
We	sincerely	thank	reviewer	2	for	their	comments	and	for	the	time	taken	to	review	the	
manuscript.	We	have	addressed	all	comments	and	provide	our	response	below.	Reviewer	
comments	 are	 in	 black,	 our	 responses	 are	 in	 green,	 and	 excerpts	 from	 the	 revised	
manuscript	are	in	blue.		

	
1. The	manuscript	is	too	focused	on	methodology.	I	understand	that	it	represents	the	

heart	of	the	work,	but	the	text	seems	too	unbalanced	in	relation	to	the	results	and	
the	chosen	volcanic	application	(the	2021	eruption	of	the	La	Soufrière	volcano,	St	
Vincent	and	the	Grenadines).	I	suggest	lightening	Sections	2	and	3,	moving	even	
more	details	into	the	supplementary	material	and	simplifying	the	main	text.	This	
would	deJinitely	make	reading	faster	and	more	Jluent.	
	

o We	 have	 signiJicantly	 reworked	 the	 manuscript	 reducing	 the	 focus	 on	
methodology	 by	 removing	 some	 of	 the	 details	 in	 Section	 2	 to	 the	
supplementary	material	as	suggested.		
	

§ The	following	description	of	 the	UAV	labelling	has	been	moved	to	
the	supplementary:	
In	 some	 images	 tarpaulins	 can	be	 seen	partially	 or	 fully	 covering	
roofs	 (~30	 buildings).	 These	 were	 potentially	 placed	 to	 cover	
damage	that	occurred	during	the	eruption,	including	corrosion	due	
to	prolonged	presence	of	tephra	on	metal	roofs	or,	holes	generated	
by	 nails	 lifted	 out	 through	 sub-optimal	 cleaning	 approaches	 (VM	
personal	communication).	Alternatively,	tarpaulins	may	have	been	
placed	as	a	preventative	measure	to	help	shed	tephra	(e.g.,	Ambae	
Vanuatu,	 Jenkins	et	al.,	2024).	Erring	on	the	conservative	side,	we	
considered	buildings	with	a	tarpaulin	to	be	damaged;	we	assessed	
the	severity	of	the	damage	for	each	building	based	on	the	level	of	
visible	deformation.	We	assigned	buildings	with	a	tarpaulin	and	no	
visible	deformation	to	the	moderately	damaged	class	and	those	with	
a	tarpaulin	and	visible	deformation	to	the	major	damage	class.	
	

§ All	of	the	description	of	the	sieve	network	has	been	moved	to	the	
supplementary:	
To	improve	the	performance	of	the	building	localisation	model	we	
developed	a	sieve	network	that	runs	as	an	add	on	to	the	Faster	R-
CNN	building	detector.	 Bounding	boxes	produced	by	 the	detector	
are	passed	to	the	sieve	network	to	Jilter	out	detections	that	are	false	
positives.	 A	 false	 positive	 occurs	 when	 the	 detector	 predicts	 a	
bounding	box	that	does	not	have	an	overlapping	labelled	building	
(i.e.,	detects	a	building	when	there	is	not	one).		
	
The	 dataset	 used	 for	 training	 and	 evaluating	 the	 sieve	 network	
consists	of	randomly	cropped	background	samples	from	full	sized	
images	 in	 the	 training	and	validation	sets.	 Samples	were	cropped	
from	each	of	 the	datasets,	and	samples	containing	buildings	were	
removed	 until	 100	 no-building	 samples	 were	 achieved	 for	 each	
dataset.	These	samples	were	supplemented	with	an	additional	10%	
targeted	 image	samples	on	the	observation	that	 trained	detectors	



were	mistakenly	detecting	cars	and	boats.	For	the	building	dataset	
we	stochastically	sampled	the	equivalent	number	(n=990	train,	660	
validation)	 from	 the	 building	 images.	 Experiments	 for	 the	 sieve	
network	 were	 conducted	 using	 two	 different	 CNN	 architectures	
(ResNet50	and	GoogleNet),	and	by	undertaking	a	grid	search	to	Jind	
the	best	hyperparameter	combination	(learning	rate,	batch	size,	and	
L2	regularisation).	A	total	of	Jive	experiments	were	conducted,	each	
consisting	of	three	replicates.	
	

§ The	reference	in	the	main	manuscript	to	the	sieve	network	
now	reads:	
To	 improve	 the	 performance	 of	 the	 building	 localisation	
model	we	developed	a	sieve	network	that	runs	as	an	add	on	
to	 the	 Faster	 R-CNN	 building	 detector.	 The	 sieve	 network	
reduces	 false	 positives	 which	 occur	 when	 the	 detector	
predicts	a	bounding	box	that	does	not	have	an	overlapping	
labelled	building	 (i.e.,	 detects	 a	building	when	 there	 is	not	
one).	More	 details	 on	 its	 development	 are	 provided	 in	 the	
supplementary	material.	

	
§ The	following	text	regarding	details	of	the	cross	validation	has	been	

moved	to	the	supplementary:	
§ 	The	 full	 image	 set	 consists	 of	 images	 collected	 by	 three	

different	parties	across	13	different	locations	on	the	island.	
To	test	the	robustness	of	our	models	to	location,	we	trained	
on	 nine	 out	 of	 the	 ten	 locations	 present	 in	 the	 combined	
training	 and	 validation	 sets	 and	 evaluated	 each	 model’s	
performance	 on	 the	 remaining	 location.	 To	 test	 the	
robustness	to	the	dataset,	we	trained	models	and	evaluated	
the	performance	for	each	of	the	three	locations	that	contain	
images	from	more	than	one	dataset	(e.g.,	Chateaubelair-GOV,	
Chateaubelair-UWI-TV,	Chateaubelair-SRC)	separately.		
	

§ The	 caption	 of	 Figure	 5	 contains	 sufJicient	 information	 to	
understand	the	process	of	cross	validation:	

	
For	 b)	 cross	 validation	 of	 the	 imagery	 dataset,	 models	 are	
trained	on	all	data	from	that	location	excluding	the	location	
used	for	testing	as	indicated	by	the	bar.	

	
§ We	have	shortened	the	description	of	the	model	evaluation	metrics	

which	now	reads:	
For	building	 localisation	Faster	R-CNN	experiments,	we	evaluated	
performance	 using	 the	 average	 precision	 (AP)	 at	 an	 intersection	
over	union	(IoU)	threshold	of	0.5,	and	the	F1	score.	AP,	a	common	
metric	for	evaluating	object	detection	(Zou	et	al.,	2019),	measures	
how	often	the	detector	gets	it	right	(true	positives,	TP)	versus	wrong	
(false	 positives,	 FP,	 and	 false	 negatives,	 FN).	 A	 TP	 occurs	when	 a	
predicted	box	overlaps	a	labelled	box	by	more	than	50%	(IoU	>	0.5),	



a	FP	when	there	is	no	overlapping	labelled	box,	and	a	FN	when	the	
detector	misses	a	labelled	box.	When	the	detector	is	run	on	a	test	
image	 a	 conJidence	 score	 is	 output	 for	 each	 predicted	 box	 (0-1).	
Once	 the	 trained	detector	 has	 been	 run	over	 the	 full	 test	 set,	 the	
precision	(TP/(TP+FP)),	and	recall	(TP/(TP+FN))	are	calculated	at	
different	conJidence	score	thresholds	and	the	area	underneath	the	
resulting	precision-recall	curve	represents	AP.		AP	depicts	the	trade-
off	between	precision	and	recall	and	provides	an	overall	measure	of	
detection	 performance.	 AP	 values	 range	 between	 0-1,	 where	 a	
higher	value	indicates	a	better	performance.		
	
For	 building	 localisation,	 the	 F1	 score	was	 calculated	 at	 IoU	 and	
conJidence	thresholds	of	0.5.	The	F1	score	is	calculated	as:	F1	=	2x	
(Precision	 x	 Recall)/	 (Precision	 +	 Recall).	 To	 evaluate	 the	
performance	of	classiJication	models,	we	used	the	macro-F1	score,	
which	is	the	unweighted	mean	of	the	F1	scores	calculated	for	each	
of	 the	 classes.	 Similarly,	 to	 the	 AP,	 values	 of	 the	 F1	 score	 range	
between	0-1,	where	a	higher	value	indicates	a	better	performance.	
	

§ We	 have	 moved	 details	 of	 the	 faster	 RCNN	 detector	 to	 the	
supplementary,	the	new	text	is	now	signiJicantly	reduced	and	reads:	
	
For	building	localisation,	we	used	the	cutting	edge	two-stage	object	
detector	 Faster	 R-CNN	 (Ren	 et	 al.	 2017).	When	 applied	 to	 a	 test	
image	 containing	 the	 relevant	 objects,	 Faster	 R-CNN	 outputs	 the	
positions	 within	 the	 image	 (X,	 Y,	 width,	 and	 height	 in	 pixels)	 of	
bounding	boxes	 containing	 the	object,	 and	a	 conJidence	 score	 for	
each	 box.	 As	 per	 customary	practice	 (Zou	 et	 al.	 2019)	we	used	 a	
conJidence	of	>	0.5	meaning	that	only	boxes	with	conJidence	greater	
than	this	are	output.		
	
For	object	detection,	to	reduce	model	training	and	inference	time,	
full	 sized	 images	 were	 split	 into	 image	 blocks.	 Experiments	
conducted	as	part	of	building	localisation	model	selection	included	
variations	in	block	size	and	the	proportion	of	block	overlap,	along	
with	the	development	of	separate	models	for	images	captured	with	
different	 viewing	 angles,	 training	 for	 only	 the	 SRC	 portion	 of	 the	
dataset	 (images	mostly	 at	 nadir)	 and	 the	 combined	 UWI-TV-GOV	
portion	(images	mostly	off-nadir).	A	total	of	34	experiments	were	
conducted	 to	 include	 all	 credible	 combinations	 of	 the	 varied	
hyperparameters	 and	 to	 Jind	 the	 best	 experimental	 setup	 (see	
supplementary	material	for	details).		
	
To	improve	the	performance	of	the	building	localisation	model	we	
developed	a	sieve	network	that	runs	as	an	add	on	to	the	Faster	R-
CNN	 building	 detector.	 The	 sieve	 network	 reduces	 false	 positives	
which	occur	when	the	detector	predicts	a	bounding	box	that	does	
not	 have	 an	 overlapping	 labelled	 building	 (i.e.,	 detects	 a	 building	



when	 there	 is	 not	 one).	 More	 details	 on	 its	 development	 are	
provided	in	the	supplementary	material.		

	
o In	addition	to	the	aforementioned	reworking	of	the	text	and	in	response	to	

comments	 from	 reviewer	 1,	we	 have	 elaborated	 on	 the	 case	 study.	 This	
further	 improves	 the	 balance	 between	 methodology	 and	 damage	
assessment	 results	 making	 the	 manuscript	 more	 appealing	 to	 a	 wider	
audience.	To	do	this	we	interpolated	between	the	tephra	isopachs	to	extract	
tephra	thicknesses	 for	each	building.	The	results	of	 this	are	described	 in	
Section	 4	 (below),	 and	 discussed	 in	 the	 context	 of	 physical	 impacts	 to	
buildings	in	Section	5.3	(below).		We	have	adapted	Figure	7	to	reJlect	this.	
	

	
	

	

Section	4	now	reads:	

4.	 Application	 of	 the	 full	 damage	 assessment	 pipeline:	 Assessing	 tephra	 fall	
building	damage	in	Owia	

In	this	work	we	have	developed	separate	models	for	building	localisation	and	two	stages	
of	 damage	 classiJication.	 However,	 in	 an	 operational	 context	 models	 need	 to	 work	
sequentially,	this	led	to	the	development	of	our	damage	assessment	pipeline	(outlined	in	
Figure	4d).	The	pipeline	operates	on	an	orthomosaic	image	and	outputs	a	georeferenced	



vector	set,	with	the	following	attributes	for	each	building	that	is	detected:	detection	(box	
conJidence	score),	ClassPred_1	(output	class	from	ClassiJier	1,	Damaged	or	No	damage	to	
minor	damage),	ClassProb_1	(the	probability	of	that	class),	ClassPred_2	(output	class	from	
ClassiJier	2,	Moderate	damage	or	Major	damage,	 this	 is	only	run	if	ClassiJier	1	outputs	
damage),	ClassProb_2	 (the	probability	of	 the	class	output	by	ClassiJier	2),	damageState	
(the	Jinal	damage	state).		
	
The	tephra	fall	building	damage	map	shown	in	Figure	7a	was	produced	by	overlaying	the	
pipeline	output	georeferenced	vector	with	the	orthomosaic	image	in	QGIS.	Our	remote	
damage	 assessment	 pipeline	 identiJied	 442	 buildings.	 	 Of	 these,	 78%	 (N	=	 343)	were	
classiJied	as	having	No	damage	to	minor	damage,	9%	(N	=	40)	as	having	Moderate	damage	
and	13%	(N	=	59)	as	having	Major	damage.	We	observed	that	the	two	upper	tephra	fall	
thickness	bins	(70-80	mm	and	80-90	mm),	both	had	a	higher	proportion	of	buildings	with	
Major	 damage	 compared	 to	 the	 lower	 thickness	 bins	 (Figure	 7b,	 c),	 indicating	 a	
correlation	 between	 tephra	 fall	 thickness	 and	 building	 damage	 though	 it	 is	 not	 very	
pronounced.	These	Jindings	are	discussed	in	Section	5.3.	

	
These	results	are	discussed	in	Section	5.3:	
	
Application	of	our	remote	damage	assessment	pipeline	to	the	town	of	Owia	found	that	
22%	 of	 buildings	 that	 received	 tephra	 accumulation	 in	 the	 range	 of	 50-90	 mm	
experienced	 Moderate	 damage	 or	 Major	 damage.	 Within	 this	 range,	 the	 relationship	
between	tephra	thickness	and	building	damage	was	not	as	pronounced	as	in	other	studies	
(Blong,	2003b;	Hayes	et	al.,	2019;	Jenkins	et	al.,	2024).	This	may	be	attributed	to	the	small	
geographic	 area	 and	 therefore	 small	 range	 of	 tephra	 thicknesses	 considered	 in	 our	
application	 when	 compared	 to	 other	 studies.	 In	 the	 damage	 assessments	 of	 Blong,	
(2003b),	Hayes	et	al.,	(2019)	and	Jenkins	et	al.,	(2024)	buildings	received	~100	to	950	
mm,	trace	to	600	mm	and,	trace	to	>220	mm	respectively.	Spence	et	al.,	(1996)	assessed	
building	damage	over	a	similarly	narrow	range	of	tephra	thicknesses	to	this	work	(~150-
200	mm)	and	found	that	there	was	considerable	variation	in	the	level	of	damage	despite	
the	majority	of	buildings	having	a	metal	sheet	roof.	The	spacing	between	the	principal	
roof	supports	(roof	span)	was	found	to	be	important	for	the	amount	of	damage	observed,	
with	 long	 span	 buildings	 experiencing	 higher	 levels	 of	 damage	 than	 short	 span	 ones	
(Spence	 et	 al.,	 1996).	 There	 are	 limited	 long	 span	 buildings	 in	 the	 Owia	 case	 study,	
however	 additional	 characteristics	 such	 as	 construction	 style	 and	 material,	 building	
layout,	age,	condition,	height,	and	roof	pitch	can	all	affect	a	buildings	ability	to	withstand	
tephra	 loading	 (Spence	et	al.,	1996;	Pomonis	et	al.,	1999;	Blong,	2003b;	 Jenkins	et	al.,	
2014).	 Variation	 in	 these	 characteristics	 across	 Owia	 could	 be	 responsible	 for	 the	
observed	variation	in	building	damage	over	the	narrow	range	of	thicknesses	considered.		
	
If	we	convert	tephra	thickness	to	loading,	we	can	compare	the	results	of	our	assessment	
with	existing	relationships	between	tephra	loading	and	damage	for	similar	building	types.	
Using	a	density	of	1500	kg/m!	(Cole	et	al.,	2023)	suggests	that	a	loading	of	at	least	75-



135	kg/m!	was	applied	to	buildings	for	the	range	of	thicknesses	considered	(50	mm-90	
mm).	Census	data	 for	Owia	 states	 that	90	%	of	buildings	have	metal	 sheet	 roofs	 (SVG	
population	and	housing	census,	2012),	with	the	remaining	8%	comprised	of	reinforced	
concrete	roofs	and	2%	‘other	material’.	Given	the	higher	resistance	of	the	8%	of	non-metal	
sheet	roof	buildings	in	Owia,	we	might	expect	vulnerability	models	developed	for	metal	
sheet	 roofs	 to	 overestimate	 damage	 in	 the	 town.	 Fragility	 functions	 developed	 for	
Indonesian	style	buildings	with	metal	sheet	roofs	(Williams	et	al.,	2020),	calculate	a	48-
80%	 probability	 of	 Owia	 buildings	 experiencing	 damage	 exceeding	 Damage	 State	 2,	
higher	 than	 the	 22%	 experiencing	 Moderate	 or	 Major	 damage	 in	 our	 study.	 Fragility	
curves	for	roof	failure	(Major	damage)	of	old	or	poor	condition	metal	sheet	roofs	(Jenkins	
et	al.,	2014),	calculate	that	just	over	10%	of	buildings	in	Owia	would	experience	sufJicient	
loading	 for	 roof	 collapse,	 comparable	 to	 the	 13%	 observed	 in	 our	 study.	 These	
comparisons	highlight	some	of	the	challenges	associated	with	using	vulnerability	models	
developed	for	different	locations.	Moreover,	they	reiterate	the	need	for	the	collection	of	
building	typology	and	post-event	impact	data	that	can	be	used	to	increase	the	amount	of	
empirical	 data	 available	 for	 vulnerability	 model	 development	 and	 allow	 regional	
vulnerability	models	to	be	developed	for	speciJic	building	types.		

	
	

2. The	 location	 of	 Table	 1	 cannot	 be	 the	 Introduction.	 It	 provides	 a	 performance	
comparison	of	several	models,	including	the	one	described	in	this	manuscript,	and	
should	 therefore	 be	 included	 in	 the	 Discussions.	 It	 is	 not	 logically	 correct	 to	
introduce	F1,	mean	average	precision	and	accuracy	scores	before	even	introducing	
the	model.	It	is	also	not	immediately	clear	what	"P",	"P	&	P",	"C1"	and	"C2"	mean.	
	

o We	 prefer	 to	 keep	 Table	 1	 in	 the	 introduction	 since	 we	 believe	 it	 adds	
important	context	to	the	points	discussed	in	this	section	in	particular	by	
showing	 the	 types	 of	 hazards	 that	 have	 been	 considered,	 the	 datatypes	
used	and	the	use	of	pre-disaster	imagery	in	past	studies.	However	in	line	
with	 the	 reviewers	 comments	and	 to	ensure	 that	 this	 is	 the	appropriate	
location	we	have	made	some	adjustments	to	the	table:	

§ We	have	removed	our	results	from	this	table	meaning		that	C1	and	
C2	are	no-longer	referred	to.	

§ We	have	changed	the	header	of	column	4	from	‘Pre	and	Post’	to	‘Pre-
disaster	imagery’.	The	contents	of	this	column	are	now	either	‘Yes’	
or	‘No’	as	opposed	to	P&P	or	P.	

§ We	have	added	the	following	text	to	the	tables	caption	:	A	detailed	
explanation	of	 the	 scores	used	 for	evaluation	 is	provided	 in	Section	
2.3.3.	

	
With	these	adaptations	we	believe	that	the	tables	position	within	the	
introduction	is	now	appropriate.		

	
Table	 1.	 A	 non-exhaustive	 list	 of	 works	 using	 deep	 learning	 on	 optical	 imagery	 for	
building	damage	assessment.	Studies	use	different	scores	to	evaluate	performance:	F1	
scores	are	in	italics,	mean	average	precision	scores	are	underlined,	accuracy	scores	in	



bold.	For	all	scores,	1	represents	a	perfect	model.	A	detailed	explanation	of	the	scores	
used	for	evaluation	is	provided	in	Section	2.3.3.	

	
Study	 Hazard	 Number	

of	
damage	
classes	

Pre-
disaster	
imagery		

Data	
type	

Building	
localisation	

Damage	
classi<ication	

Li	et	al.	(2019a)	 Hurricane	 2	 No	 airborne	 0.448	
Weber	and	Kane,	
(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.835	 0.697	

Dung	 Cao	 and	
Choe.	(2020)	

Hurricane	 2	 No	 satellite	 -	 0.972	

Pi	et	al.	(2020)	 Hurricane	 2	 No	 UAV,	
airborne	

0.745	(UAV)	
0.807	(airborne)	
	

Cheng	 et	 al.	
(2021)	

Hurricane	 5	 No	 UAV	 0.656	 0.610	

Galanis	 et	 al.	
(2021)	

WildOire	 2	 No	 satellite		 	 0.981	

Gupta	 and	 Shah	
(2020)	

Multi	 4	 Yes	 satellite	
(xBD)	

0.840	 0.740	

Shen	et	al.	(2021)	 Multi	 4	 Yes	 satellite	
(xBD)	

0.864	 0.782	

Bouchard	 et	 al.	
(2022)	

Multi	 2	 Yes	 satellite	
(xBD)	

0.846	 0.709	

Khajwal	 et	 al.	
(2023)	

Hurricane	 5	 No	 ground	
airborne	

-	 0.650	

Singh	 and	
Hoskere,	(2023)	

Multi	 5	 No	 satellite	 	 0.880	

Wang	 et	 al	
(2024)	

Volcanic	
tephra	

4	 Yes	 satellite	 0.868	 0.783	

	
	
	

3. In	Figure	1,	please	include	the	location	of	Georgetown.	
	

o The	 original	 caption	 for	 Figure	 1	 stated	 that	 Georgetown	 refers	 to	 the	
district	of	Georgetown,	this	is	located	in	the	NE	of	the	island	and	marked	
with	the	 letter	 ‘c’.	For	added	clarity	we	have	put	 items	a-c	 into	the	maps	
legend	and	removed	these	from	the	caption.	
New	Figure	1:	



	
	

4. The	text	 is	full	of	diagrams	and	tables.	Perhaps	it	would	be	more	attractive	to	a	
wider	 audience	 if	 the	 authors	 included	 some	 Jigures	 on	 the	 case	 study	 (for	
example,	 some	 images	 used	 for	 the	 model	 development,	 currently	 in	 the	
supplementary	material).	

• In	agreement	with	the	local	agency	responsible	for	monitoring	hazards	at	
St	Vincent	(The	University	of	the	West	Indies,	Seismic	Research	Centre),	to	
respect	the	privacy	of	the	residents	of	St	Vincent	we	did	not	include	images	
of	residential	buildings.	However,	 in	response	 to	reviewer	1s	suggestion,	
we	 have	 added	 an	 additional	 Jigure	 into	 the	 methods	 which	 shows	
representative	examples	of	the	different	damage	states	which	we	believe	
makes	the	study	more	appealing	to	a	wider	audience.	Buildings	shown	in	
this	 Jigure	 were	 carefully	 selected	 for	 anonymity,	 with	 government	 or	
public	buildings	shown	where	possible.		
	



	
Figure	2.	Example	of	the	three	damage	states	used	in	this	work:	No	damage	to	minor	
damage,	Moderate	damage	and,	Major	damage.	

	

	


