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Abstract. Landslide thickness is a key parameter in various types of models used to simulate landslide susceptibility. In this

study, we developed a model providing improved predictions of potential shallow landslide thickness in Switzerland. We tested

three machine learning models based on random forests, generalized additive model, and linear regression and compared the

results to three existing models that link soil thickness to slope and elevation. The models were calibrated using data from two

field inventories in Switzerland ("HMDB" with 709 records and "KtBE" with 517 records). We explored 37 different covariates5

including metrics on terrain, geomorphology, vegetation height, and lithology at three different cell sizes. To train the machine

learning models, 21 variables were chosen based on the variable importance derived from random forest models and expert

judgement. Our results show that the machine learning models consistently outperformed the existing models by reducing the

mean absolute error by at least 17%. The random forests models produced a mean absolute error of 0.25 m for the HMDB

and 0.19 m for the KtBE data. Models based on machine learning substantially improve the prediction of landslide thickness,10

offering refined input for enhancing the performance of slope stability simulations.

1 Introduction

Rainfall-induced landslides pose serious threats to infrastructure and inhabited areas worldwide (Froude and Petley, 2018; Em-

berson et al., 2020). In Switzerland, such spontaneous landslides regularly cause extensive infrastructure damage and closures,

evacuations and even fatalities. By way of example, 74 people died as a result of 40 different landslide events between 194615

and 2015 (Badoux et al., 2016). During a rainfall event in August 2005, shallow landslides (definition provided below) and the

resulting hillslope debris flows caused damage amounting to CHF 150 million across Switzerland within 48 hours (Bezzola

and Hegg, 2007). Approximately CHF 15 million are spent each year on landslide protective measures in Switzerland (Dorren

et al., 2009). To mitigate this risk, regional landslide hazard mapping and modelling provide an important basis for indicating

potential hazard areas (Dahl et al., 2010; Kaur et al., 2019; Shano et al., 2020; Di Napoli et al., 2021). In Switzerland, national-20

scale shallow landslide modelling was carried out at within the SilvaProtect-CH project (Dorren and Schwarz, 2016). Results

from this project have provided an important basis for different stakeholders and policymakers, e.g., for the delimitation of
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landslide protection forest areas across the country and the preliminary risk analyses for national roads (Arnold and Dorren,

2015) and railways.

In general, landslides can be defined as the movement of a rock or soil mass along a slope (Varnes, 1978; Hungr et al., 2014).25

The term “shallow landslides” typically refers to translational sliding movements of soil material (earth and/or debris) from

the upper soil layers, characterized by a well-defined sliding surface (Cruden and Varnes, 1996; Hungr et al., 2014). Often,

shallow landslides result in hillslope debris flows, which, because of their velocity and resulting impact pressure, can be very

destructive (Zimmermann et al., 2020). Landslides are usually classified as shallow landslides if the thickness of the instable

mass does not exceed 2 m (which is also used as a definition in Switzerland, (Lateltin et al., 2005)), although in some cases,30

this limit lies at 3 meters (Sidle and Ochiai, 2013; Rickli et al., 2019; Li and Mo, 2019). With a median release area of around

200 m2 and an average thickness of 0.5 m to 1 m, shallow landslides generally fall into the category of small (100–103 m3)

and occasionally into the category of very small (10−3–100 m3) or medium (103–106 m3) landslides as proposed by McColl

and Cook (2024). In this study, we define landslide thickness as the average thickness of the instable mass, measured from, and

perpendicularly to, the original slope surface to the failure plane (see TL in Fig. 1).35

Landslide thickness is a key parameter in various types of models for simulating landslide susceptibility. These models can

be grouped into three categories: conceptual models, empirical models (data-driven models, e.g., statistical, machine learning),

and physically-based models (Murgia et al., 2022). Conceptual models aim to provide a simplified methodology for estimating

changes in slope stability (Murgia et al., 2022) e.g. using cellular automaton models (Piegari et al., 2006). The physically-based

models can be further divided into deterministic (e.g., Montgomery and Dietrich, 1994; Baum et al., 2002) and probabilistic40

models (e.g., Pack et al., 1998; Horton et al., 2013; van Zadelhoff et al., 2022). Empirical models predict landslide occurrence

based on factors that can be directly or indirectly linked to slope instability (Reichenbach et al., 2018). Such models are

gaining interest due to improved data availability/quality and increasing research on machine learning and other computational

techniques (Merghadi et al., 2020). Various studies have shown that the accuracy of the potential landslide thickness is of

paramount importance for the performance of slope stability models (cf. Iida, 1999; Larsen et al., 2010; Milledge et al., 2014).45

This is also confirmed by our recent paper on the SlideForMAP (SFM) model for spatially distributed regional assessment of

shallow landslide susceptibility van Zadelhoff et al. (2022)). Consequently, improving the estimation of landslide thickness is

key for enhancing the performance of slope stability models. With the overall aim of developing a model that provides a more

accurate prediction of the potential landslide thickness compared to existing models, the four main objectives of this study are:

– to present descriptive statistics on data on the thickness of shallow landslides and additional potentially explanatory data50

from three field inventories in Switzerland,

– to develop and test models for predicting the potential thickness of shallow landslides in Switzerland based on machine

learning (random forests (RF), generalized additive models (GAM), and linear regression (LM)) using input variables

including terrain metrics and vegetation height,

– to evaluate the performance of the developed models using data from the two landslide inventories,55
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– to compare the performance of the developed models with three previously published methods that predict landslide

thickness based on altitude, slope, and cumulative slope distribution.

2 Theoretical background

2.1 Influences on landslide failure thickness

The mechanisms for inducing shallow landslides depend on geological formations, landscapes, and soil types (Hungr et al.,60

2014; Watakabe and Matsushi, 2019; Chinkulkijniwat et al., 2019). Most landslides occur in wet, partially saturated soils due

to prolonged or intense rainfall, snowmelt, or seismic activity (Leonarduzzi et al., 2017; Schuster and Wieczorek, 2018). An

increasing water content in the soil induces a reduction of soil shear strength leading to the failure of soil material within a

shear band, usually situated at the interface of below-ground discontinuities such as between soil and bedrock (Catani et al.,

2010; Zhang et al., 2017; Xiao et al., 2023) or between different soil horizons (Li et al., 2013; Ali et al., 2014; Ran et al., 2018;65

Chinkulkijniwat et al., 2019). This boundary defines the failure plane of shallow landslides and is as such implemented in

physically-based models (Ran et al., 2018). The hydrological properties of the soil and the local hydrological conditions (such

as the rainfall characteristics and the runoff disposition of the upslope area, as well as the groundwater table and the pore-water

pressure) influence the occurrence and depth of failure plane of shallow landslides (Caine, 1980; Iverson, 2000; Guzzetti et al.,

2008b; Li et al., 2013; Chinkulkijniwat et al., 2019).70

In many studies, soil thickness is used as a proxy for landslide thickness (e.g., Montgomery and Dietrich, 1994; Pack et al.,

1998; Iida, 1999; Baum et al., 2002; D’Odorico and Fagherazzi, 2003; Segoni et al., 2012; Ho et al., 2012; Merghadi et al.,

2020). When describing or modelling landslides, care should be taken to define the thickness unambiguously. Sometimes the

terms soil thickness and depth are used interchangeably. However, in most studies, depth refers to a measurement in the vertical

direction, while thickness refers to a measurement perpendicular to the slope of the local surface (e.g., Meisina and Scarabelli,75

2007; Catani et al., 2010; Jia et al., 2012; Ho et al., 2012; Lanni et al., 2012; Patton et al., 2018). Some studies use a reverse

definition of the two terms (e.g., Cruden and Varnes, 1996; Pack et al., 1998). Similarly, the depth of the failure plane may

be defined in the vertical direction (Watakabe and Matsushi, 2019; Meier et al., 2020; Chang et al., 2021) or perpendicular to

the slope (Iida, 1999; Schwarz et al., 2010; Li et al., 2013). The perpendicular direction seems to be favoured if the values are

also used for volume calculations (WSL and BAFU, 2018; Jaboyedoff et al., 2020; Hählen, 2023). In this study, we use the80

term depth when measuring in the vertical direction (see depth at scarp DF and soil depth DS in Fig. 1) and thickness when

measuring perpendicular to the slope (TL in Fig. 1).

3

https://doi.org/10.5194/nhess-2024-76
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Schematic representation of a shallow landslide with its failure area, transit zone and deposit, including important definitions used

in this study.

2.2 Models for estimating soil thickness for landslide modelling

The landslide thickness values used for shallow landslides assessment are usually based on field measurements (e.g., by digging

soil pits (Catani et al., 2010) or by drilling (Xiao et al., 2023)) or on data from landslide inventories (van Zadelhoff et al., 2022).85

However, dense field measurements are only available for small extents and even then, the resulting soil thickness maps have

high uncertainties due to the large heterogeneity of soil parameters (Cohen et al., 2009; Jia et al., 2012; Lanni et al., 2012).

To deal with the uncertainties in landslide thickness, different modelling approaches have been adopted. Table 1 gives a non-

exhaustive overview of such models found in literature. Most of these models are either deterministic (e.g., Montgomery and

Dietrich, 1994; Baum et al., 2002) or probabilistic (e.g., Pack et al., 1998; Horton et al., 2013; van Zadelhoff et al., 2022). In90

addition, the use of machine learning methods to predict inputs for landslide models including soil thickness is also becoming

more commonplace (Hengl et al., 2017; Merghadi et al., 2020; Wadoux et al., 2020; Xiao et al., 2023).
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Table 1. Non-exhaustive list with a summary of soil thickness models found in literature.

Model used Parameters Relationship with soil depth Reference

Constant soil thickness across the

study area

Mean soil thickness, possibly combined with stan-

dard deviation

Constant value Montgomery and Diet-

rich (1994); Baum et al.

(2002); Ho et al. (2012)

Elevation elevation Linear scaling Saulnier et al. (1997);

Catani et al. (2010);

Segoni et al. (2012)

Slope gradient linear slope gradient
Linear scaling Saulnier et al. (1997);

Catani et al. (2010);

Segoni et al. (2012)

Linear relationship statistically fitted Lanni et al. (2012)

Slope gradient exponential slope gradient Exponential law (Segoni et al., 2012)

Slope gradient cumulative thickness measurements and slope values from a

landslide inventory

Cumulative normal distribution of slope values van Zadelhoff et al.

(2022)

Hillslope curvature Curvature Linear relationship; varies across different landscapes as a func-

tion of the standard deviation in catchment curvatures

Patton et al. (2018)

Topographic Wetness Index (TWI) TWI Linear relationship Ho et al. (2012)

Linear model with terrain indices slope gradient, plan curvature, profile curvature,

specific catchment area, and relative position on

the hillslope

Linear relationship established by multi-linear regression Jia et al. (2012)

Process-based models
time since last denuding by landslides linked to soil development over time by approximating the de-

velopment using a logarithmic function

Iida (1999)

bulk density of the rock, elevation, slope mass balance between soil production from underlying bedrock

and the divergence of diffusive soil transport by solving the

evolving soil depth using a finite difference model under vary-

ing initial conditions

Dietrich et al. (1995)

GIST (Geomorphologically Indexed

Soil Thickness)

slope gradient, horizontal and vertical slope curva-

ture, relative position within the hillslope profile

the gradient and curvature are connected to the kinematic sta-

bility of the regolith cover while the distance from the hill crest

accounts for the position within the soil toposequence

Catani et al. (2010);

Segoni et al. (2012);

Xiao et al. (2023)

sGIST slope gradient, horizontal and vertical slope curva-

ture, relative position within the hillslope profile

GIST without geomorphological indexing Catani et al. (2010);

Segoni et al. (2012)

GIST-RF GIST inputs plus altitude, plan curvature, and Ter-

rain Roughness Index (TRI) as covariates

Random forests regression Xiao et al. (2023)

Machine learning ensemble 158 remote sensing-based covariates ensemble including random forests and gradient boosting

and/or multinomial logistic regression

Hengl et al. (2017)

3 Materials

3.1 Landslide inventories

This study used datasets based on three different landslide inventories in Switzerland as reference data. Since the data also95

includes landslides with medium and deep thickness, only entries with a thickness of up to 2.5 m were retained for this study.

The first dataset (hereafter "HMDB") is based on a comprehensive database of shallow landslides and hillslope debris flows

created by Rickli et al. (2016, 2019), an inventory containing shallow landslides in Switzerland that occurred between 1997 and

2021. The data in this inventory is based on field surveys performed with analogue protocols that include relevant parameters
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such as the dimensions of the landslides, site characteristics, and runout characteristics (Rickli and Graf, 2009; WSL and100

BAFU, 2018). If values could not be measured in the field (e.g., because of terrain changes since the event), the database may

contain estimated values that are marked accordingly (Rickli et al., 2016). Of 760 entries in the inventory, 711 comprised either

measured or estimated thickness values perpendicular to the original slope surface (see TL in Fig. 1). Of these 711, 75 records

had measured thickness values and 199 records had estimated thickness values already present in the database. The values for

the remaining 435 records were estimated by dividing the landslide volume by the failure area. This approach was chosen since105

the mean landslide thickness in the HMDB is mainly used for the estimation of the failure volume (Rickli et al., 2016; Rickli,

2023). Two records with an estimated value larger than 2.5 m were removed, leaving 709 records actually used in the filtered

dataset.

The second dataset (hereafter "KtBE") is based on an inventory created by the office for natural hazards of the canton of

Bern Hählen (2023) and comprises 519 landslides, 6 of which are also recorded in the HMDB inventory. The landslides in the110

KtBE inventory were recorded between 2005 and 2021. For the inventory, the failure zones and runout envelopes of shallow

landslides were digitized from orthophotos. The runout volume and mean thickness of the landslides were estimated by expert

opinion from the orthophotos. The author estimated an error of between 25% to 50% for the thickness (Hählen, 2023). Since

only events the entire process area of which could be reliably reconstructed from the orthophotos were recorded, many events

in forests or intensively cultivated areas were not included in the inventory. This limits the possibility of making comparisons115

between landslides within and outside of forests, as well as the possibility of making statements about the local occurrence

frequency of landslides based on the data. From the 519 entries, two were excluded from the final dataset because of a missing

thickness value and a thickness value larger than 2.5 m.

The third dataset (hereafter "StorMe"), comprising 5733 records on shallow landslides, was derived from an export of

the Swiss national register of natural hazard events that is maintained by the Federal Office for Environment (FOEN) and120

the cantons (Burren and Eyer, 2000). This dataset was only used for descriptive statistics and was excluded from model

development due to problems with the data quality. While there is a manual for the data collection for this register (Bühlmann

and Ruf, 2020), the records are not only missing a large number of values but also contain numerous unrealistic values, which

can be attributed to rough estimates by many different experts performing the surveys. Therefore, we included only landslides

with a thickness of less than or equal to 2.5 m that were reportedly measured in the field, thus excluding almost half of125

the exported landslide entries in the register and leaving 2988 records in the dataset. Figure 2 shows the distribution of the

landslides per dataset across Switzerland. Table 2 lists the number of landslides per canton and inventory. The fact that the

datasets only contain records for 14 of the 26 cantons in Switzerland is not only caused by uneven occurrence of landslides

but also by differences in the availability of recorded data. While the recorded landslides are distributed across large parts

of Switzerland, there is a clear concentration on the northern parts of the Alps and Pre-Alps. The landslides in the HMDB130

dataset are concentrated in the cantons Obwalden, Bern, Grisons, Appenzell, Lucerne, Vaud, and Zurich. These entries show

local clusters that mostly were caused by specific extreme precipitation events in combination with unfavourable geological

undergrounds such as flysch or molasse (Reynard et al., 2021; Steger et al., 2022). Most of the landslides of the KtBE dataset

lie in the canton of Bern, while a few landslides are across the borders in the cantons of Fribourg and Lucerne. Most of the
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landslides in the StorMe inventory are recorded for the cantons of Bern, Grisons, and Obwalden with lower counts for the other135

cantons.

Table 2. Number of recorded landslides per canton in the datasets

Canton HMDB KtBE StorMe

Appenzell Ausserrhoden 103 0 12

Appenzell Innerrhoden 2 0 0

Bern 170 483 1980

Fribourg 0 1 14

Grisons 106 0 410

Lucerne 86 33 97

Nidwalden 0 0 53

Obwalden 240 0 232

Schwyz 0 0 60

Solothurn 0 0 29

Uri 0 0 72

Vaud 1 0 0

Zug 0 0 29

Zürich 1 0 0

Total 709 517 2988
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Figure 2. Map showing the locations of the observed shallow landslides across Switzerland for the HMDB (orange triangles), KtBE (green

diamonds), and StorMe (blue cross) datasets.

3.2 Model input data

The following datasets are used as input for calculating the covariates for the modelling in this study:

– The LiDAR (Light Detection And Ranging)-based swissALTI3D digital elevation model (DEM) with 0.5 m cell size

(Swisstopo, 2023a) was used as the basis for the terrain analysis.140

– Areas outside of the Swiss borders not covered by swissALTI3D were filled in using the 25 cell size EU-DEM v1.1

(EEA, 2016) to prevent missing data within the areas analysed.

– A LiDAR-based vegetation height model (VHM) with 1 m cell size (c.f. Schaller et al., 2023) was used as input for

calculating statistics on vegetation height.

– Modelled data on extreme point precipitation (Frei and Fukutome, 2022) with 1 km cell size for different return periods145

(2, 10 30, 50, 100, 200, and 300 years). This input was used as a proxy variable indicating locations with possibly

extreme rainfall amounts associated with increased landsliding activity, assuming that this leads to less soil cover.

– To represent the underlying geology, the vector-based dataset representing the rock densities across Switzerland was used

(Swisstopo, 2020). The density of rocks varies based on their chemical composition and the structure of their minerals

(from crystalline to amorphous) (Zappone and Kissling, 2021). Each entry in the dataset is assigned to one of the 21150

defined lithological groups and it shows the expected range in which the mean bulk density of the local lithology varies

(Swisstopo, 2020).
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– The topographic catchments areas of Swiss water bodies (BAFU, 2019) served as a basis for tiling the input data for

parallel processing of the covariate inputs.

4 Methods155

The methodology applied in this study is divided into three stages (Fig. 3). In stage 1, intermediate DEM rasters for the

subsequent stage were prepared. During stage 2, the data used for the final modelling and analysis stage were prepared. First,

the covariates like terrain variables or geology were derived based on the DEM and other inputs. Then, the covariates were

added to the reference data by sampling the generated rasters at the landslide failure points. The analysis and modelling based

on the previously prepared dataset were performed in stage 4 including the training of three types of machine learning (ML)160

models and the application of three existing model types.
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Figure 3. Flowchart of the methodology applied for this study. The three separate grey boxes delineate the 1) DEM preparation, 2) covariate

preparation and 3) modelling and analysis stages. Square boxes denote process steps while parallelograms denote datasets.

All three stages were implemented in the R environment for statistical computing (Team, 2022). While the calculation of

some variables was implemented in R using the sf (Pebesma and Bivand, 2023) and terra (Hijmans, 2023) packages, the

processing of most variables was implemented using SAGA GIS (System for Automated Geoscientific Analyses, Conrad et al.

(2015)) via the RSAGA package (Brenning, 2008) or using GDAL (Geospatial Data Abstraction Library) tools (GDAL/OGR165
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contributors, 2021) called from R. The code for the entire process can be found in the repository accompanying this study

(Schaller, 2024).

4.1 DEM preparation

The covariates for the modelling step were calculated as rasters with a cell size of 5 m, 10 m, and 25 m (outputs O1.1, O1.2,

and O1.3 in Fig. 3). The 0.5 m cell size swissALTI3D DEM was used as input for the terrain-based covariates. The original170

DEM was first aggregated to 5 m cell size using gdalwarp with the average function (step S1.1 in Fig. 3). Since some variables

were calculated with large window sizes, the areas outside the Swiss borders not covered by swissALT3D were filled using

the EU-DEM. For this purpose, the original extent of the 5 m DEM was first buffered by 4 km (step S1.2 in Fig. 3). The areas

with NoData within that buffered extent were then filled using values from the EU-DEM resampled to 5 m using gdalwarp

with a bilinear function (step S1.3 in Fig. 3). This filled raster was the primary input for the terrain analysis. The additional175

DEM rasters with 10 m and 25 m cell sizes were derived by aggregating the filled 5 m DEM using gdalwarp with the average

function (steps S1.4 and S1.5 in Fig. 3).

4.2 Covariate preparation

4.2.1 Calculating covariate rasters

As stated in the previous section, the covariates for the modelling and analysis step were calculated as rasters with 5 m, 10180

m, and 25 m cell sizes. Some covariates were calculated for all three cell sizes while others were only calculated for specific

cell sizes. Table 3 gives an overview of the processed variables and their corresponding cell sizes. The terrain-based covariates

calculated from the DEM included metrics commonly used in terrain analysis, hydrology, and geomorphology that were also

used in other studies aiming to predict failure or soil depth. The covariates not based on the DEM include a variety of input

data on ground cover, vegetation, geology, and precipitation. Vector-based input data was rasterized, including the generation185

of separate 0/1 encoded rasters for categorical variables.

To optimize the calculation of covariates for the entire area of Switzerland, the processing of the covariates was parallelized

(step S2.1 in Fig. 3). For this purpose, Switzerland was divided into tiles based on aggregated catchments. The pre-defined

aggregation level of the topographic watershed dataset (BAFU, 2019), which defines watersheds with a size of around 150

km2, was used since they correspond to a tile size with acceptable processing times while keeping the number of tiles at a190

manageable level. For the actual processing, the extents of the catchments were by default buffered by 500 m to allow for

overlap between the tiles and to accommodate window sizes that go beyond the catchment border. For the 25 m cell size DEM

raster, however, the buffer was extended to 4 km, since some covariates use such a large window. Note that variables connected

to hydrology were not calculated based on the original DEM raster, but a sink-filled version of the DEM that was generated

using the SAGA GIS Tool "Fill Sinks" based on the method by Planchon and Darboux (2002).195
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Table 3. Variables explored as covariates for the machine learning models in this study.

Cell size

Name 5 m 10 m 25 m

Elevation above sea level x1 x x

Slope in degrees x x1 x

Aspect in degrees x x x

Aspect northness x x1 x

Aspect eastness x x x

Catchment area x x x1

Catchment slope x x x1

Modified catchment area x x x

Topographic wetness index x x x

Topographic wetness index SAGA x1 x x

Flow accumulation (top-down) contributing area x x x

General curvature x x1 x

Profile curvature x x x1

Plan curvature x x x

Elevation percentile with 50 m and 200 m radius x

Negative openness with 50 m and 200 m radius x1

Topographic Position Indexes (TPI) for 15 m, 50 m, 200 m, 500 m, 1 km, 2 km, and 4 km x x x1

Multiresolution Index of Valley Bottom Flatness (MRVBF) x x1 x

Multiresolution Index of the Ridge Top Flatness (MRRTF) x x x1

Convergence index x x x

Upslope curvature x x x

Downslope curvature x x x

Morphometric protection Index x x x

Vector Ruggedness Measure (VRM) x x x1

Terrain Ruggedness Index (TRI) x1 x1 x

Slope height x x x1

Valley depth x x x1

Normalized height x x x

Standardized height x x x1

Mid-slope position x x x

Toposcale x x x

Geomorphon with 50 m and 200 m radius x

Groundcover swissTLM3D x

Extreme point precipitation values for 60 min duration with 10-year return period x

Maximum and 75th percentile statistics of vegetation height within cell based on 1 m cell size VHM x1 x x

Mean density of the underlying rock x1

x1Variables and cell size used in the final ML-models.

4.2.2 Sampling covariate values

After calculating the covariate rasters, we prepared the dataset for the subsequent modelling and analysis stage. This was

achieved by enriching the event data from the inventories with the covariate values by sampling the cell values at the failure
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point of the landslides (step S2.3 in Fig. 3). In the case of the HMDB dataset, the reported coordinates of the failure point

were directly used. For the KtBE dataset, only the event envelopes were available as input. Therefore, the failure point was200

approximated by taking the mean of the x and y coordinates of the points within the envelope polygon with an elevation higher

or equal to the 95th percentile of the elevation of all envelope points.

The inventories only contain entries for locations with actual landslides and therefore a sufficient soil thickness. To better

reflect the fact that landslides cannot occur in areas with bare rock, additional points with a landslide thickness of 0 m in rocky

areas were added to the analysis dataset (step S2.2 in Fig. 3). The points were randomly generated within the areas marked205

as rock or loose rock in the ground cover layer of the swissTLM3D landscape model (Swisstopo, 2023b). The points were

generated separately for each dataset and only for the rock signatures within the catchments that contain slide events. The

number of generated points is proportional to the percentage of the catchments covered by the rock signature, namely 34 points

for the HMDB dataset (4.1% rock cover) and 53 points (9.7% rock cover) for the KtBE Dataset.

4.3 Modelling and analysis210

4.3.1 Models and covariate selection

We tested three different types of ML models for predicting the potential failure thickness of shallow landslides. The R caret

package (Classification And REgression Training) (Kuhn, 2008) was used to fit these models. Due to the promising perfor-

mance of random forests (hereafter RF) in other studies, our development efforts were mainly focused on RF models (Breiman,

2001) implemented using the ranger package (Wright and Ziegler, 2017). In addition, generalized additive models (hereafter215

GAM) via the mgcv package (Wood, 2011) and linear regression (hereafter LM) using the built-in lm function of R were tested.

All three model types were trained using the same input data and validation procedures. The covariates included in the models

were chosen based on a combination of exploratory analysis as well as input from literature and experts on landslides and

geomorphology (step S3.1 in Fig. 3). The exploratory analysis included test-fitting RF models with both datasets to determine

variable importances and attempts at automatic variable selection using recursive feature elimination. Based on these inputs,220

the following covariates were chosen:

– tri_r5_5 and tri_r5_10: terrain ruggedness index with a radius of 5 cells for 5 m and 10 m cell sizes

– vrm_r5_25: vector ruggedness measure with a radius of 5 cells at 25 m cell size

– tpi_500m_25 and tpi_4km_25: topographic position indexes 500 m and 4 km window size at 25 m cell size

– vhm_max_5: maximum vegetation height at 5 m cell size225

– h_5: altitude above sea level sampled at 5 m cell size

– mrvbf_10: multiresolution index of valley bottom flatness at 10 m cell size

– mrrtf_25: multiresolution index of the ridge top flatness at 25 m cell size

– slope_height_25, standardized_height_25, and valley_depth_25: slope height, standardized height, and valley depth

at 25 m cell size calculated by the SAGA module "Relative Heights and Slope Positions" (Böhner and Selige, 2006)230

– slope_10: slope gradient in degrees at 10 m cell size
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– aspect_nness_10: northness of the aspect calculated as cosine(aspect) at 10 m cell size

– twi_5, catchment_area_25, and catchment_slope_25: topographic wetness index, catchment area and catchment slope

at 5 m and 25 m cell size as calculated by the SAGA module "SAGA Wetness Index" (Böhner et al., 2002; Böhner and

Selige, 2006)235

– curvature_10 and curvature_profile_25: general curvature at 10 m cell size and profile curvature at 25 cell size as

calculated by the SAGA module "Slope, Aspect, Curvature"

– openness_neg_200_5: negative openness calculated with a radius of 200 m at 5 m cell size

– rhob_m: mean bulk density of the local lithology

To enable additional comparisons, three existing models for predicting soil depth were applied in addition to the three ML240

models. The models were chosen for comparison because the soil thickness is closely related to the thickness of landslides

and, therefore, is often used as a proxy for landslide thickness. The first two existing models that we adapted were proposed

by Saulnier et al. (1997). They use a predicted soil depth based on either elevation (hereafter Simple-Z) or slope (hereafter

Simple-S) by applying a linear interpolation based on the minimum and maximum values in a set of reference data. The third

method used for comparison, proposed by van Zadelhoff et al. (2022) (hereafter SFM), also uses the slope to predict soil depth.245

However, to account for the shallow soils on steep slopes the method derives the soil thickness from a log-normal distribution

and multiplies it by a correction factor which is a function of the slope inclination. For the Simple-Z model, the elevation

sampled at 5 m cell size was used to train the model. For the Simple-S and the SFM model, the slope sampled at 10 m cell size

was used since it showed the best fit with the slopes at the failure point recorded in the inventories.

4.3.2 Training and validation250

Separate models were trained for the HMDB and KtBE datasets, resulting in 12 models overall (step S3.2 in Fig. 3). Both

datasets were each split into training data (80%) and validation data (20%). All models were trained using 10-fold cross

validation (James et al., 2021). The built-in caret functions were used for the RF, GAM and LM models, and custom cross

validation methods were written for the Simple-Z, Simple-S and SFM models. Since the hyper-parameters of an RF model

can significantly influence model performance (Huang and Boutros, 2016; Probst et al., 2019), the training of the RF model255

was combined with a hyper-parameter tuning leveraging a modified version of the tune-grid functionality included in the caret

package. The function performs a grid search over the parameters and values shown in Tab. 4. Similarly, the standard hyper-

parameters for GAM and LM available in caret are tuned. The final RF models for both datasets used the splitrule "maxstat", a

minimum node size of 2, and 22 variables to split on. The HMDB-trained model used 100 trees with a maximum depth of 150

while the KtBE-trained model used 50 trees with a maximum depth of 50. For the GAM models of both datasets, the "REML"260

method was used for smoothing parameter estimation. The KtBE-trained model was fitted with possible penalisation of terms

while the HMDB-trained model was fitted without. For the LM model, both the HMDB-trained and the KtBE-trained models

were fit without intercept.
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Table 4. Parameters and values for tuning the hyper-parameters for the random forests (RF), generalized additive model (GAM) and linear

regression (LM) models.

Model Parameter Default value Values

RF Number of variables

considered to split at each node

Square root of the number of

variables

2, 6, 8, 10, 22

Splitting rule ’variance’ ’variance’, ’extratrees’, ’maxstat’

Minimal node size to split at 5 (for regressions) 2, 6, 8, 10, 12

Number of trees 500 50, 100, 200

Maximal tree depth unlimited 50, 100, 150, 200, 250

GAM Smoothing parameter

estimation method

Generalized Cross Validation

(GCV) with Mallows’ Cp for

scale

’GCV.Cp’, ’REML’

Possible removal of terms

through penalisation

FALSE TRUE, FALSE

LM Whether to fit with or without

intercept

Fit with intercept TRUE, FALSE

Performance measures were calculated based on the application of the trained models to the respective validation data in

order to assess model performance (step S3.3 in Fig. 3). In addition, the models trained with the HMDB dataset were cross-265

applied to the KtBE validation data and vice versa to evaluate the transferability across datasets. The mean absolute error

(MAE) of the landslide thickness and the R2 value were used as measures of the model performance.

We used the mean absolute error (MAE) of predicted landslide thickness versus landslide thickness from the inventory as

the primary performance assessment measure, which was calculated as:

MAE =
1

nslides
Σnslides

i=1

∣∣∣yActuali − yPredictedi

∣∣∣ (Eq. 1)270

Where:

MAE: Mean absolute error of the landslide failure thickness

yActuali : Landslide failure thickness in m for landslide i according to the inventory

yPredictedi
: Landslide failure thickness in m for landslide i predicted by the model

nslides: Total number of landslides in the reference data275

Additionally, we calculated the coefficient of determination R2 to judge how good the fit between the predicted and actual

data is:

R2 = cor(yActual,yPredicted)2 (Eq. 2)
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Where:

R2: Coefficient of determination280

yActual: Landslide failure thicknesses in m according to the inventory

yPredicted: Landslide failure thickness in m predicted by the model

5 Results

5.1 Statistical properties of landslide inventories

The distributions of the landslide thickness in the HMDB and KtBE datasets are very similar, with an identical mean of 0.7285

m and a median of 0.6 m in the HMDB and 0.5 m in the KtBE dataset (see Tab. 5). As can be seen in Fig. 4 (a), 90% of the

landslides had a thickness smaller than or equal to 1 m in the HMDB and the KtBE dataset and both show peaks at 0.5 m

and 1 m. This is especially the case for the KtBE dataset, which also shows additional small peaks at 1.5 m and 2 m landslide

thickness. In contrast, the thickness values for the StorMe dataset show dominant peaks at 0.5 m, 1 m, 1.5 m, and 2 m with both

the median and mean at 1 m. Most of the landslides were up to 1 m thick with more than 25% of the landslides recorded at 1290

m thickness. Figure 5 shows the distribution of the landslide thickness over the slope classes. The KtBE dataset shows a clear

trend towards decreasing landslide thicknesses and lower variance with increasing slope steepness. The HMDB dataset, on the

other hand, shows only a weak trend towards such a decrease. Because of missing slope values, the trend in the StorMe dataset

can only be evaluated by the sampled slope values. StorMe also tends towards fewer landslides at higher slope values but with

larger interquartile intervals for the thickness. In both the HMDB and KtBE datasets, landslides occurred at slope angles above295

15°, with the trend in the number of occurrences increasing with the slope angle and a relatively sharp decrease above 40°

(Fig. 4). Half of the landslides occurred above 36° in the HMDB and above 31° in the KtBE dataset. Almost no landslides

occurred on slopes with more than 55° or below 15° slope angle. A visual verification of the landslides below and above these

boundaries confirmed that most of the failures are plausible. The StorMe dataset does not contain sufficient recorded slope

values for a reliable interpretation of the failure occurrence at specific slope values. The landslides below 15° (HMDB: n=16,300

KtBE: n=5) were mostly directly located at a transition between flat and steep terrain (e.g., a terrace or a road), which leads

to a low mean slope angle at the failure area. The landslides with a slope angle above 55° (HMDB: n=4) were all located in

forested areas, with two of them being located at a transition between steeper and less steep terrain. The comparison of the

recorded slope values with those from the covariates sampled at 5 m cell size showed slightly lower mean and median values

for the HMDB dataset and very similar values for the KtBE dataset. The elevation range where shallow landslides occurred, as305

well as its distribution, is similar in both datasets (5).
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Table 5. Summary statistics including the total number of records (n), n within forests, the minimum, median, mean, maximum, and standard

deviation (SD) for important characteristics of shallow landslides derived from the landslide inventories as well as from covariates.

Source Variable Dataset n (n in forest) Min Median Mean Max SD

Inventory

Landslide thickness

[m]

HMDB 709 (319) 0.1 0.7 0.6 2.0 0.3

KtBE 517 (20) 0.2 0.7 0.5 2.5 0.4

StorMe 2988 (837) 0.1 1.0 1.0 2.5 0.5

Slope [°]

HMDB 648 (295) 1.0 35.1 36.0 80.0 9.0

KtBE 517 (20) 8.3 31.0 31.1 52.5 5.8

StorMe 17 (5) 20.0 35.5 35. 45.0 6.9

Covariates

Elevation [m]

HMDB 709 (319) 523 1214 1188 2257 290

KtBE 517 (20) 624 1334 1283 2288 369

StorMe 2988 (837) 395 1075 1036 2369 348

Slope 5 m [°]

HMDB 709 (319) 6.0 33.3 34.3 58.9 7.8

KtBE 517 (20) 8.2 31.3 31.8 48.3 6.6

StorMe 2988 (837) 0.0 28.2 28.8 64.8 9.5

Figure 4. Histograms showing the distribution of (a) the landslide thickness and (b) the mean slope values in the release areas recorded in

the three datasets.
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Figure 5. Box plots showing the distribution of the landslide thickness over slope classes based on (a) the reported slope for the different

datasets and (b) the slope values sampled at 5 m cell size. The red dots represent the mean value while the blue numbers show the number of

records per slope class.

5.2 Modelling results

Overall, the RF models performed best with an MAE of 0.24 m for the HMDB and 0.19 m for the KtBE dataset (see Tab.

6). While the MAE values of the GAM and LM models are comparable for the respective datasets, their R2 values tend to be

lower in comparison to the RF models. Furthermore, both the GAM and LM models show some outliers in the positive and310

negative direction with values between -0.5 m to 4.8 m for the predictions and -4.1 m to 2.1 m for the error. The Simple-Z and

Simple-S models clearly showed worse performance with MAE values exceeding 1 m. The SFM model achieved MAE values

of 0.37 m for HMDB and 0.36 m for KtBE. When comparing the performance between the datasets, the models for the KtBE

dataset performed slightly better than the HMDB-trained models. The results for the cross-application are variable. In most
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cases, MAE values were comparable to those of the model trained with the same dataset with differences between 1 cm to 10315

cm for the ML models and between -36 cm and 36 cm for the existing models.

Table 6. Performance of the trained models. Results are shown for the application to the validation data of the respective dataset as well as

for the cross-application to the other dataset. ntest denotes the number of records in the validation data. Predictionmin/Predictionmax

correspond to the minimum/maximum predicted values while Errormin/Errormax correspond to the minimum/maximum error. AEp90

denotes the 90th percentile of the absolute error.

Model type Training dataset Validation dataset ntest MAE R2 Predictionmin Predictionmax Errormin Errormax AEp90

Random Forest HMDB HMDB 138 0.25 0.11 0.12 0.85 -0.53 1.35 0.54

Random Forest BE BE 112 0.19 0.44 0.01 1.10 -0.54 1.73 0.39

Random Forest BE HMDB 743 0.26 0.07 0.00 1.25 -0.73 1.64 0.56

Random Forest HMDB BE 570 0.28 0.17 0.05 0.86 -0.66 1.90 0.49

GAM HMDB HMDB 138 0.25 0.09 0.08 0.79 -0.48 1.49 0.50

GAM BE BE 112 0.20 0.34 -0.18 1.17 -0.42 2.05 0.39

GAM BE HMDB 743 0.26 0.06 -0.30 2.73 -2.05 1.60 0.57

GAM HMDB BE 570 0.27 0.19 -0.29 0.80 -0.64 1.98 0.42

LM HMDB HMDB 138 0.25 0.09 0.16 0.89 -0.41 1.51 0.49

LM BE BE 112 0.22 0.34 -0.28 0.98 -0.54 1.58 0.43

LM BE HMDB 743 0.26 0.03 -0.43 4.79 -4.09 1.68 0.51

LM HMDB BE 570 0.27 0.17 -0.45 0.93 -0.68 2.01 0.46

Simple-S HMDB HMDB 138 0.90 0.00 1.26 1.93 -1.93 0.63 1.25

Simple-S BE BE 112 1.37 0.13 1.46 2.27 -2.08 0.23 1.69

Simple-S BE HMDB 743 1.26 0.05 1.30 2.37 -2.37 0.30 1.62

Simple-S HMDB BE 570 1.01 0.13 1.00 1.93 -1.93 0.62 1.31

Simple-Z HMDB HMDB 138 0.87 0.09 0.50 2.01 -1.46 0.42 1.31

Simple-Z BE BE 112 1.11 0.18 0.14 2.24 -1.73 0.66 1.58

Simple-Z BE HMDB 743 1.17 0.08 0.02 2.38 -2.05 0.48 1.59

Simple-Z HMDB BE 570 0.87 0.15 -0.02 1.98 -1.46 0.94 1.31

SFM HMDB HMDB 138 0.37 0.00 0.01 1.43 -0.92 1.79 0.73

SFM BE BE 112 0.36 0.02 0.00 1.55 -1.24 1.75 0.81

SFM BE HMDB 743 0.36 0.01 0.00 1.64 -1.10 1.99 0.74

SFM HMDB BE 570 0.35 0.04 0.00 1.71 -1.13 1.57 0.77

The scatter plots of the actual vs. the landslide thickness predicted by the three ML models are located closer around the

identity line (cf. Fig. 6). However, all three models showed a tendency to slightly overestimate lower landslide thicknesses and

distinctly underestimate higher thicknesses. The Simple-S model tended to overestimate the landslide thickness clearly across

the whole range. The Simple-Z model showed a similar trend but with a higher variance. The SFM model also exhibited a high320

variance but with accurate predictions. In particular, the added points with 0 m landslide thickness showed high variances in

all three of the existing models.

The distribution of the residuals per slope class (Fig. 7) was similar for most slope classes where training and validation data

stem from the same dataset. Mainly the classes higher than 40° show larger interquartile intervals and higher mean values. The
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existing models generally also had higher variances than the ML models. Looking at the cross-application of the models (see325

Fig. A1 in Appendix A1), there are evidently more outliers and higher variances across all slope classes. In particular, the 5°

class of the KtBE-trained models applied to the HMDB data consistently showed high variances.
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Figure 6. Scatter plots showing the actual vs. the predicted landslide thickness differentiated by model type (rows) and dataset (columns):

(a) model trained and tested with HMDB dataset, (b) model trained and tested with KtBE dataset, (c) model trained with HMDB and tested

with KtBE dataset, and (d) model trained with KtBE and tested with HMDB dataset. The diagrams have 2D kernel density contours in the

background as well as the identity line in red. Note that some outliers for the GAM and LM models are outside the display range of the plots.
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Figure 7. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for the best three

models differentiated by model type (rows) and dataset (columns, see caption Fig. 6 for details). The red dots represent the mean value while

the blue numbers show the number of entries per slope class. Note that some outliers are outside the plotted range.

Although the analysis of the variable importance of the ML models showed clear differences between the models, the

variables elevation, terrain roughness index at 10 m cell size, mean density of the local lithology, negative openness, and

multiresolution valley bottom flatness are found more often among the top-ranked ones. The hyper-parameter tuning resulted330

in a reduction of the MAE of up to 2 cm for certain models. The chosen parameters were the same across most of the datasets.

6 Discussion

6.1 Landslide inventories

The slope values recorded in the HMDB and KtBE landslide inventories largely match the ranges found in the literature, with

reported values from 5° to 35° (Guzzetti et al., 2008a), from 20° to 35° (Meier et al., 2020), from 22° to 40° (Dahl et al., 2010),335

and from 19° to 50° (with predominant values from 25° to 45°) (Rickli and Graf, 2009) (see Fig. 4).

Larsen et al. (2010) compared data on landslide thickness from several landslide inventories (including global inventories

and inventories of different locations in California, the Oregon Coast Range, and New Zealand), some of which showed peaks
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around 0.5 m, 1 m, and 2 m similar to the ones observed in the HMDB, KtBE, and StorMe inventories. Particularly in the KtBE

and StorMe datasets, the observed peaks can be attributed to estimations made during the field recording phase.340

6.2 Model performance

The ML models clearly outperformed the two existing simple models based on elevation and slope proposed by Saulnier

et al. (1997). However, it has to be noted that those models were originally intended to be used in smaller areas like single

catchments with more uniform terrain, whereas our application covers a much larger area in Switzerland with more diverse

terrain conditions. Although the SFM model proposed by van Zadelhoff et al. (2022), which was calibrated with the values345

from the inventories, produced better results, the RF model still yielded MAE values that were at least 17% and up to 47%

lower. While the ML models exhibited low errors, they all tended to underestimate higher landslide thickness values. We

attribute this to the low number of records with a landslide thickness of more than one meter in the datasets used for model

training. The cross-application of the ML models showed that they are mostly transferable between the HMDB and KtBE

datasets. One limiting factor may be the missing events in forests or in intensively cultivated areas not recorded in the KtBE350

inventory. Nevertheless, there appears to be enough similarity in the distributions of the landslide thickness over the slope

classes and the covariates in both datasets to conclude that the models are transferable. This is supported by an additional test

with a cross-application of the HMDB-trained model to the StorMe dataset, which showed a clear decline in performance. We

attribute this mainly to the distinctly different distribution of the landslide thickness in the StorMe inventory with the dominant

peaks at 0.5 m, 1 m, and 2 m. This indicates a limited generalizability of the models, albeit this may also be due to differences355

in data quality. It is likely that landslide thicknesses in the StorMe database were mainly recorded in distinct classes and not

with actually measured values. Although comparability is limited, due to differences in the study area extents and the target

variable (soil depth instead of landslide thickness), our results show similar trends as comparable studies. Catani et al. (2010)

applied two existing models based on elevation and slope proposed by Saulnier et al. (1997) along with the geomorphology-

based GIST model in the Terzona catchment (24 km2) in Italy. The Simple-Z and Simple-S models performed worst with360

MAE values of 0.94 m and 0.54 m, while the GIST model had an MAE of 0.11 m. Subsequently, Segoni et al. (2012) applied

the same models in the Armea catchment (37 km2) in Italy where the Simple-Z and Simple-S models again performed worse

with MAE values of 0.78 m and 1.03 m compared to an MAE of 0.23 m for the GIST model; an additional model linking the

soil depth to the slope using an exponential function performed better with an MAE of 0.45 m. Xiao et al. (2023) applied the

GIST model and the random forests-based GIST-RF model to generate soil depth maps in a section along the Yangtze River in365

Wanzhou County (27 km2), where soil depth ranges from 0 m to 40 m. The MAE values of 10.6 m for the GIST showed that

the original model cannot deal with the complex geological settings and high variability in soil depth at the study site. However,

the GIST-RF model showed an MAE of 3.52m, demonstrating the potential for improvement through ML techniques.

The results of the ML models are promising. However, additional tests and optimisation may be advisable. In particular,

we would expect the inclusion of additional records with a landslide thickness between 1 m and 2.5m to improve the model370

performance. The hyper-parameter tuning only yielded improvements that, overall, did not exceed a reduction of the MAE by

2 cm. However, the difference of up to 4 cm between some of the hyper-parameter combinations for the RF models shows
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that hyper-parameter tuning is overall worthwhile. The results of the hyper-parameter tuning for the RF models also showed

trends that are mostly in line with the findings reported by Probst et al. (2019). Additional model variants with and without

additional points with 0 m landslide thickness in rock signature have been explored. However, while the addition of the points375

did lower the overall MAE of the machine learning models by about 2 cm, some of the R2 values were slightly lowered. Given

the large variance of the predictions for the 0 m thickness points, it is still not clear to us whether the addition of the points is

recommendable. The scheme used for random sampling in space could potentially introduce a bias and class overlap, which

may be mitigated by adopting a uniform sampling approach (Da Re et al., 2023).

6.3 Covariate selection380

The selected covariates in the ML models mostly describe the terrain and its geomorphology. This shows parallels to models

aiming to predict soil depth in general based on geomorphology (Catani et al., 2010; Xiao et al., 2023). There is also a notable

overlap with variables that Zweifel et al. (2021) identified as important causal factors of shallow landslides in grassland regions

of Switzerland. In addition, the inclusion of the lithology by proxy of the mean local density of the underlying bedrock and

the inclusion of the vegetation (especially the forest) through the maximum of the VHM is also worth mentioning. While the385

importance of lithology varied significantly between the different model types and dataset combinations, the VHM consistently

showed a higher importance for the models trained with the HMDB data compared to the KtBE-trained models. This may be

due to the low number of landslides within the forest present in the KtBE data.

A variant of the ML models with the rainfall amount for a duration of 60 minutes for an extreme point precipitation event

with a 10-year return period included as an additional variable was explored. The results, however, were almost identical to390

the model without this additional variable. We speculated a priori that this variable might be related to soil thickness due to an

erosion effect, but this is apparently not the case or not detectable. Aiming for a model with less complexity, we finally opted

to exclude this variable.

7 Conclusions

In this study, we presented an ML-based approach to predict the potential thickness of shallow landslides. The new machine395

learning models consistently performed at least 17% better when comparing the MAE to the previously existing models based

on slope and elevation. We conclude that the selected set of covariates, including metrics on terrain, geomorphology, vegetation,

and lithology, is a suitable basis for predicting shallow landslide thickness using ML. Considering the overall performance and

the lack of outliers in the predictions, we consider the RF model to be the most accurate approach to generate improved inputs

for slope stability models. For future work, we plan to adapt this study’s RF model, which is built for predictions on single400

sample points, for the generation of rasters covering entire simulation extents. Further tests and refinements of the model are

planned, especially by improving the input dataset with additional field data, by testing variants with additional sample points

and sampling schemes for locations with 0 m landslide thickness, and by further refining the selection of covariates.
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Code availability. The code for this study is available on Zenodo (Schaller, 2024)
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Appendix A: Supplementary material405

A1 Detail results

Figure A1. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for all models

differentiated by model type (rows) and dataset (columns): (a) model trained and tested with HMDB dataset, (b) model trained and tested

with KtBE dataset, (c) model trained with HMDB and tested with KtBE dataset, and (d) model trained with KtBE and tested with HMDB

dataset. The red dots represent the mean value while the blue numbers show the number of entries per slope class.
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A1 Variable importance and model tuning

Figure B1 shows the variable importance for the ML-based models. The importance values of the RF and LM were extracted

from the overall result of the 10-fold cross validation result. Since no meaningful overall values could be extracted from

the GAM fit, the importance values from the best model were extracted. The figure shows that there are differences in the410

importance of the individual variables depending on the dataset and the model. Nevertheless, several variables are more often

among the top-ranked variables including the elevation, the terrain roughness index at 10 m cell size, the mean density of the

local lithology, the negative openness, and the multiresolution valley bottom flatness.

Figure B1. Heatmap showing the overall variable importance extracted from 10-fold cross validation for the RF and LM models and the

importance of the best fit for the GAM model. The number in the cells and their colour correspond to the importance rank of the variable

within the model, with 21 (green) being the most important and 1 (yellow) being the least important variable. The variables are sorted by the

sum of the ranks of each row.
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