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Abstract. Low flows in the Swiss Plateau are expected to occur more often, to last longer and, hence, to be more severe under 15 

climate change. To predict and manage such periods of water scarcity effectively, more precise information on the drainage 

behavior of catchments is required. The drainage behavior of a catchment can be characterized by recession analysis methods 

(RAMs; e.g., recession curves) of which several have been developed in the last decades. Their recession parameters have 

been related to different aquifer characteristics or more general catchment characteristics like lithology, topography, or 

climatology. Such parameters vary widely, and the effects of uncertainties on the model’s outcomes are diverse and complex. 20 

Despite the obvious potential of recession curves for prediction, they have so far not been used for operational low flow 

prediction and guidance for hazard mitigation. In addition, recession curves of slowly draining catchment states are hardly 

represented by current RAMs. 

To fill the gap of RAMs representing slow draining catchment states we developed two novel RAMs, one fully automated and 

based on the matching strip method (MRC_slow), the other one (SDSC) relying on a careful expert-based selection of few 25 

recession segments with the slowest recession behavior. Alongside we used three established RAMs from the literature (one 

further matching strip model, linear regression and lower envelope in the discharge decay - discharge recession diagram). We 

applied the five RAMs on previously extracted low flow segments of 33 catchments in the Swiss Plateau and compared them 

on their recession curvatures, durations, and volumes. We designed a procedure that evaluates which of any selected RAMs 

best matches the recession behavior of individual low flow segments of a hydrograph. Applying this in a simulated prediction 30 

situation, we evaluated in retrospect, which of the five specifically selected RAMs predicted the low flow hydrographs between 

2021 and 2022 most accurately.   

We found the variability of recession durations and volumes between catchments to be higher than between the five RAMs. 

Within 30 of the 33 catchments, the order of recession durations and recession volumes was the same. Hence the different 
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recession behaviors of the RAMs could be related to different catchment states. Upon evaluating the low flow predictions, we 35 

found that the MRC_slow approach overall performed best followed by linear regression and SDSC. However, for operational 

low flow prediction we recommend using four of the five RAMs. This allows for changing the recession model(s) at every 

timestep if the recession behavior changes. It is also possible to present predictions with a model ensemble, indicating a range 

of uncertainties if several models perform similarly well. The described data-driven approach and the newly developed models 

are, therefore, very promising for improving low flow predictions in gauged catchments. 40 

1 Introduction 

In the last two decades the Swiss Plateau as well as the Prealps have experienced several long and severe dry periods (e.g., 

2003, 2015, 2018, 2022; Fink et al., 2004; Zappa and Kan, 2007; Laaha et al., 2017; Van Lanen et al., 2016; Meusburger et 

al., 2022; Lustenberger et al., 2023; Brunner et al., 2019a). In general, their precipitation deficit was superimposed with 

heatwaves during the vegetation period, which increased the drought conditions (Brunner et al., 2019a; Hanel et al., 2018). 45 

The analysis of hydrological data resulted in the notion that the frequency of the drought occurrence has increased since 1950 

(IPCC, 2023). Analyses of δ13C and δ18O isotopes of tree rings support these findings and indicate that in recent decades, 

droughts have not only occurred more frequently but have also been more extreme compared to the droughts during the past 

two millennia (Büntgen et al., 2021). Hydrological simulations, based on the Swiss climate scenarios (CH2018, 2018), indicate 

that in the next century the discharges of streams on the Swiss Plateau will likely decrease during summer months, which also 50 

leads to a decrease of low flows during the low flow season (Brunner et al., 2019b, c; FOEN, 2021; Muelchi et al., 2021a, b). 

Thus, the ecological, social, and economic impacts (Brunner and Tallaksen, 2019; Freire-González et al., 2017) of severe 

droughts might become more intense. To face these challenges early on and optimize water use, authorities need more precise 

information with a higher spatial distribution on how catchments drain during droughts. In such a context, understanding the 

dominant drainage behavior of a catchment under low flow conditions is crucial for predicting discharge during droughts. Such 55 

properties of a catchment can be characterized using recession curves (Tallaksen, 1995) which represents the natural decrease 

in discharge in the corresponding catchment. This occurs when a stream is no longer supplied with water from sources like 

precipitation, snow melt or artificial water return (e.g., treated wastewater or water discharged after electricity production). 

Various methods for analyzing such recession curves (recession analysis methods, RAMs) have been described in the literature 

with the aim of determining the most representative one for a catchment. Most of them are based on recession segments, which 60 

are a part of a hydrograph depicting decreasing discharge and which is extracted from continuously measured time series (see 

e.g., Tallaksen, 1995). There are many different approaches for conducting such an extraction (Dralle et al., 2017; Kirchner, 

2009; Mendoza et al., 2003; Santos et al., 2019; Stoelzle et al., 2013; Vogel and Kroll, 1992). Some are more restrictive than 

others upon considering discharge data that represents the pure depletion of the catchment, which then leads to a lower number 

of datapoints in such a recession segment. Thus, the number of data points and their distribution vary strongly among different 65 

studies (Stoelzle et al., 2013).  
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The recession behavior of a catchment can vary considerably between different individual low flow events (Carlotto and 

Chaffe, 2019; Posavec et al., 2006; Stoelzle et al., 2013; Tallaksen, 1995) and among seasons (Ambroise, 2016; Federer, 1973; 

Laaha and Blöschl, 2006; Tallaksen, 1995). In this context, a challenge in identifying a characteristic recession curve for a 

catchment lies in incorporating the large variability of the aforementioned dependencies and controls. Thus, there are many 70 

methods available for recession analysis, which differ in their approach and aim (see for instance the comparison by Stoelzle 

et al. (2013) as well as the reviews in Hall (1968) and Tallaksen (1995)). In addition, recession curves can be linked to static 

properties of a catchment such as the underlying lithological composition of a basin, its topography and climatological factors 

(Beran and Gustard, 1977; Eng et al., 2023; Knisel, 1963; Nurkholis et al., 2019; Carlier et al., 2018; Wirth et al., 2020; 

Floriancic et al., 2022). Most important, a holistic view on such controls offers the potential to improve a regionalization and 75 

builds the basis for predicting low flows in ungauged catchments (Laaha and Blöschl, 2006; Van Lanen et al., 2016). However, 

only a few methods currently exist for characterizing the slow drainage and slow- to mean-drainage behavior, highlighting the 

necessity for further methodological development in this direction.  

Here, we explore how various RAMs could be combined for improving low flow predictions in real-time for a catchment. To 

this end, we developed two novel graphical approaches for identifying recession curves in 33 catchments across the Swiss 80 

Plateau. The first approach is fully automated, following the main structure of the matching strip version with an optimization 

algorithm. However, it considers only the lowest discharges of each recession segment. The second approach requires manual 

input and an additional evaluation of the data by an expert. It combines several carefully selected recession segments using 

different linear regressions. Only the segments representing the slowest recession behavior of the investigation period were 

considered. With these newly introduced RAMs, which represent slowly draining catchment states, we aimed to find those 85 

recession curves which best represent the conditions where the slow-draining storages contribute the most to low flow (e.g., 

porous bedrock aquifers in the Swiss Molasse basin; Wirth et al., 2020). With ongoing drainage of a catchment, the importance 

for discharge of these slower responding storages situated at deeper levels increases (such as groundwater aquifers with low 

permeability (Stoelzle et al., 2014; Bart and Hope, 2014; Reddyvaraprasad et al., 2020). We then compared the results of these 

two new recession models with the outcomes from employing three other recession analysis methods that were previously 90 

published in the scientific literature. This includes (i) the matching strip by Posavec et al. (2017, 2010, 2006), as well as (ii) 

the linear regression, and the (iii) lower envelope approaches (Brutsaert and Nieber, 1977; Stoelzle et al., 2013). We 

particularly evaluated volumes and duration of recession curves calculated by the different RAMs and analyzed the 

methodological differences between the models. We derived explanations as to how the differences in the curves of the 

recession models could be relied to differences in the drainage behavior of aquifers. To estimate the real-time potential of the 95 

RAMs we designed a set-up to evaluate the potential lead time (predictable time / match time) of low flow predictions that can 

be achieved without a priori-knowledge of ongoing low flow events (forward prediction). With that, we aim to make data-

driven discharge predictions in low-flow situations based solely on RAMs. We conclude our paper with propositions on how 

to combine different RAMs to improve the predictions of low lows in catchments across the Swiss Plateau. 
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2 Previous achievements in developing recession analysis methods (RAMs) function 100 

2.1 Master Recession Curves (MRC) and Analytical Recession Analysis 

Commonly used recession analysis methods (RAMs) can be classified into two main groups. These are approaches to identify 

the master recession curves (MRC) and the results of analytical recession analysis. MRCs were developed to overcome the 

variability of individual recession segments (Tallaksen, 1995), where MRCs are commonly identified through correlation 

analysis (Beran and Gustard, 1977; Langbein, 1938; Nathan and McMahon, 1990) and by the matching strip method (Snyder, 105 

1939). Further development of both approaches focused on the reduction of user-induced biases and on the automation of the 

process (see e.g., Nathan and McMahon, 1990; Tallaksen, 1995; Toebes et al., 1969). In the correlation method, all discharge 

values (Qy) are plotted against the discharge values with a fixed time lag z (e.g., one day; Qy+z). At the perimeter of this point 

cloud, where the recession segments converge and intersect at the origin, an envelope is drawn (Nathan and McMahon, 1990; 

Beran and Gustard, 1977). The matching strip method (Carlotto and Chaffe, 2019; Lamb and Beven, 1997; Posavec et al., 110 

2006; Snyder, 1939) aims to horizontally transpose and partially overlap several individual recession segments and create one 

single curve, i.e. the MRC, through the overlapping of segments. The MRC is a curve that typically results from the mean of 

the used recession segments and describes the average drainage properties of a catchment (Rivera-Ramirez et al., 2002). 

Different versions exist on how the recession segments are transposed and which mathematical functions are used to create 

the MRC (Ambroise, 2016; Coutagne, 1948; Fiorotto and Caroni, 2013; Posavec et al., 2017). Several authors have criticized 115 

the MRC method as being too subjective (see e.g., Smakhtin, 2001). In this context, Tallaksen (1995) recommends employing 

MRC methods only for an overall approximation of low flow recession at the regional scale due to the high time variability in 

the recession curve. Nathan and McMahon (1990) applied both methods, the matching strip method and the correlation method, 

to 186 catchments in Australia and found that the matching strip method was more accurate while Rivera-Ramirez (2002) 

found the correlation method to yield more accurate approximations of the recession behavior.  120 

To avoid uncertainties in aligning recession segments Brutsaert and Nieber (1977) developped an analytical method to 

determine recession parameters by plotting the negative decline in discharge (-dQ/dt; per day) versus discharge (Q; mean per 

day) from recession segments on a log-log-scale. Using the slope of discharge (discharge decay per day) instead of discharge 

only, it is possible to eliminate the temporal dimension. Different models can be applied to this point cloud in the log-log-scale 

to determine the recession behavior of a catchment. Commonly, fitting has been achieved through (i) determining a linear 125 

regression to the mean (James and Thompson, 1970; Vogel and Kroll, 1992), (ii) assessing the lower envelope to the 5 % 

quantile (Brutsaert and Nieber, 1977) and (iii) through binning where a linear regression is fitted through binned means 

(Kirchner, 2009). 
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2.2 Different behavior of recession models and potential for low flow prediction 130 

The technique for extracting the recession segments and the approach to estimate the parameters of storage-outflow-models 

have a relevant impact on the resulting estimation of recession curves. The interaction of the impact of these two aspects is 

complex, which limits the comparability of recession characteristics of different catchments based on just one recession model 

(Stoelzle et al., 2013). The linear regression and the binning methods yield curves that describe a mean recession behavior 

(Stoelzle et al., 2013; Kirchner, 2009) while the lower envelope method delivers long recession times. Such information is 135 

more representative of a catchment state where contributions of slow draining reservoirs dominate the hydrograph (Brutsaert 

and Nieber, 1977; Stoelzle et al., 2013). To account for these differences, a combination of several methods to analyze the 

recession should be used at once (Rivera-Ramirez et al., 2002; Stoelzle et al., 2013).  

An intriguing feature of recession models is their potential as a tool for predicting low-flow discharge. Once the discharge is 

close to the range of a recession curve (low flow), there is a chance that in the following days the discharge might continue to 140 

decrease at the rates predicted by this recession curve. The potential of RAMs as a simple data-informed approach for real-

time discharge prediction is therefore obvious. Nonetheless, no such system has been tested for operational use by the 

knowledge of the authors. Also, there are few studies that effectively focus on predicting low flows based on RAMs (Singh 

and Griffiths, 2021; Reddyvaraprasad et al., 2020; Griffiths and McKerchar, 2015). In fact, most hydrological models are 

designed for mid to high flows (Staudinger et al., 2011). Among the few existing ones, Rivera-Ramirez et al. (2002) matched 145 

independently observed recession events with pre-computed models from RAMs in two basins to identify the point at which 

an ongoing recession segment aligns with those described by the MRC. Singh and Griffiths (2021) made a further step and 

analyzed the potential of MRCs to predict discharge. They found the prediction error to be acceptably small after two to three 

days after the start of the recession segment. Reddyvaraprasad et al. (2020) were the first to predict a recession based on 

coefficients that were derived from data of past discharge. Yet, it remains unclear how different RAMs (e.g., graphical, and 150 

analytical methods) compare when performing predictions. 

2 Methods 

2.2 Data 

33 head catchments spread over the whole Swiss Plateau (Figure 1) were chosen to explore the different RAMs. Their sizes 

vary between 0.5 and 420 km2 and their outlet elevations range from 380 to 1000 m a.s.l (Table A1 in the Annex). For these 155 

target catchments time series of mean daily discharge values were used that were continuously measured between 1991 and 

2022. The data were provided by the Federal Office for the Environment (FOEN), the Canton Aargau and the Canton Zürich. 

In all catchments the discharge regime is mainly pluvial (Weingartner and Aschwanden, 1992), and the underlying bedrock is 

characterized by different lithologies (cf. the Swiss Federal Office of Topography „Geological maps”, e.g. “Lithology 500” or 

“Geology 500”), which potentially results in different recession behaviors.  160 
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As the sample size considerably affects the results of the recession analysis (Fiorotto and Caroni, 2013; Rivera-Ramirez et al., 

2002), the discharge values between 1991 and 2020 were used for the fitting of the recession parameters for all catchments. 

The discharge values between 2021 and 2022 were used to test the prediction performance of different recession models in 

retrospect (see Sect. 3.7). For the development of the novel method referred to as Slow Drainage Storage curves (SDSCs), we 

additionally employed mean 10 min discharge values and daily rainfall sums averaged over the corresponding catchment area. 165 

The rainfall data was derived from the gridded dataset RhiresD v.2 provided by MeteoSwiss (MeteoSwiss, 2021). The 

discharge data of the FOEN (15 catchments) as well as the precipitation data are also openly available from the CAMELS-CH 

dataset (Höge et al., 2023a, b). 

 

 170 

Figure 1: 33 catchments in the Swiss Plateau used in this study (green, yellow). The yellow ones are the four exemplary catchments 

(WiB: Wissenbach – Boswil, UeH: Uerke – Holziken, BrP: Broye – Payerne, BiB: Biber - Biberbrugg) used for illustration purposes 

in the results section. 

 

3.2 Extraction of recession segments 175 

As the extraction of the recession segment can be more important as a foundation for robust parameter fitting than the fitting 

method itself (Santos et al., 2019), we used the same recession segments for all models. In a first step, we extracted low flow 

periods from the measured daily discharge time series. For that, we developed an algorithm using the concepts of the World 

Meteorological Organisation (WMO; WMO, 2008). We only considered the daily discharge values between April and 

September to avoid the influence of snowmelt and to focus on more extreme summer droughts when the potential for 180 

evapotranspiration is highest in the Swiss Plateau (Lustenberger et al., 2022; Seneviratne et al., 2012).  

In the literature, low flow thresholds are defined by the percentiles of the flow duration curve (Tallaksen, 1995), and they are 

typically described as an exceedance probability (see e.g. Gottschalk et al., 1997; Pushpalatha et al., 2012; Smakhtin, 2001; 

https://doi.org/10.5194/nhess-2024-78
Preprint. Discussion started: 24 June 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

Stahl et al., 2020). We started our recession analysis at Q68 (≙ 68 % flow exceedance probability). This corresponds to a 

discharge value which is exceeded on average during 250 days of the year (lowest 32 % of all observed discharge values). 185 

Those segments of the recession curve that are above the more common low flow thresholds at Q70 or Q80 (Gottschalk et al., 

1997; WMO, 2008) are needed as they define the shape of the upper part of the curves. 

Our algorithm for finding recession segments proceeds chronologically over the time series of discharge.   The procedure of 

generating a possible recession segment is started on day x1 when the discharge value is below Q68. Generally, the discharge 

value on the following day xi + 1 must then be equal or lower than the discharge value on day xi. Accordingly, the end of a 190 

segment is set on the day (xn) before the discharge is increasing again (xn + 1). However, to be relevant for being used as a 

MRC, the recession segment should consist of at least five days in a row with equal or decreasing discharge values (WMO, 

2008). Yet in the low flow range, the occurrence of measurement errors is inevitable. Such biases together with the runoff 

response to small precipitation events, drinking water withdrawal, water return from wastewater treatment plants, and varying 

evapotranspiration rates (Weisman, 1977; Kirchner, 2009; Teuling et al., 2010; Krakauer and Temimi, 2011; Ambroise, 2016) 195 

can considerably affect the low flow hydrograph. For these reasons one day registering a discharge that is slightly higher than 

during the preceding day is also accepted upon constructing the recession curve. Accordingly, if the value on day x i + 1 was up 

to 5 % higher than the value on day xi but the value on day xi + 2 was again lower than the value on day xi the recession segment 

was continued.  

As a final criterion, the last value of the recession segments must be lower than Q74. This allows to keep only those segments 200 

that come close to the low flow threshold of Q80, which we used to conduct our analysis. Missing data in segments ≤ 20 % 

was accepted, meaning that in the segment with a minimum length of five days a maximum of one day during which no data 

was available was allowed (e.g., because of a sensor error). A maximum number of days for defining one segment was not 

defined. 

3.3 Analytical models 205 

We applied two analytical methods. The discharge values from the defined recession segments (see Sect. 3.2) were used as a 

data base. Upon applying the negative slope on the curve displaying the discharge decay per day (-dQ/dt; mm d-2) instead of 

discharge only (Q; mm d-1) it is possible to eliminate the temporal dimension and avoid uncertainties upon determining the 

time steps of the recession time (Stoelzle et al., 2013). In this context, Brutsaert and Nieber (1977) used a power-law function 

to express the relationship between -dQ/dt and discharge Q: 210 

− (
𝑑𝑄

𝑑𝑡
) = 𝑎𝑄𝑏 ,            (1) 

where a is a factor and b an exponent. Because -dQ/dt vs. Q is usually plotted in a log-log-scale equation (1) is also log 

transformed (see e.g., Stoelzle et al., 2013): 

log (−
𝑑𝑄

𝑑𝑡
) = log(𝑎) + 𝑏 log(𝑄),          (2) 
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 215 

where log(a) represents the intercept and b the slope of a linear regression (Brutsaert and Nieber, 1977; Vogel and Kroll, 1992). 

We used a least squares linear regression model to determine the log(a) and b values from the log-transformed dataset, and we 

refer to the resulting line as REG_mean in the remainder of the text. In addition, we determined the lower envelope, which 

corresponds to a line where 5 % of the data lies below it. According to Stoelzle et al. (2013) we used a quantile regression. In 

the following, we refer to the lower envelope method as REG_q05. 220 

3.4 Master recession curves (MRCs) 

As outlined in Section 2.1, the development of master recession curves (MRCs) represents a widely used approach to analyze 

a recession. As a typical method to determine MRCs we chose the interactive visual basic tool, which was developed by 

Posavec et al. (2017, 2010, 2006) for data in an EXCEL spreadsheet. The tool itself is based on the matching strip method 

(Posavec et al., 2006). Even though this tool allows for an in-built extraction of recession segments, which itself is tailored for 225 

applications to continuous discharge time series, we used our own recession segments as input. This allows us to better compare 

the various models used in this study. We refer to the model by Posavec et al. (2017) in the remainder of the text as MRC_p. 

Additionally, we developed a modified MRC model (MRC_slow), which is based on the matching strip method. The goal is 

to better characterize the behavior of a catchment during a period of slow drainage (longer recession durations) than what has 

typically been described in the literature. To do so, we first sorted the recession segments using their minimum discharge 230 

values as criteria, which themselves are the last elements according to the definition of a recession segment. We proceeded 

through transforming the dates of the segments into a relative measure on the x-axis (i.e., day 1, day 2, …). We then assigned 

a relative value to the last element of each segment, which we considered as the starting position on the MRC before 

optimization. Here, the segment with the highest minimum value (s1) was given a value of one, the second (s2) a value of two, 

and so on up to segment sn with a value of n. We then adjusted all time values within each segment according to the assigned 235 

last value.  

We excluded the steep parts of the recession segments (upper parts of the segments) to keep only the flat parts, which 

characterize the slower drainage. To do so we determined the mean slope between consecutive data points of all recession 

segments and used it as a threshold. Starting from the value at the end of the segments we compared each slope to this threshold. 

Once the threshold was reached everything above (upper part of the segments) was excluded. If, after this reduction, a segment 240 

consisted of less than five data points, the segment was excluded from further analysis. Through the point cloud of the 

remaining elements of all remaining segments an exponential curve (nonlinear reservoir) was fitted, as suggested by Maillet 

(1905): 

𝑄𝑡 = 𝑄0𝑒−𝑐𝑡,            (3) 

where Qt represents the discharge on day t, Q0 the discharge on day 0 and c the recession coefficient. It originates from the 245 

Boussinesq’s nonlinear differential equation and represents a baseflow recession for aquifers. It has been demonstrated to work 
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well for streams with intermittent flows (Aksoy and Wittenberg, 2011), like those in the Swiss Plateau. The coefficient of 

determination (R2) served as an indicator for a goodness of fit. We transposed the segments horizontally on the x-axis to 

optimize the R2 of the model using the optim function in R (v4.1.1 - used with RStudio v2022.12.0+353). We used the “L-

BFGS-B” method, a quasi-Newton method that allows to define the bounding limits (Byrd et al., 1995). These were chosen to 250 

be ±100 days of the initially assigned relative x-values. The maximum number of iterations for the optimization was set to 

1000. The version with the highest R2 represents the final MRC_slow.  

3.5 Slow Drainage Storage Curves (SDSC) 

We also developed a model to calculate recession curves based on a subset of a few carefully selected recession segments with 

the slowest recession behavior. This makes the model very sensitive to even slight impacts of rainfall events on the hydrograph. 255 

Thus, parts of the recession segments wherein rainfall events obviously influenced the hydrograph were manually identified a 

priori and then removed by an expert. To do so we plotted the daily mean discharge of the recession segments together with 

10 min- discharge values together with the sum of daily rainfall. Additionally, recession segments which, upon visual 

inspection, were affected by measurement artifacts were removed. As for the MRC_slow model, the resulting segments had 

to consist of at least five consecutive daily discharge values. We assigned relative values to the x-axis instead of dates (cf. 260 

Sect. 3.4). Then, we performed least square linear regressions on each of the remaining recession segments thereby considering 

the discharge values during the last day (xn) and the discharge five days before (xn - 5), as well as between xn and xn - 6. We 

continued this procedure to the first daily discharge of the segment (x1). For each recession segment we identified the recession 

with the slope closest to zero, which then allowed us to identify the slowest recession part (SRP) at the end of each recession 

segment.  265 

From this subset of SRPs we selected the SRP with the flattest slope between Q75 and Q80. This particular SRP was designated 

as the initial SRP (SRP1) and provided the starting part of the recession curve. Next, we selected a subset of additional SRPs 

that fulfilled two conditions: a smaller maximum discharge and an equal or flatter slope than SRP1. From this new subset we 

selected the SRP with the maximum discharge and designated it as SRP2. We repeated the above-described procedure to 

determine SRP3, SRP4, and so on, until no further SRPs were left (Figure 2a). 270 

SRP1 was used as the initial segment of the final recession curve, which is also referred to as the Slow Drainage Storage Curve 

(SDSC). The position of SRP2 was defined by a linear extrapolation of the slope of SRP1. SRP2 started at the point where the 

discharge value of the extrapolation is equal to the maximum discharge value of SRP2. To fill the gap between the two SRPs, 

the linear extrapolation of SRP1 was used to define the recession curve. The location of all further SRPs were determined with 

this procedure (Figure 2b). If there was a gap between the end point of the last SRP and Q99, we linearly extrapolated the last 275 

SRP to Q99. Where the discharge values of two or more SRPs overlapped, only the values of the SRP with the flatter slope 

were considered. Accordingly, the number of discharge values characterizing the SRPs used in the final recession curve 

(SDSC) is often less than five (Figure 2b), even if the original SRPs consist of at least five datapoints. 
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 280 

Figure 2: Illustration of (a) the eight Slowest Recession Parts (SRPs) and (b) the Slow Drainage Storage Curve (SDSC) from the 

same SRPs for the catchment Biber – Biberbrugg. The colored lines in (a) represent the daily mean discharge values, the dashed 

lines their linear regression. The colored lines in (b) represent the linear regression of the used SRPs, the dashed line the linear 

extrapolation and so the actual SDSC. 

Only recession curves based on at least three SRPs were considered as meaningful. Additionally, in order to have a good spread 285 

of SRPs over the recession curve, the SRPs of the recession curve had to fulfill the three following criteria: (i) SRP1 must start 

at Q75 or higher, (ii) at least one SRP must be between Q80 and Q95, and (iii) the last SRP must end below Q95. If only two 

SRPs could be matched to create the SDSC or if one of the three criteria was not fulfilled, the SRPs with the flattest slopes 

were excluded one by one and the above-described procedure was repeated until all criteria were fulfilled. 

The SDSC is the only model among the five used in this study that is not defined by a single function fitted through all points 290 

used at once. Thus, points defining a break between the linear regression parts may occur thereby pointing towards a non-

linear behavior.  

3.6 Visual and statistical comparison 

We plotted all five RAMs (REG_mean, REG_q05, MRC_p, MRC_slow, SDSC) in the form of a recession plot (log-log plot 

of -dQ/dt vs. Q) and a recession curve plot (Q vs. t), respectively, to visually compare them. For the recession curve plots we 295 

horizontally shifted all models along the x-axis so that the discharge value of Q99 represents day 0 on the x-axis. We plotted 

the MRCs between Q80, which we defined as the low flow threshold, and Q99. Discharge values between Q99 and Q100 are 

assumed to be highly susceptible to measurement errors (Coxon et al., 2015; Tallaksen, 1995). Therefore, we did not use 

recession curve values below Q99 in our recession analysis (same as e.g., Rivera-Ramirez et al., 2002). In the recession curve 

plot a higher recession coefficient c (Equation (3)), pointing towards steeper curves, leads to lines that are closer to the top of 300 
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the recession plot with the consequence that their intercept log(a) (Equation (2)) has a higher value. Accordingly, the longer 

the recession duration of a model the lower is the intercept log(a) in the recession plot. Slopes b = 1 represent linear reservoirs 

as used for e.g., the MRC_slow and MRC_p models (cf. Equation (3)). Other slopes result from the use of different 

mathematical equations. E.g. recession curves with steeper slopes can be characterized by a power function with the exponent 

1/(2-b) as described by Kirchner (2009). 305 

In each catchment, we calculated the specific discharge volume (volume divided by catchment area; mm) between Q80 and 

Q99 for all five recession models. This volume is related to the recession duration (longer recession durations generally lead 

to higher specific discharge volumes). We then compared the volumes of the five RAMs using the Friedman test for dependent, 

nonparametric samples (Friedman, 1937). We further performed Dunn's post-hoc test (Dunn, 1964) to identify statistical 

differences among the individual models. 310 

3.7 Assessment of prediction performance 

To evaluate the prediction performance of each model, we used the following procedure: For the independent recession 

segments where discharges are below Q80 a match of the discharge values to a recession curve model is made for the first 

element in the recession curve plot. The values of the segment on the days after the matching (between the segment and the 

recession curve model) may deviate. This deviation can be quantified using the corrected version of the Mean Absolute 315 

Percentage Error (MAPE), which is defined as (Makridakis, 1993): 

𝑀𝐴𝑃𝐸𝑐𝑜𝑟 =  
100

𝑛
∑ |

𝑠𝑡−𝑟𝑐𝑡
𝑠𝑡+𝑟𝑐𝑡

2

|𝑛
𝑡=1 ,          (3) 

where rct is the modeled discharge of the recession curve at time step t and st is the recession segment at this time step. t = 1 

indicates the moment when an element of the segment s matches with the values of the recession curve model. We computed 

the MAPEcor for three (n = 3) consecutive steps (“goodness of match range”) to decide whether the match was good. If the 320 

MAPEcor of three consecutive elements of the segment was larger or equal to 5 % the matching point was disregarded, and 

the next element of the recession segment was evaluated. If the MAPEcor was below 5 % the corresponding point of the 

segment was defined as the “first match”, and all successive points were then regarded as the target for the prediction by the 

recession curve (Figure 3a). The closer the recession segment remained to a recession curve model after the match, the more 

useful is the corresponding model for predicting a data-driven discharge. We used the MAPEcor calculated over all data points 325 

after the “first match” as indicator for assessing the potential for a specific recession model to predict the future discharge. We 

applied this procedure to all five RAMs using the recession segments from the years 2021/2022 (which were not included 

upon generating the recession curve models) and for all 33 catchments. We called this assessment a “forward prediction”. 

As a complement to the forward prediction, we calculated the agreement between a recession segment and a recession curve 

model, thereby starting from the last day of that segment (the day with lowest discharge: “matched point”). We did so by 330 

counting the number of days having a MAPEcor below 5 % (Figure 3b). The higher the number, the better is the agreement 
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with a specific recession model. We call this second assessment a “backward prediction». We used the Friedman test 

(Friedman, 1937) and the Dunn's post-hoc test (Dunn, 1964) to compare the five models in terms of their MAPEcor for the 

forward prediction. We considered the number of segments that could be matched for both the forward and backward 

predictions. 335 

The relation between the total segment length and the predictable time/match time was analyzed using a linear regression.  We 

used the number of predictable days as dependent variable and the available days and the RAMs as independent variables. We 

then calculated individual intercepts and slopes for each of the RAMs. Differences in slope and intercept for the five RAMs 

were assessed by the t-test of the corresponding model. 

 340 

 
Figure 3: Visualization of the matching and evaluation procedure to assess the goodness of low-flow prediction for a recession 

segment in comparison to a recession model, here MRC_slow, (a) for the days between the first match and the end of the segment 

(forward prediction) and (b) for the days in backward direction, starting from the last element of a segment (backwards streak). 

The grey points represent the first elements of the segment with a poor match (MAPEcor > 5 %) with respect to the recession curve. 345 
Shown here is the example of one recession segment in the catchment Aabach in Mönchaltdorf. 

4 Results 

4.1 Recession duration 

The recession durations from Q80 to Q99 differ considerably between the five RAMs and between the catchments. We 

illustrate this using four exemplary catchments (Wissenbach – Boswil (WiB), Uerke – Holziken (UeH), Broye – Payerne (BrP) 350 

and Biber – Biberbrugg (BiB); Figure 4a-d, see also Figure 1) and describe and discuss them in more detail. We justify this 

selection because we consider the four examples as representative for the whole dataset, mainly because they cover a large 
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variety of recession durations and slopes. In all four catchments the recession durations of the five RAMs decrease in the same 

order: REG_q05 > SDSC > MRC_slow > REG_mean > MRC_p. However, within a catchment, the recession durations 

between the RAMs vary considerably. In catchment WiB and BrP the SDSC curve is rather close to the REG_q05 curve, while 355 

in catchment UeH the SDSC curve is just underneath the MRC_slow curve. In catchment WiB the curves of MRC_p and 

REG_mean are similar during the last 10 days of the recession, and the same is observed for MRC_p and REG_mean in 

catchment BiB during the last 30 days. Some recession curves have a less pronounced curvature approaching Q99 as 

exemplified by the recession curves in catchment UeH (with exception of the REG_mean curve). On the other hand, some 

have very pronounced curvatures, e.g., recession curves in catchment BiB. For the catchments WiB and BrP the curvatures of 360 

the REG_q05 curves are less pronounced than those of the other four models. For some catchments, such as catchment WiB, 

BrP, and BiB, the discontinuous shape of the SDSC curve is visible, indicating a non-linear drainage behavior. 

For 30 of the 33 catchments, we observed the pattern of recession durations where REG_q05 > SDSC > MRC_slow > 

REG_mean > MRC_p (see Table A2 in the Annex). The recession durations resulting from the REG_q05 model (range: 34 to 

228 days, median: 116 days) are reasonably longer than those derived from the MRC_p model (range: 10 to 23 days, median: 365 

15 days). The SDSC model (range: 27 to 93 days, median: 52 days) returns a pattern that is approximately in the middle of the 

former two while the results of the MRC_slow (range: 18 to 58 days, median: 34 days) and REG_mean (range: 12 to 31 days, 

median: 20 days) are closer to those of the MRC_p model. 

The MRC_slow and MRC_p models return curves that have a slope of 1 for all catchments (i.e., they are parallel) in the 

recession plot (Figure 5) but they have different intercepts.  Across all 33 catchments the median intercept derived from the 370 

MRC_p model (-1.21) is higher than the one of the MRC_slow model (-1.53; cf. Figure A1 in the Annex). The REG_mean 

and REG_q05 models have slopes above 1 in catchments UeH and BiB but below 1 in catchments WiB and BrP. Over all 33 

catchments for both models the median slopes are greater than 1 (REG_mean: 1.09, REG_q05: 1.06). The median intercept 

for the REG_mean model (-1.30) is higher than for the REG_q05 model (-2.04). The SDSC model yields to step-like recession 

plots (Figure 5). This occurs because it was created by the combination of several linear regressions (within each -dQ/dt is 375 

constant). Nonetheless, by creating a mean slope, a comparison to the other models by slope and intercept is possible. Across 

all 33 catchments the SDSC model has a median slope of 0.64 and a median intercept of -1.86. 
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Figure 4: Recession curve plots (recession time [d] vs. specific discharge [mm d-1]) with the five used RAMs (REG_mean, REG_q05, 380 
MRC_p, MRC_slow, SDSC) for four exemplary catchments in the Swiss Plateau (Wissenbach - Boswil, Biber - Biberbrugg, Ürke – 

Holziken, Broye – Payerne). 
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Figure 5: Recession plots (specific discharge [mm d-1] vs. the negative discharge derivate after time [mm d-2]) with the five used 385 
RAMs (REG_mean, REG_q05, MRC_p, MRC_slow, SDSC) for four exemplary catchments in the Swiss Plateau (Wissenbach - 

Boswil, Biber - Biberbrugg, Ürke – Holziken, Broye – Payerne). 

 

4.2 Recession volumes 

The REG_q05 model (range: 14.0 to 128.4 mm, median: 34.9 mm) led in most catchments to the highest recession volumes 390 

between Q80 and Q99, followed by the SDSC (range: 9.7 to 54.0 mm, median: 16.3 mm) and the MRC_slow (range: 6.2 to 
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47.9 mm, median: 10.7 mm) models (Figure 6). The smallest volumes were retrieved by the REG_mean (range: 4.0 to 20.0 

mm, median: 6.6 mm) and MRC_p (range: 3.1 to 13.0 mm, median: 5.5 mm) models, where the REG_mean model delivered 

a slightly greater volume than the MRC_p model. Significantly different recession volumes were found between all RAMs 

(𝜒2 = 128.17, p-value < 2.2e-16) except between REG_mean and MRC_p. Similar to the recession duration, we observed the 395 

same order for the recession volumes (REG_q05 > SDSC > MRC_slow > REG_mean > MRC_p) for 30 of the 33 catchments 

(Table A3 in the Annex). Note that the recession volumes between the catchments vary more compared to those of the models 

(see Figure 6). 

 

 400 

Figure 6: Boxplots of the recession volumes between Q80 and Q99 for all 33 catchments, separated for the five RAMs (REG_mean, 

REG_q05, MRC_p, MRC_slow, SDSC). The interquartile range (IQR; meaning the box) contains values between the 25 % and 75 

% percentile, whereas the line within the box represents the median. The whiskers expand to a maximum of 1.5 times the IQR. The 

dots represent the actual values. Different letters denote significant differences among the models, equal letters denote no such 

difference. The three stars in the top right corner indicate the significance level overall (p-value < 0.001). 405 

 

4.3 Forward and backward prediction 

In the forward prediction, the recession segments visually matched better with the steeper RAMs (MRC_slow, REG_mean, 

MRC_p, SDSC) as indicated by the results of the exemplary catchment Biber – Biberbrugg (Figure 7a). The slopes of the 

recession segments matched better with the slopes of the models mentioned above compared to the REG_q05 model (Figure 410 
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7a and b). Additionally, more recession segments could successfully be matched to the recession models with steeper slopes 

in both the forward and backward predictions. Most of the segments were matched with the MRC_slow model (forward 

prediction: 8 of 9 / backward prediction: 9 of 9). The worst performance in the forward prediction was seen for the REG_q05 

model, where only 3 out of 9 segments could be matched. The backward prediction was equally good for the REG_mean 

model but better for the other four models. For the MRC_slow and MRC_p models 9 out of 9 segments could be matched 415 

during the backward prediction. 

 

 

Figure 7: Recession curve plots with the five used RAMs (same colors as in the other figures) as an exemplary example of the 

individual recession segment matching (grey = discarded, colored = after matching) in the catchment Biber – Biberbrugg for (a) the 420 
forward prediction and (b) the backward prediction. 

 

Table 1: Number of recession segments for the forward and backward predictions in the catchment Biber – Biberbrugg which fulfill 

the matching criteria with the five RAMs. The maximum number of recession segments is 9. 

 425 

 REG_mean REG_q05 MRC_p MRC_slow SDSC 

forward prediction 6 3 4 8 4 

backward prediction 6 8 9 9 8 

 

A comparison of the forward and backward predictions of all five RAMs and for all 33 catchments reveals a similar pattern. 

In the forward prediction there are significant differences between the models regarding the MAPEcor (𝜒2 = 100.75, p-value 

< 2.2e-16). The lowest values, and therefore the best prediction performances, were retrieved by the MRC_slow and the 

REG_mean models (Figure 8, Table 2). In addition, the outcomes of both models are similar to each other. Yet slightly higher 430 

values were reached by the MRC_p model, which does not significantly differ from the REG_mean and SDSC models. The 
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highest MAPEcor values were retrieved by the REG_q05 model but it does not significantly differ from the MRC_p model. 

These findings correlate well with the number of segments that could be matched to the corresponding five models in all 

catchments (Table 2).  

 435 

Figure 8: Boxplots showing the MAPEcor after the matching in the forward prediction for all five RAMs. The interquartile range 

(IQR; meaning the box) contains values between the 25 % and 75 % percentile, whereas the line within the box represents the 

median. The whiskers expand to a maximum of 1.5 times the IQR. The dots represent the actual values. Different letters denote 

significant differences among the models, equal letters denote no such difference. The three stars in the top right corner indicate the 

significance level overall (p-value < 0.001). The percentage values below the boxplots indicate how many segments could be matched. 440 
As the scale of the y-axis was cut, the number of points above 0.2 (n) are indicated with “o: n”. 

 

In this context, the MRC_slow and REG_mean models have the highest number (71 %), followed by the SDSC model (67 %). 

The worst prediction was found for the REG_q05 model (61 %). 76 of the total 336 segments could not be matched to a single 

model while seven could be matched to one model only. Across all models an average predictable time of 5.4 days was reached, 445 

while no large difference among the models was found (Table 2). The predictable time increases for all five RAMs with 

increasing segment length (Figure 9a).  

In the backward prediction a slightly larger number of segments could be matched for all five RAMs (Table 2). The best model 

is, again, the MRC_slow (74 %), closely followed by the REG_mean (73 %). The worst performance is, again, retrieved by 

the REG_q05 (65 %). 51 of the total 336 segments could not be matched to a single model while 14 could only be matched to 450 

one model. Across all models an average match time of 4.0 days was reached but the models performed differently (Table 2). 

While the REG_q05 and MRC_p models indicated shorter match times (3.5 days), the MRC_slow model indicated higher 

match times (4.7 days). The REG_mean (4.0 days) and SDSC models (4.2 days) fall around the mean. In the backward 

prediction, the increase in match time with increasing segment length is not as pronounced as in the forward prediction (Figure 

9b).  455 
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Figure 9: Dotplots for the (a) forward prediction and the (b) backward prediction, showing the recession segment lengths vs. the 

predictable/match time in days. The size of the points indicates how many points lie at the same location. The colors represent the 

five models. The lines represent linear regressions for each of the five models. 

However, in this context, a larger spread between the models is found. The match time of the MRC_slow model increases the 460 

most with increasing segment length, followed by the SDSC, the REG_mean and the REG_q05 models. The MRC_p model 

hardly points towards an increase of the match time with segment length. In the forward prediction the linear model indicated 

a positive relationship between the number of predictable days and the segment length (t-value = 25.13, p-value < 2.2e-16). 

Only the slope of the REG_q05 model was significantly different from the REG_mean model that itself was used as reference 

for this calculation (t-value = -2.21, p-value = 0.03). Likewise, a positive correlation between the number of match days and 465 

the segment length was found in the backward prediction (t-value = 5.88, p-value = 5.21e-09). The MRC_slow and SDSC 

models had significantly different intercepts, yet the MRC_slow, SDSC and MRC_p models had different slopes compared to 

the REG_mean model (see Table A4 and Table A5 in the Annex). 

 

Table 2: Percent of matchable recession segments in the forward (FP) and backward prediction (BP), the average predictable 470 
time/match time in the FP and BP as well as the average MAPEcor of the five in all 33 catchments. 

model 

matchable 

recession 

segments FP [%] 

matchable 

recession 

segments BP [%] 

average 

predictable 

time FP [d] 

average match 

time BP [d] 

average 

MAPEcor FP 

REG_mean 71 73 5.5 4.0 0.046 

REG_q05 61 65 5.2 3.5 0.062 

MRC_p 64 71 5.6 3.5 0.056 

MRC_slow 71 74 5.4 4.7 0.048 

SDSC 67 71 5.2 4.2 0.052 
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5 Discussion 

5.1 Recession models and catchment states 

Recession durations and volumes of individual recession segments can be attributed to physical preconditions of the 475 

catchments in the beginning of a low flow period, such as saturation levels of groundwater aquifers (Ambroise, 2016; Kirchner, 

2009; Tallaksen, 1995). Aquifer attributes (depth, porosity and distribution) as well as evapotranspiration (Ambroise, 2016; 

Kirchner, 2009; Teuling et al., 2010) impact the drainage behavior of a catchment (Tallaksen, 1995; Wang and Cai, 2010). 

However, despite the large differences in catchment characteristics, the order of our five models characterizing the recession 

durations and volumes was the same for 30 of the 33 evaluated catchments (Table 2 and table 3 in the Supplement). Similar to 480 

the diverse recession behaviors exhibited by individual recession segments, this suggests that the variances between the models 

can be attributed to various catchment states and characteristics. Long recession durations with flat recession curves 

(REG_q05, SDSC) could be an indication for a catchment state where slowly draining groundwater aquifers situated at deep 

levels (such as porous bedrock or highly productive Quaternary deposits, (Stoelzle et al., 2014; Wirth et al., 2020) are relatively 

well saturated while faster draining aquifers, such as non-productive Quaternary deposits of high permeability (like e.g., gravel 485 

sand or “Schotter”; Wirth et al., 2020) are rather empty. In addition, the losses of stored water due to evapotranspiration can 

be assumed to be small. On the other hand, short recession durations and steep recession curves (REG_mean, MRC_p) could 

indicate that storages, which generally drain quickly, are more saturated, while storages that tend to drain slowly are less 

saturated. Here, the losses due to evapotranspiration are likely to increase the slope of the recession curves. The MRC_slow 

model might often fall in-between the two described conditions and thus describes catchment conditions, which often occur 490 

during low flow periods. Accordingly, this corresponds to an average condition that is often aligned with the measured 

discharges (cf. low flow prediction in Sect. 5.3). 

5.2 Differences between the recession models 

Variations in daily discharge often disturb the storage recession in a catchment. Factors identified as the cause of these 

variations include uncertainties in discharge measurements, small precipitation events, anthropogenic withdrawal and return 495 

of water, or daily differences of evapotranspiration losses (Gao et al., 2022; Kirchner, 2009; Roques et al., 2017; Rupp and 

Selker, 2006; Stoelzle et al., 2013; Thomas et al., 2015; Westerberg and McMillan, 2015). In the literature, these variations 

are described as “data noise” (Laaha and Blöschl, 2006; Van Lanen et al., 2016). The five applied models differ in the way of 

how variations in daily discharge affect the final recession curves. 

In this study, we had a particular interest in very slow recession rates, represented by the REG_q05 and SDSC models. Both 500 

models smooth the variations outlined the previous paragraph, but in different ways. For the SDSC model the previous manual 

filtering of the recession segments had already eliminated some of the discharge values where the measurements were biased. 

For the REG_q05 model such biased values are only partly eliminated by fitting the regression line (but with unfiltered 

recession segments) and a bias resulting in the construction of the resulting line persists (Wang and Cai, 2010). In comparison, 
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the REG_mean model produces considerably steeper curves compared to the REG_q05 model, resulting in smaller impacts of 505 

these unfiltered recession segments. 

The SDSC model was fitted in the recession curve plot space (Q vs. t) by linear regressions within the datapoints of the same 

recession segments (time dependent), which partially smoothed out the impact of noise in the data. For the REG_q05 model 

the fitting was done in the recession plot space (-dQ/dt vs. Q) for all datapoints at once (time independent). We found that the 

SDSC model represents the actual recession segments more often than the REG_q05 (cf. low flow prediction in Sect. 5.3). 510 

According to Rupp and Selker (2006) the use of a constant time step (dt) for the estimation of -dQ/dt (as used for REG_q05 

and REG_mean) can result in large uncertainties upon fitting the recession parameters because of noise in the data, mainly at 

late stages of a recession. This noise is caused by the limited resolution and precision of the measurements (Kirchner, 2009; 

Roques et al., 2017; Rupp and Selker, 2006) or other impacts, like short occurrences of precipitation, drinking water 

withdrawal, water return from wastewater treatment plants, and varying evapotranspiration rates (see Sect. 3.2). Therefore, we 515 

assume that the REG_q05 model is strongly affected by the related noise in the data.  

The differences in the recession curvature, recession durations, and volumes between the SDSC model and the MRC_slow 

and MRC_p models can be explained by methodological differences along the models. Gaps between segments in the SDSC 

curves were bridged through linear interpolation, whereas for the MRC_slow and MRC_p curves, an exponential 

approximation was employed for model construction. In most cases the MRC_slow model produced shorter recession durations 520 

than the SDSC model. This is mainly because the MRC_slow model is based on more segments and datapoints in total, 

including those with small rainfall disturbances (steeper recession segments), whereas the SDSC model is based on the flattest 

segments. The even shorter recession durations observed in the MRC_p model are attributed to the methodological approach 

wherein the exponential model was fitted through the recession segments individually (from highest to lowest). In contrast, 

the MRC_slow model bases exclusively on the lower (flat) portion of the segments and on an optimization algorithm, which 525 

allowed to fit the MRC across all segments simultaneously. 

For some catchments, the applied linear interpolation for the SDSC model leads to sharp edges or breakpoints in the resulting 

curve (cf. Figure 4a). Such breakpoints can naturally occur as described and/or demonstrated in several recession and baseflow 

studies (see e.g., Chen et al., 2012; Stoelzle et al., 2020; O’Brien et al., 2013). The SDSC relies on continuous discharge values 

within segments, and these breakpoints could represent: 530 

  

• changes in storage depletion  

• variations in evapotranspiration rates between individual recession segments  

• gaps in discharge time series data within the timeframe covered by the used data for this storage state 

• uncertainties in flow rating curves, which typically change multiple times within a 30-year period (personal 535 

communication with the hydrology division of the FOEN, 2024), and/or water level measurements 
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Overall, among the five models utilized in this study, the SDSC model might emerge as the most reliable one for representing 

the slowest recession behavior observed during the 30-year examination period (April to September in catchments of Swiss 

Plateau). One could argue that the SDSC model represents a quasi-matching strip alternative to the REG_q05 model. However, 540 

it requires subjective manual tasks to be performed by an expert. The advantage of the other four models is that their recession 

curves are based on a larger number of datapoints and that they are created in a fully automated and objective way. Among 

these, the MRC_slow model specifically targets the average behavior of the recession segments with the slowest drainage 

behavior, thereby mitigating the impact of uncertainties in discharge data. Thus, of the four fully automated models, it is the 

one that best represents the behavior of slowly draining catchment states. 545 

5.3 Recession models in low flow prediction 

We assessed the predictive capabilities of the five models for both forward and backward predictions of discharge 

measurements for the years 2021 and 2022 (not used for model fitting). The prediction performance was best for both the 

forward and backward predictions using the two models MRC_slow and REG_mean (lowest MAPEcor values, highest 

percentage of matchable recession segments). This fits well to the idea where the REG_mean model represents a mean 550 

recession behavior (Stoelzle et al., 2013) and the MRC_slow characterizes a mean but rather slow recession behavior. Thus, 

among the five models, MRC_slow and REG_mean represent most of the recession segments. As the MRC_slow was designed 

for rather slower recessions it is also not surprising that it works slightly better during low flow periods. The two models 

representing the two extreme recession behaviors,  MRC_p (mean recession; Rivera-Ramirez et al., 2002) and REG_q05 (slow 

recession; Stoelzle et al., 2013) are the least suitable for low flow predictions. This is reflected in the highest MAPEcor values, 555 

the smallest percentage of matchable segments, and the worst match time increase for longer segments in the backward 

prediction. The longer a recession period lasts, the higher becomes the contribution of slowly draining storages and hence the 

recession curves become flatter. Consequently, the models representing a slow catchment drainage, like MRC_slow or SDSC, 

are more suited compared to the other ones (highest match time with increasing segment length, Figure 9b). With longer 

recession segments, also longer predictable times were reached for all five models (Figure 9). Longer recession segments are 560 

typical for longer drought periods (e.g., 2003, 2018; Brunner et al., 2019c; Fink et al., 2004). As a result, better predictions can 

be achieved during severe dry periods than during short ones.  

Some recession segments are affected by discharge fluctuations that disrupt the resulting recession curve (see Sect. 3.2 and 

5.2). If such fluctuations affect the matching assessment of the forward prediction (three consecutive days from where the 

segments are fitted to the recession models), there might be cases where a matching is mistakenly identified. Such fluctuations 565 

could also be the reason for increasing values in MAPEcor during the forward prediction. Furthermore, some recession 

segments are affected by breakpoints, which could be an indication that a dominant storage ended to contribute to the 

hydrograph (see e.g., Chen et al., 2012; Stoelzle et al., 2020; O’Brien et al., 2013). In such situations a different recession 

model might be better suited to represent the ongoing recession, which can be accounted for in operational forecasting.  
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In operational forecasting, the prediction is renewed at each timestep, allowing for the exchange of models within the same 570 

interval. Performing a backwards prediction with several recession models allows the determination of the “best” performing 

model(s) of the past x days. The longer the match time of the backward prediction using the selected model, the more reliable 

the subsequent prediction may be (operational forward prediction). The "best" model, determined through backward prediction, 

can be employed for operational forward prediction as it accurately represents the current catchment state. However, it is also 

valuable to use several models at once (Stoelzle et al., 2013). If several models are similarly good performing in the backwards 575 

prediction, the model ensemble can be used for defining a confidence interval for constraining the variations in the states of 

catchment storage or different evapotranspiration and for assessing the uncertainties of the model (Roques et al., 2017).  

Differences of the recession behavior among catchments are explained by lithological structures (Stoelzle et al., 2014; Carlier 

et al., 2018; Wirth et al., 2020) and local catchment characteristics. These are the occurrence and location of steep slopes and 

storages (Floriancic et al., 2022; Shaw et al., 2013) as well as climatic conditions (Jachens et al., 2020). But these characteristics 580 

are difficult to determine (Floriancic et al., 2022; Karlsen et al., 2016) and quantitative constraints are often not available 

(Gnann et al., 2021). Most affected from these uncertainties are predictions in ungauged catchments. Linking the recession 

models to specific catchment characteristics (such as lithological, topographical and climate factors) has the potential to 

improve low flow prediction in ungauged catchments. However, the possibility to find the recession model best representing 

the current catchment state among different models in gauged catchments enables considerable improvements in data-driven 585 

low flow predictions.  

6 Conclusions 

In this study, we compared five recession analysis methods (RAMs) that differ by their conceptual and methodological 

approach, their recession curvatures, durations, and volumes as well as by their prediction potential. Two of the five models 

(MRC_slow, SDSC) were developed specifically for this study. Both represent a slow to mean drainage behavior and fill a 590 

current gap in the literature. Two models are master recession curves (MRC_slow, MRC_p), whereby two of them are based 

on analytical methods of the discharge decay - discharge recession diagram (linear regression: REG_mean, lower envelope: 

REG_q05) and the SDSC is a “quasi matching strip version” of REG_q05. The five models differed considerably in their 

recession durations, recession volumes and recession curvatures within the same catchment. However, the order was the same 

for 30 of 33 catchments (REG_q05 > SDSC > MRC_slow > REG_mean > MRC_p) indicating that the variability between the 595 

catchments is higher than between the models. This suggests that the differences between the models can be allocated to 

different catchment states. Slowly draining recession models (SDSC, MRC_slow) are more likely to be representative for 

catchment states, where contributions from slowly draining aquifers dominate the low flow hydrograph and evapotranspiration 

rates might have a small impact. On the other hand, fast draining models (MRC_p, REG_mean) are considered to reflect those 

catchment states where contributions of fast draining aquifers are more dominant.  600 
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In the forward prediction the models MRC_slow and REG_mean performed best, as they describe a mean recession behavior. 

The MRC_slow represents a slower recession behavior and performed slightly better. The MRC_p model represents a rather 

fast and the SDSC model a very slowly draining catchment state. Those occur more seldomly and hence, the related models 

might less often suit for low flow prediction. The REG_q05 model might be strongly affected by biases and thus may not 

accurately represent a realistic drainage behavior. Accordingly, for operational low flow prediction several models should be 605 

considered. In this context, by performing a backwards prediction, the best model(s) representing the current recession 

behavior can be chosen. This allows to change the recession model(s) for low flow prediction in every timestep and accounts 

for considering changes of aquifer contributions or evapotranspiration rates. It is also possible to do predictions with a model 

ensemble, giving a range of uncertainties, if several models perform similarly well. The described data-driven approach is, 

hence, very promising if the goal is to improve the predictions of low flows in gauged catchments. 610 
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Table A1: Catchment properties (area, station height, discharge regime) and discharge quantiles used (Q99, Q95, Q80, Q75, Q74, 

Q68) for the 33 catchments, calculated for the time span from 1991 to 2020. 

stream area  

[km2] 

station 

height  
[m a.s.l.] 

discharge regime Q99 Q95 Q80 Q75 Q74 Q68 

Aabach - Moenchaltdorf 44.23 440 pluvial inférieure 0.11 0.17 0.30 0.34 0.35 0.40 

Aach - Salmsach 47.38 408 pluvial inférieure 0.08 0.11 0.19 0.22 0.22 0.26 
Altbach - Bassersdorf 11.77 470 pluvial inférieure 0.02 0.03 0.06 0.07 0.08 0.09 

Biber - Biberbrugg 31.91 828 nivo-pluvial préalpine 0.09 0.14 0.24 0.28 0.29 0.34 

Broye - Payerne 418.17 446 pluvial jurassien 0.80 1.23 2.26 2.53 2.59 2.98 
Buenz - Muri 16.03 449 pluvial inférieure 0.03 0.05 0.09 0.10 0.10 0.11 

Eulach - Raeterschen 31.22 470 pluvial inférieure 0.05 0.09 0.17 0.19 0.20 0.22 

Glatt - Herisau 16.72 679 pluvial supérieure 0.11 0.14 0.20 0.22 0.22 0.24 
Haselbach - Mettmenstetten 8.51 453 pluvial inférieure 0.01 0.02 0.04 0.05 0.05 0.05 

Holzbach - Villmergen 23.92 418 pluvial inférieure 0.04 0.07 0.13 0.15 0.15 0.17 

Jona - Pilgersteg 24.35 560 pluvial supérieure 0.13 0.19 0.29 0.32 0.33 0.37 
Jonen - Zwillikon 37.45 460 pluvial inférieure 0.07 0.11 0.21 0.24 0.24 0.28 

Kempt - Illnau 39.25 500 pluvial inférieure 0.11 0.15 0.25 0.28 0.29 0.32 

Kuentenerbach - Kuenten 4.5 381 pluvial inférieure 0.01 0.01 0.02 0.02 0.02 0.03 
Langete - Huttwil 59.92 602 pluvial supérieure 0.40 0.50 0.70 0.74 0.75 0.80 

Luthern - Nebikon 104.68 489 pluvial supérieure 0.30 0.37 0.59 0.65 0.66 0.73 

Mentue - Yvonand 105.3 448 pluvial jurassien 0.18 0.25 0.48 0.57 0.58 0.67 
Murg - Waengi 80.13 469 pluvial supérieure 0.28 0.41 0.63 0.71 0.72 0.82 

Pfaffnern - Vordemwald 39.06 417 pluvial inférieure 0.18 0.23 0.33 0.35 0.36 0.39 

Rappengraben - Wasen_Riedbad 0.61 998 nivo-pluvial préalpine 0.00 0.00 0.00 0.01 0.01 0.01 
Rietholzbach - 

Mosnang_Rietholz 

3.19 685 pluvial supérieure 0.00 0.01 0.02 0.03 0.03 0.03 

Ruederchen - Schoeftland 19.17 463 pluvial inférieure 0.05 0.07 0.11 0.12 0.12 0.14 
Sellenbodenbach - Neuenkirch 10.4 519 pluvial supérieure 0.01 0.02 0.05 0.06 0.06 0.07 

Sinserbach - Sins 16.25 415 pluvial inférieure 0.02 0.03 0.08 0.09 0.10 0.11 

Sperbelgraben - Kurzeneialp 0.56 913 nivo-pluvial préalpine 0.00 0.00 0.00 0.01 0.01 0.01 
Taegerbach - Wislikofen 13.94 390 pluvial inférieure 0.05 0.07 0.09 0.10 0.10 0.11 

Uerke - Holziken 24.99 438 pluvial inférieure 0.19 0.23 0.28 0.30 0.30 0.32 

Venoge - Ecublens 227.61 384 nivo-pluvial jurassien 0.36 0.50 0.94 1.11 1.14 1.36 
Veveyse - Vevey 64.45 399 nivo-pluvial préalpine 0.17 0.28 0.49 0.56 0.58 0.67 

Wildbach - Wetzikon 19.44 520 pluvial supérieure 0.06 0.09 0.15 0.17 0.17 0.20 

Wissenbach - Boswil 11.18 460 pluvial inférieure 0.02 0.03 0.06 0.06 0.06 0.07 
Wissenbach - Merenschwand 9.98 392 pluvial inférieure 0.02 0.03 0.06 0.07 0.07 0.08 

Worble - Ittigen 67.04 521 pluvial inférieure 0.34 0.43 0.58 0.63 0.63 0.69 
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Table A2: Recession durations (D) between Q80 and Q99 for the five RAMs for the 33 investigated catchments. D declines for 30 of 

the 33 catchments in the following order: REG_q05 < SDSC < MRC_slow < REG_mean < MRC_p (see std. order). 

stream recession duration [d] 

 REG_q05 SDSC MRC_slow REG_mean MRC_
p 

std. order 

Aabach - Moenchaltdorf 88 42 27 17 14 yes 

Aach - Salmsach 116 39 26 17 13 yes 
Altbach - Bassersdorf 97 54 36 23 20 yes 

Biber - Biberbrugg 62 33 22 15 14 yes 

Broye - Payerne 125 68 30 19 14 yes 
Buenz - Muri 109 39 34 18 17 yes 

Eulach - Raeterschen 118 52 45 24 19 yes 

Glatt - Herisau 76 27 29 13 10 no 
Haselbach - Mettmenstetten 122 42 37 18 13 yes 

Holzbach - Villmergen 157 76 44 31 23 yes 

Jona - Pilgersteg 107 28 25 18 14 yes 
Jonen - Zwillikon 126 56 32 21 16 yes 

Kempt - Illnau 151 52 32 19 14 yes 

Kuentenerbach - Kuenten 123 52 40 22 18 yes 
Langete - Huttwil 130 63 45 22 15 yes 

Luthern - Nebikon 99 43 33 18 13 yes 

Mentue - Yvonand 156 56 37 24 15 yes 
Murg - Waengi 199 58 31 21 15 yes 

Pfaffnern - Vordemwald 133 72 52 26 23 yes 

Rappengraben - Wasen_Riedbad 35 30 18 12 12 (yes) 
Rietholzbach - Mosnang_Rietholz 79 37 27 19 16 yes 

Ruederchen - Schoeftland 101 48 38 20 17 yes 

Sellenbodenbach - Neuenkirch 102 67 36 17 18 yes 
Sinserbach - Sins 116 47 36 20 20 (yes) 

Sperbelgraben - Kurzeneialp 34 48 26 16 18 no 

Taegerbach - Wislikofen 138 93 52 25 19 yes 
Uerke - Holziken 152 65 58 24 15 yes 

Venoge - Ecublens 140 65 33 23 15 yes 

Veveyse - Vevey 116 49 28 20 14 yes 
Wildbach - Wetzikon 79 31 24 15 12 yes 

Wissenbach - Boswil 115 61 39 18 15 yes 

Wissenbach - Merenschwand 118 55 41 22 17 yes 
Worble - Ittigen 228 38 40 25 16 no 
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Table A3: Recession volumes (V) between Q80 and Q99 for the five RAMs for the 33 investigated catchments. V declines for 30 of 

the 33 catchments in the following order: REG_q05 < SDSC < MRC_slow < REG_mean < MRC_p (see std. order). 

stream recession volume [mm] 

 REG_q0
5 

SDSC MRC_slow REG_mean MRC_
p 

std. order 

Aabach - Moenchaltdorf 30.9 16.3 10.1 6.4 5.4 yes 

Aach - Salmsach 26.9 9.7 6.4 4.1 3.3 yes 
Altbach - Bassersdorf 26.9 16.6 10.3 6.6 5.8 yes 

Biber - Biberbrugg 24.9 14.5 9.7 6.5 6.4 yes 

Broye - Payerne 37.9 20.6 9.0 5.9 4.3 yes 
Buenz - Muri 34.2 13.2 10.5 5.8 5.4 yes 

Eulach - Raeterschen 35.3 16.3 12.9 7.1 5.6 yes 

Glatt - Herisau 58.6 22.9 23.4 10.7 8.5 no 
Haselbach - Mettmenstetten 28.7 11.0 8.5 4.6 3.1 yes 

Holzbach - Villmergen 45.0 23.1 12.2 8.8 6.5 yes 

Jona - Pilgersteg 73.2 22.0 18.6 13.1 10.6 yes 
Jonen - Zwillikon 37.2 16.2 9.6 6.3 4.9 yes 

Kempt - Illnau 56.3 21.0 12.7 7.7 5.8 yes 

Kuentenerbach - Kuenten 33.0 14.3 10.1 5.7 4.6 yes 
Langete - Huttwil 100.0 51.5 35.2 17.6 12.1 yes 

Luthern - Nebikon 34.8 16.3 11.9 6.6 4.9 yes 

Mentue - Yvonand 39.5 15.0 9.5 6.2 4.0 yes 
Murg - Waengi 85.3 27.8 15.0 9.9 7.4 yes 

Pfaffnern - Vordemwald 72.5 41.0 28.7 14.5 12.9 yes 

Rappengraben - Wasen_Riedbad 14.0 10.8 6.2 4.3 4.3 (yes) 
Rietholzbach - Mosnang_Rietholz 22.0 12.0 8.5 5.9 5.2 yes 

Ruederchen - Schoeftland 34.6 16.7 13.0 6.9 6.0 yes 

Sellenbodenbach - Neuenkirch 22.8 15.4 7.4 4.1 3.8 yes 
Sinserbach - Sins 24.0 11.6 8.2 4.6 4.6 (yes) 

Sperbelgraben - Kurzeneialp 15.7 21.0 10.8 6.9 7.6 no 

Taegerbach - Wislikofen 62.0 42.1 23.6 11.5 8.9 yes 
Uerke - Holziken 120.6 54.0 47.9 20.0 13.0 yes 

Venoge - Ecublens 30.3 15.6 7.8 5.3 3.7 yes 

Veveyse - Vevey 42.9 21.4 11.7 7.9 5.9 yes 
Wildbach - Wetzikon 34.8 14.2 10.7 6.6 5.5 yes 

Wissenbach - Boswil 30.9 15.5 9.9 4.9 3.9 yes 

Wissenbach - Merenschwand 35.3 18.3 12.4 6.8 5.3 yes 
Worble - Ittigen 128.4 23.5 23.8 14.9 9.7 no 
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Table A4: Output (estimate, standard error, t-value, p-value and significance level) of the linear model comparison between the 625 
segment length and the predictable time in the forward prediction. 

 estimate std. error t-value p-value significance level 

intercept -1.654 0.305 -5.424 7.16e-08 *** 

days 0.834 0.033 25.125 < 2.00e-16 *** 

modelREG_q05 0.397 0.456 0.871 0.384  

modelMRC_p 0.347 0.447 0.777 0.437  
modelMRC_slow -0.039 0.432 -0.091 0.928  

modelSDSC 0.130 0.443 0.293 0.769  

days:modelREG_q05 -0.108 0.049 -2.209 0.027 * 
days:modelMRC_p -0.039 0.048 -0.804 0.422  

days:modelMRC_slow -0.014 0.047 -0.293 0.770  

days:modelSDSC -0.063 0.048 -1.311 0.190  

 

Table A5: Output (estimate, standard error, t-value, p-value and significance level) of the linear model comparison between the 

segment length and the match time in the backward prediction. 

 estimate std. error t-value p-value significance level 

intercept 2.203 0.328 6.710 3.02e-11 *** 
days 0.215 0.037 5.884 5.21e-09 *** 

modelREG_q05 -0.535 0.490 -1.093 0.275  

modelMRC_p 0.738 0.467 1.581 0.114  
modelMRC_slow -1.453 0.469 -3.095 0.002 ** 

modelSDSC -1.214 0.473 -2.568 0.010 * 

days:modelREG_q05 0.001 0.054 0.024 0.981  
days:modelMRC_p -0.153 0.053 -2.905 0.004 ** 

days:modelMRC_slow 0.250 0.052 4.809 1.72e-06 *** 

days:modelSDSC 0.168 0.052 3.207 0.001 ** 
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Figure A1: Comparison of the (a) slope b and the (b) intercept log(a) of the five linear regression models in the recession plot space 

using boxplots. The interquartile range (IQR; meaning the box) contains values between the 25 % and 75 % percentile, whereas the 635 
line within the box represents the median. The whiskers expand to a maximum of 1.5 times the IQR. The dots represent the actual 

values. Different letters denote significant differences among the models, equal letters denote no such difference. The three stars in 

the top right corner indicate the significance level overall (p-value < 0.001). The values for the SDSC are interpolated (linear 

regression through values of the horizontal lines). 

 640 
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