mm),	both	had	a	higher	proportion	of	buildings	with	Major	damage	compared	to	the	lower	
thickness	bins	(Figure	7b,	c),	indicating	a	correlation	between	tephra	fall	thickness	and	building	
damage	though	it	is	not	very	pronounced.	These	Nindings	are	discussed	in	Section	5.3.	

	
These	results	are	discussed	in	Section	5.3:	
	
Application	of	our	remote	damage	assessment	pipeline	to	the	town	of	Owia	found	that	22%	of	
buildings	that	received	tephra	accumulation	in	the	range	of	50-90	mm	experienced	Moderate	
damage	 or	Major	 damage.	Within	 this	 range,	 the	 relationship	 between	 tephra	 thickness	 and	
building	damage	was	not	as	pronounced	as	in	other	studies	(Blong,	2003b;	Hayes	et	al.,	2019;	
Jenkins	et	al.,	2024).	This	may	be	attributed	to	the	small	geographic	area	and	therefore	small	
range	of	tephra	thicknesses	considered	in	our	application	when	compared	to	other	studies.	In	
the	 damage	 assessments	 of	 Blong,	 (2003b),	 Hayes	 et	 al.,	 (2019)	 and	 Jenkins	 et	 al.,	 (2024)	
buildings	received	~100	to	950	mm,	trace	to	600	mm	and,	trace	to	>220	mm	respectively.	Spence	
et	al.,	(1996)	assessed	building	damage	over	a	similarly	narrow	range	of	tephra	thicknesses	to	
this	work	(~150-200	mm)	and	found	that	there	was	considerable	variation	in	the	level	of	damage	
despite	the	majority	of	buildings	having	a	metal	sheet	roof.	The	spacing	between	the	principal	
roof	supports	(roof	span)	was	found	to	be	important	for	the	amount	of	damage	observed,	with	
long	span	buildings	experiencing	higher	levels	of	damage	than	short	span	ones	(Spence	et	al.,	
1996).	 There	 are	 limited	 long	 span	 buildings	 in	 the	 Owia	 case	 study,	 however	 additional	
characteristics	such	as	construction	style	and	material,	building	layout,	age,	condition,	height,	
and	roof	pitch	can	all	affect	a	buildings	ability	to	withstand	tephra	loading	(Spence	et	al.,	1996;	
Pomonis	et	al.,	1999;	Blong,	2003b;	Jenkins	et	al.,	2014).	Variation	in	these	characteristics	across	
Owia	could	be	responsible	for	the	observed	variation	in	building	damage	over	the	narrow	range	
of	thicknesses	considered.		
	
If	we	convert	tephra	thickness	to	loading,	we	can	compare	the	results	of	our	assessment	with	
existing	relationships	between	tephra	 loading	and	damage	 for	similar	building	 types.	Using	a	
density	of	1500	kg/m!	(Cole	et	al.,	2023)	suggests	that	a	loading	of	at	least	75-135	kg/m!	was	
applied	to	buildings	for	the	range	of	thicknesses	considered	(50	mm-90	mm).	Census	data	for	
Owia	states	that	90	%	of	buildings	have	metal	sheet	roofs	(SVG	population	and	housing	census,	
2012),	with	the	remaining	8%	comprised	of	reinforced	concrete	roofs	and	2%	‘other	material’.	
Given	the	higher	resistance	of	the	8%	of	non-metal	sheet	roof	buildings	in	Owia,	we	might	expect	
vulnerability	 models	 developed	 for	 metal	 sheet	 roofs	 to	 overestimate	 damage	 in	 the	 town.	
Fragility	functions	developed	for	Indonesian	style	buildings	with	metal	sheet	roofs	(Williams	et	
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al.,	 2020),	 calculate	 a	 48-80%	 probability	 of	 Owia	 buildings	 experiencing	 damage	 exceeding	
Damage	 State	 2,	 higher	 than	 the	22%	experiencing	Moderate	 or	Major	 damage	 in	 our	 study.	
Fragility	 curves	 for	 roof	 failure	 (Major	 damage)	 of	 old	 or	 poor	 condition	 metal	 sheet	 roofs	
(Jenkins	 et	 al.,	 2014),	 calculate	 that	 just	 over	 10%	 of	 buildings	 in	 Owia	 would	 experience	
sufNicient	 loading	 for	 roof	 collapse,	 comparable	 to	 the	 13%	 observed	 in	 our	 study.	 These	
comparisons	 highlight	 some	 of	 the	 challenges	 associated	 with	 using	 vulnerability	 models	
developed	for	different	locations.	Moreover,	they	reiterate	the	need	for	the	collection	of	building	
typology	and	post-event	impact	data	that	can	be	used	to	increase	the	amount	of	empirical	data	
available	 for	 vulnerability	model	 development	 and	 allow	 regional	 vulnerability	models	 to	 be	
developed	for	speciNic	building	types.		

	
	

2. The	location	of	Table	1	cannot	be	the	Introduction.	It	provides	a	performance	comparison	
of	several	models,	including	the	one	described	in	this	manuscript,	and	should	therefore	
be	included	in	the	Discussions.	It	is	not	logically	correct	to	introduce	F1,	mean	average	
precision	 and	 accuracy	 scores	 before	 even	 introducing	 the	 model.	 It	 is	 also	 not	
immediately	clear	what	"P",	"P	&	P",	"C1"	and	"C2"	mean.	
	

o We	prefer	to	keep	Table	1	in	the	introduction	since	we	believe	it	adds	important	
context	to	the	points	discussed	in	this	section	in	particular	by	showing	the	types	
of	 hazards	 that	 have	 been	 considered,	 the	 datatypes	 used	 and	 the	 use	 of	 pre-
disaster	 imagery	 in	past	studies.	However	 in	 line	with	the	reviewers	comments	
and	to	ensure	that	this	is	the	appropriate	location	we	have	made	some	adjustments	
to	the	table:	

§ We	have	removed	our	results	from	this	table	meaning		that	C1	and	C2	are	
no-longer	referred	to.	

§ We	 have	 changed	 the	 header	 of	 column	 4	 from	 ‘Pre	 and	 Post’	 to	 ‘Pre-
disaster	imagery’.	The	contents	of	this	column	are	now	either	‘Yes’	or	‘No’	
as	opposed	to	P&P	or	P.	

§ We	 have	 added	 the	 following	 text	 to	 the	 tables	 caption	 :	 A	 detailed	
explanation	of	the	scores	used	for	evaluation	is	provided	in	Section	2.3.3.	

	
With	 these	 adaptations	 we	 believe	 that	 the	 tables	 position	 within	 the	
introduction	is	now	appropriate.		

	
Table	 1.	 A	 non-exhaustive	 list	 of	works	 using	deep	 learning	 on	 optical	 imagery	 for	 building	
damage	 assessment.	 Studies	 use	 different	 scores	 to	 evaluate	 performance:	 F1	 scores	 are	 in	
italics,	mean	average	precision	scores	are	underlined,	accuracy	scores	in	bold.	For	all	scores,	1	
represents	a	perfect	model.	A	detailed	explanation	of	the	scores	used	for	evaluation	is	provided	
in	Section	2.3.3.	

	
Study	 Hazard	 Number	

of	
damage	
classes	

Pre-
disaster	
imagery		

Data	
type	

Building	
localisation	

Damage	
classi<ication	

Li	et	al.	(2019a)	 Hurricane	 2	 No	 airborne	 0.448	
Weber	and	Kane,	
(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.835	 0.697	
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Dung	 Cao	 and	
Choe.	(2020)	

Hurricane	 2	 No	 satellite	 -	 0.972	

Pi	et	al.	(2020)	 Hurricane	 2	 No	 UAV,	
airborne	

0.745	(UAV)	
0.807	(airborne)	
	

Cheng	 et	 al.	
(2021)	

Hurricane	 5	 No	 UAV	 0.656	 0.610	

Galanis	 et	 al.	
(2021)	

WildOire	 2	 No	 satellite		 	 0.981	

Gupta	 and	 Shah	
(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.840	 0.740	

Shen	et	al.	(2021)	 Multi	 4	 Yes	 satellite	
(xBD)	

0.864	 0.782	

Bouchard	 et	 al.	
(2022)	

Multi	 2	 Yes	 satellite	
(xBD)	

0.846	 0.709	

Khajwal	 et	 al.	
(2023)	

Hurricane	 5	 No	 ground	
airborne	

-	 0.650	

Singh	 and	
Hoskere,	(2023)	

Multi	 5	 No	 satellite	 	 0.880	

Wang	 et	 al	
(2024)	

Volcanic	
tephra	

4	 Yes	 satellite	 0.868	 0.783	

	
	
	

3. In	Figure	1,	please	include	the	location	of	Georgetown.	
	

o The	original	caption	for	Figure	1	stated	that	Georgetown	refers	to	the	district	of	
Georgetown,	this	is	located	in	the	NE	of	the	island	and	marked	with	the	letter	‘c’.	
For	added	clarity	we	have	put	items	a-c	into	the	maps	legend	and	removed	these	
from	the	caption.	
New	Figure	1:	
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4. The	text	 is	 full	of	diagrams	and	tables.	Perhaps	 it	would	be	more	attractive	to	a	wider	
audience	 if	 the	 authors	 included	 some	 Nigures	 on	 the	 case	 study	 (for	 example,	 some	
images	used	for	the	model	development,	currently	in	the	supplementary	material).	

• In	 agreement	 with	 the	 local	 agency	 responsible	 for	 monitoring	 hazards	 at	 St	
Vincent	(The	University	of	the	West	Indies,	Seismic	Research	Centre),	to	respect	
the	privacy	of	the	residents	of	St	Vincent	we	did	not	include	images	of	residential	
buildings.	 However,	 in	 response	 to	 reviewer	 1s	 suggestion,	 we	 have	 added	 an	
additional	 Nigure	 into	 the	methods	which	shows	representative	examples	of	 the	
different	damage	states	which	we	believe	makes	 the	study	more	appealing	 to	a	
wider	 audience.	 Buildings	 shown	 in	 this	 Nigure	 were	 carefully	 selected	 for	
anonymity,	with	government	or	public	buildings	shown	where	possible.		
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Figure	2.	Example	of	the	three	damage	states	used	in	this	work:	No	damage	to	minor	damage,	
Moderate	damage	and,	Major	damage.	

	

	
 


