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Abstract. Landslide thickness is a key parameter
::::::
variable

:
in various types of landslide susceptibility models. In this study, we

developed a model providing improved predictions of potential shallow landslide thickness for Switzerland. We tested three

machine learning (ML) models based on random forest
::::
(RF), generalized additive ;

:::::::
(GAM), and linear regression models and

::::
(LM)

:::::::
models.

:::::
Next,

:::
we

:
compared the results to three existing

:::::
simple

:
models that link soil thickness to slope gradient and

elevation
::::::::
(Simple-S

::::
and

:::::
SFM)

::::
and

:::::::
elevation

::::::::::
(Simple-Z). The models were calibrated using data from two field inventories in5

Switzerland ("HMDB" with 709 records and "KtBE" with 515 records). We explored 39 different covariates including metrics

on terrain, geomorphology, vegetation, and lithology at three different cell sizes. To train the ML models, 21 variables were

chosen based on the variable importance derived from random forest
::
RF

:
models and expert judgement. Our results show that

the ML models consistently outperformed the existing
:::::
simple models by reducing the mean absolute error by at least 20%. The

random forests
::
RF

:
models produced a mean absolute error of 0.25 m for the HMDB and 0.20 m for the KtBE data. Models10

based on ML substantially improve the prediction of landslide thickness, offering refined input for enhancing the performance

of slope stability simulations.

1 Introduction

Spontaneous rainfall-induced
::::::::::::::
Rainfall-induced

::::::::::
spontaneous

:
landslides pose serious threats to infrastructure and inhabited ar-

eas worldwide (Froude and Petley, 2018; Emberson et al., 2020). In Switzerland, such landslides regularly cause extensive15

infrastructure damage and closures, evacuations and even fatalities. For instance, 74 people died as a result of 40 different

landslide events between 1946 and 2015 (Badoux et al., 2016). During a rainfall event in
::
In

:
August 2005, shallow landslides

(definition provided below) and the resulting hillslope debris flows caused damage amounting to USD 167 million (CHF 150

million) across Switzerland within 48 hours (Bezzola and Hegg, 2007). Approximately USD 16.8 million (CHF 15 million)

::
17

::::::
million

:
are spent each year on landslide protective measures in Switzerland (Dorren et al., 2009). To mitigate this risk,20

regional landslide hazard mapping and modelling provide an important basis for indicating potential hazard areas (Dahl et al.,

2010; Kaur et al., 2019; Shano et al., 2020; Di Napoli et al., 2021). In Switzerland, national-scale shallow landslide modelling

was carried out within the SilvaProtect-CH project (Dorren and Schwarz, 2016). Results from this project have provided an
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important basis fordifferent stakeholders and policymakers, e.g., for
:
,
:::::::
amongst

::::::
others,

:
the delimitation of landslide protective

forests across the country and the preliminary risk analyses for national roads (Arnold and Dorren, 2015) and railways.25

1.1 Background on landslide failure thickness

In general, landslides can be defined as the movement of a rock or soil mass along a slope (Varnes, 1978; Hungr et al., 2014).

The term “shallow landslides” typically refers to translational sliding movements of soil material (earth and/or debris) from the

upper soil layers, characterised by a well-defined sliding surface (Cruden and Varnes, 1996; Hungr et al., 2014). Often, shallow

landslides result in hillslope debris flows, which can be very destructive because of their velocity and resulting impact pressure30

(Zimmermann et al., 2020). Landslides are usually classified as shallow landslides if the thickness of the instable mass does not

exceed 2 m, which is also used as a definition in Switzerland , (Lateltin et al., 2005), although
:::::::::::::::::
(Lateltin et al., 2005)

:
.
::::::::
However,

in some casesthis limit lies at 3 m
:
,
::
the

::::::
failure

:::::
plane

:::
lies

::::::
within

:::
the

:::
top

::::
three

::::::
meters (Sidle and Ochiai, 2013; Rickli et al., 2019;

Li and Mo, 2019). With a median release area of around 200 m2 and an average thickness of 0.5 m to 1 m, shallow landslides

generally fall into the category of small (100–103 m3) and occasionally
::::::::
landslides

::
as

::::::::
proposed

::
by

:::::::::::::::::::::
McColl and Cook (2024)

:
.35

:::::::::::
Occasionally,

::::
they

:::
can

:::
fall

:
into the category of very small (10−3–100 m3) or medium (103–106 m3) landslidesas proposed by

McColl and Cook (2024). In this study, we define landslide thickness as the average thickness of the instable mass , measured

from and perpendicularly
:::::::
measured

::::::::::::
perpendicular to the original slope surface

:::::
down to the failure plane (TL in Fig. 1).

The basic disposition for shallow landslides is determined by the slope gradient, the slope morphology, and the geotechnical

properties of the soil, which have a strong link to the underlying geology (Hungr et al., 2014; Watakabe and Matsushi, 2019;40

Chinkulkijniwat et al., 2019). The definition of what constitutes soil varies between disciplines, but in .
:::
In the context of

landslides, soil is primarily viewed from an engineering perspective, which considers soil to be identical to the regolith cover

(i.e. the entire unconsolidated material above the bedrock) (Huggett, 2023). Most landslides occur in wet, partially saturated

soils, and are triggered by water input due to e.g. rainfall or seismic activity (Leonarduzzi et al., 2017; Schuster and Wieczorek,

2018). An increasing water content in the soil induces a reduction of soil shear strength leading to the failure of soil material45

within a shear band,
:
.
::::
This

::
is

:
usually situated at the interface of below-ground discontinuities such as between regolith and

bedrock (Catani et al., 2010; Zhang et al., 2017; Xiao et al., 2023) or between different soil horizons
:::::
layers

::::
with

::::::::
different

:::
soil

::::::::::::
characteristics (Li et al., 2013; Ali et al., 2014; Ran et al., 2018; Chinkulkijniwat et al., 2019). This boundary defines the

failure plane of shallow landslides and is as such implemented in physically-based models (Ran et al., 2018). The hydrological

properties of the soil and the local hydrological conditions (such as the
:::::::
influence

:::
the

::::::::::
occurrence

:::
and

:::::
depth

::
of

:::
the

::::::
failure

:::::
plane50

::
of

::::::
shallow

::::::::::
landslides.

::::::::
Examples

:::
are

:::
the

:
rainfall characteristics and the runoff disposition of the upslope area, as well as the

groundwater table and the pore-water pressure ) influence the occurrence and depth of the failure plane of shallow landslides

(Caine, 1980; Iverson, 2000; Guzzetti et al., 2008b; Li et al., 2013; Chinkulkijniwat et al., 2019).

In many studies, soil thickness is used as a proxy for landslide thickness (e.g., Montgomery and Dietrich, 1994; Pack et al., 1998; Iida, 1999; Baum et al., 2002; D’Odorico and Fagherazzi, 2003; Segoni et al., 2012; Ho et al., 2012; Merghadi et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Montgomery and Dietrich, 1994; Pack et al., 1998; Iida, 1999; Baum et al., 2002; D’Odorico and Fagherazzi, 2003; Segoni et al., 2012; Ho et al., 2012; Merghadi et al., 2020)55

. When describing or modelling landslides, care should be taken to define the thickness unambiguously. Sometimes the terms

soil thickness and depth are used interchangeably. However, in most studies, depth refers to a measurement in the verti-
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cal direction, while thickness refers to a measurement perpendicular to the surface of the slopes surrounding the release area

(e.g., Meisina and Scarabelli, 2007; Catani et al., 2010; Jia et al., 2012; Ho et al., 2012; Lanni et al., 2012; Patton et al., 2018)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Meisina and Scarabelli, 2007; Catani et al., 2010; Jia et al., 2012; Ho et al., 2012; Lanni et al., 2012; Patton et al., 2018)

. Some studies use a reverse definition of the two terms, using the term thickness for vertical measurements and the term depth60

for perpendicular measurements (e.g., Cruden and Varnes, 1996; Pack et al., 1998)
:::::::::::::::::::::::::::::::::::::::
(e.g. Cruden and Varnes, 1996; Pack et al., 1998)

. Similarly, the depth of the failure plane may be defined in the vertical direction (Watakabe and Matsushi, 2019; Meier et al.,

2020; Chang et al., 2021) or perpendicular to the slope (Iida, 1999; Schwarz et al., 2010; Li et al., 2013). The perpendicular

direction seems to be favoured if the thickness is used for calculating the landslide volume (WSL and BAFU, 2018; Jaboyedoff

et al., 2020; Hählen, 2023). In this study, we use the term depth when measuring in the vertical direction (depth at scarp DF65

and soil depth DS in Fig. 1) and thickness when measuring perpendicular to the slope (TL in Fig. 1).

Figure 1. Schematic representation of a shallow landslide with its failure, transport, and deposit area, including important definitions used in

this study. Different shades
:::::::
Variations

:
in the regolith indicate differing properties

::::::
shading

:::::
reflect

::::::::
differences

::
in

:::
soil

:::::::::::
characteristics.

1.2 Models for estimating soil thickness for landslide modelling

Landslide thickness or soil thickness is a key parameter
::::::
variable

:
in various types of models for simulating landslide suscep-

tibility reaching back to the first pioneering equations (e.g. Skempton and deLory, 1957). The references used for calibrating

these models are usually based on field measurements (e.g. , by digging soil pits (Catani et al., 2010) or by drilling (Xiao70

et al., 2023)) or on data from landslide inventories (van Zadelhoff et al., 2022). However, dense field measurements are only

available for small extentsand even .
:::::
Even then, the resulting soil thickness maps have high uncertainties due to the large het-

erogeneity of soil parameters
:::::::
variables

:
(Cohen et al., 2009; Jia et al., 2012; Lanni et al., 2012). To deal with the uncertainties

in landslide thickness, different modelling approaches have been adopted. These models can be grouped into three categories:
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conceptual models,
::::::::::::::
physically-based

:::::::
models,

:::
and

:
empirical models (data-driven models, e.g. , statistical, machine learning75

(ML)) , and physically-based models (Murgia et al., 2022). Conceptual models aim to provide a simplified methodology for

estimating changes in slope stability (Murgia et al., 2022),
:
e.g. using cellular automaton models (Piegari et al., 2006). The

physically-based models can be further divided into deterministic (e.g., Montgomery and Dietrich, 1994; Baum et al., 2002)

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Montgomery and Dietrich, 1994; Baum et al., 2002) and probabilistic models (e.g., Pack et al., 1998; Horton et al., 2013; van Zadelhoff et al., 2022)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Pack et al., 1998; Horton et al., 2013; van Zadelhoff et al., 2022). Empirical models predict landslide occurrence based on80

factors that can be directly or indirectly linked to slope instability (Reichenbach et al., 2018). Such models are gaining interest

and have become more commonplace in predicting inputs for landslide models due to improved data availability/quality and

increasing research on ML and other computational techniques (Hengl et al., 2017; Merghadi et al., 2020; Wadoux et al., 2020;

Xiao et al., 2023).

Table 1 gives an overview of models for predicting soil thickness found in the literature with a focus on those applied85

for shallow landslide simulations. The explanatory variables used in these models have informed the choice of covariates

for this study. Furthermore, they are good examples providing an overview of the model types used for predicting soil

depth. Most of these models are either deterministic (e.g., Montgomery and Dietrich, 1994; Baum et al., 2002) or probabilistic

(e.g., van Zadelhoff et al., 2022)
::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Montgomery and Dietrich, 1994; Baum et al., 2002)

::
or

::::::::::
probabilistic

::::::::::::::::::::::::::
(e.g. van Zadelhoff et al., 2022)

.90

Various studies have shown that the
:::
The

:
accuracy of the potential landslide thickness is of paramount importance for the

performance of slope stability models (cf. Iida, 1999; Larsen et al., 2010; Milledge et al., 2014; van Zadelhoff et al., 2022).

Consequently, improving the estimation of landslide thickness is key for enhancing the performance of slope stability models.

With the overall aim of developing a model that provides a more accurate prediction of the potential shallow landslide thickness

compared to existing
::::::::::
pre-existing

::::::
simple models, the four main objectives of this study are:95

– [
::
(1)] to present descriptive statistics on data on the thickness of shallow landslides and additional potentially explanatory

data from two field inventories in Switzerland,

– [
::
(2)] to develop and test new models for predicting the potential thickness of shallow landslides in Switzerland based on

ML (random forest models (RF), generalized additive models (GAM), and linear regression models (LM)) using input

variables including terrain metrics and vegetation,100

– [
::
(3)] to evaluate the performance of the developed models using data from the two shallow landslide inventories,

– [
::
(4)] to compare the performance of the developed models with three previously published models that predict shallow

landslide thickness based on altitude, slope, and cumulative slope distribution.
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Table 1. List with a summary of soil thickness models found in the literature.

Model used Explanatory variables Relationship with soil depth Reference

Constant soil thickness across the

study area

Mean soil thickness, possibly combined with stan-

dard deviation

Constant value Montgomery and Diet-

rich (1994); Baum et al.

(2002); Ho et al. (2012)

Elevation elevation Linear scaling Saulnier et al. (1997);

Catani et al. (2010);

Segoni et al. (2012)

Slope gradient linear slope gradient
Linear scaling Saulnier et al. (1997);

Catani et al. (2010);

Segoni et al. (2012)

Linear relationship statistically fitted Lanni et al. (2012)

Slope gradient exponential slope gradient Exponential law Segoni et al. (2012)

Slope gradient cumulative thickness measurements and slope values from a

landslide inventory

Cumulative normal distribution of slope values van Zadelhoff et al.

(2022)

Hillslope curvature Curvature Linear relationship; varies across different landscapes as a func-

tion of the standard deviation in catchment curvatures

Patton et al. (2018)

Topographic Wetness Index (TWI) TWI Linear relationship Ho et al. (2012)

Linear model with terrain indices slope gradient, plan curvature, profile curvature,

specific catchment area, and relative position on

the hillslope

Linear relationship established by multi-linear regression Jia et al. (2012)

Process-based models
time since last the denuding by landslides linked to soil development over time by approximating the de-

velopment using a logarithmic function

Iida (1999)

bulk density of the rock, elevation, slope mass balance between soil production from underlying bedrock

and the divergence of diffusive soil transport by solving the

evolving soil depth using a finite difference model under vary-

ing initial conditions

Dietrich et al. (1995)

GIST (Geomorphologically Indexed

Soil Thickness)

slope gradient, horizontal and vertical slope curva-

ture, relative position within the hillslope profile

the gradient and curvature are connected to the kinematic sta-

bility of the regolith cover while the distance from the hill crest

accounts for the position within the soil toposequence

Catani et al. (2010);

Segoni et al. (2012);

Xiao et al. (2023)

sGIST slope gradient, horizontal and vertical slope curva-

ture, relative position within the hillslope profile

GIST without geomorphological indexing Catani et al. (2010);

Segoni et al. (2012)

GIST-RF GIST inputs plus altitude, plan curvature, and Ter-

rain Roughness Index (TRI) as covariates

Random forests regression Xiao et al. (2023)

GIST-MCS GIST method additionally incorporating Latin Hy-

percube Sampling-Based Monte Carlo Simula-

tions to model uncertainties in determining the in-

fluence of the slope factor

GIST plus Monte Carlo Simulations Gupta et al. (2024)

Machine learning ensemble 158 remote sensing-based soil covariates (primar-

ily derived from MODIS land products, SRTM

DEM derivatives, climatic images and global land-

form and lithology maps)

ensemble including random forests and gradient boosting

and/or multinomial logistic regression

Hengl et al. (2017)

2 Study area

The study area encompasses large parts of Switzerland
:
is

:::::::::
distributed

::::::
across

::::::::::
Switzerland

:::::
(Fig.

::
2), which has a total area of105

41’291 km2 (FSO, 2021). The Swiss landscape can roughly be divided into the Alps covering around 58% of the country, the

Central Plateau covering 31% and the Jura covering 11% of the area (FDFA, 2023). The Jura mountains in the northwest are
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mainly characterised by limestones and marls (Pfiffner, 2021; Zappone and Kissling, 2021). The Central Plateau extending

from Geneva towards the northeast is a molasse sedimentation basin covered by thick quaternary deposits resulting from the

erosion of the Alpine chain (Reynard et al., 2021). The
::::
With

:::
the

::::::::
Helvetic,

::::::::
Penninic,

:::
and

:::::::::::
Austroalpine

::::::
nappes,

:::
the

:
Alps include110

three major nappe systems(Helvetic, Penninic, and Austroalpine), whose
:
.
::::
Parts

::
of

:::::
these

::::::
nappes

:::
can

::
be

:::::::
referred

::
to

::
as

:::::::::
Pre-Alpes

:::
(cf.

:::
Fig.

:::
2),

:::::
which

:::::::
include

::::
lower

::::::::
mountain

::::::
ranges

:::
and

::
in
:::
the

:::::
most

:::::::
northern

::::
parts

::::
even

::::::::
foothills.

:::
The

::::::
alpine nappe piles led to the

amalgamation of very different rock typesincluding
:
.
:::::
These

::::::
include

:
continental and oceanic basement rocks (granites, gneisses,

and schists), shallow marine carbonates (limestones and marls), deep marine clastics (sandstones and conglomerates),
:::::
which

:::::
locally

:::::::
resulted

:::::
from

::::::::
turbidites

::::::
known

::
as

::::::
Flysch

::::::::
deposits, and radiolarian chert (Pfiffner, 2021). Switzerland is characterised115

by a temperate semi-continental climate that is strongly influenced by its altitude and its complex topography (Fallot, 2021).

The mean annual air temperature varies with the altitude showing 8.5-11.9 °C at 500 m above sea level, 6.2-9.6 °C at 1000

m, and 3.9-7.3 °C at 1500 m over the period from 1981–2010 (Fallot, 2021). The mean annual rainfall increases with altitude

with values from 900-1300 mm for the central plateau and gradually increasing
:::::
Central

:::::::
Plateau

:::
and

::::::::
gradually

::::::::
increases

:
from

the southern piedmont of the Jura mountains towards the northern side of the Alps where these amounts exceed 2000 mm and120

reach up to 3000 mm per year or more on the wettest summits in the Central Alps.

3 Materials

3.1 Landslide inventories

This study used reference datasets compiled from two different landslide inventories from Switzerland. Since the data also

included landslides with medium and large thickness of the instable mass, only entries with a thickness of up to 2 m were125

retained for this study.

:::::
Swiss

:::::::
landslide

::::::::::
inventories. The first dataset (hereafter "HMDB") is based on a comprehensive database of shallow landslides

and hillslope debris flows (WSL, 2024) that occurred between 1997 and 2021 created by Rickli et al. (2016, 2019). Most of the

HMDB records were collected after heavy rainfall events within defined perimeters. The data in this inventory are based on field

surveys performed with identical protocols that include relevant parameters
:::::::
variables such as the dimensions of the landslides,130

site characteristics, and runout characteristics (Rickli and Graf, 2009; WSL and BAFU, 2018). If values could not be measured

in the field (e.g. , because of terrain changes since the event), the database may contain estimated values that are marked

accordingly (Rickli et al., 2016). The location of the landslides is recorded by geographical
:
x
:::
and

::
y
:
coordinates of the failure

point (x and y of
:
in

:
the Swiss coordinate system LV95 measured at the upper edge of the scarp). Of 760 entries in the inventory,

711 comprised either measured (n=75) or estimated (n=636) thickness values
::
75

:::::::::
comprised

::::::::
measured

::::
and

::::
199

:::::::::
comprised135

::::::::
estimated

::::::::
thickness

:::::
values

::
in
:::
the

:::::
field.

:::::
These

:::::
were

:::::::
recorded

:
perpendicular to the original slope surface (TL in Fig. 1). Of the

estimated values, the thickness value for 199 records were already present in the database while the values for the remaining
:::
For

435 records were estimated
::
we

::::
were

::::
able

::
to

:::::::
estimate

:::
the

::::::::
thickness

:
by dividing the recorded landslide volume by the recorded

failure area. This approach was chosen
:::::
based

:::
on

::
an

::::::::
exchange

::::
with

::::
the

:::::
author

:::
of

:::
the

:::::::
database

:::::::::::::
(Rickli, 2023) since the mean

landslide thickness in the HMDB is mainly used for the estimation of the failure volume (Rickli et al., 2016; Rickli, 2023).140
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Two records with
:::::::::::::::
(Rickli et al., 2016)

:
.
::
In

:::
the

::::
end,

:::
we

::::
had

:::
711

:::::::
records

::::
with

::::::::
thickness

::::::
values.

:::::
Since

:::
we

::::::::
removed

:::
two

:::::::
records

::::
with an estimated value larger than 2 m were removed, resulting in

::::
from

:::
the

:::::::
dataset,

:::
the

::::::::
resulting

::::::
dataset

:::::::::
comprised

:
709

recordsactually used in the filtered dataset.

The second dataset (hereafter "KtBE") is based on an inventory created by the office for natural hazards of the canton of

Bern (Hählen, 2023) and comprises 519 landslides, 6 of which are also recorded in the HMDB inventory. The landslides in the145

KtBE inventory were recorded between 2005 and 2021. For the inventory, the failure zones and runout envelopes of shallow

landslides were digitized as polygons from orthoimages. The mean thickness of the landslides is based on expert estimates

based on the orthoimages. The author estimated that there is a possible error of between 25% to 50% for the thickness (Hählen,

2023). Since only events were recorded for which the entire process area could be reliably reconstructed from the orthoimages,

many events in forests or intensively cultivated areas were not included in the inventory. This limits the possibility of making150

comparisons between landslides within and outside of forests. Four records were filtered out from the dataset because of a

missing thickness value and
::
or a thickness value larger than 2 m, leaving 515 records actually used in the final dataset.

Figure 2 shows the
:::
The

:
distribution of the landslide locations per dataset across Switzerland , while Table 2 lists

:::::
across

::::::::::
Switzerland

::::
(Fig.

::
2)

::::
and

:
the number of landslides per canton and inventory

:::::
(Table

::
2)

::::
are

::::::
uneven. The fact that the datasets

only contain records for 9 of the 26 cantons in Switzerland is not only caused by uneven occurrence of landslides but also by155

differences in the availability of recorded data. While the recorded landslides are distributed across large parts of Switzerland,

there is a clear concentration on the northern parts of the Alps and Pre-Alps. Locally clustered occurrences were mostly caused

by specific extreme precipitation events in combination with unfavourable geological substratum such as flysch or molasse

(Reynard et al., 2021; Steger et al., 2022).

Table 2. Number of recorded landslides per canton in the HMDB and KtBE
::::::
shallow

:::::::
landslide datasets

Canton Abbreviation Area in km2 HMDB KtBE

Appenzell Ausserrhoden AR 244 103 0

Appenzell Innerrhoden AI 172 2 0

Bern BE 5’959 170 483

Fribourg FR 1’671 0 1

Grisons GR 7’105 106 0

Lucerne LU 1’494 86 33

Obwalden OW 491 240 0

Vaud VD 3’212 1 0

Zürich ZH 1’729 1 0

Total 22’077 709 517
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Figure 2. Map of the recorded shallow landslide locations across Switzerland for the HMDB (orange triangles) and KtBE (green diamonds)

datasets.
::
The

::::
Jura,

:::
the

::::::
Central

::::::
Plateau,

:::
the

:::::::
Pre-Alps,

:::
and

:::
the

::::
Alps

:::
are

:::::::
indicated

::::
with

::::::
different

:::::
shades

::
of
:::::

grey. Background: swissBOUND-

ARIES3D (Swisstopo, 2024b),
:::::::::
production

:::::
regions

::::
NFI

:::::::::::
(BAFU, 2020), and light base map relief (Swisstopo, 2024c)

3.2 Model input data160

The following datasets were used as input for the models in this study:

– The LiDAR (Light Detection And Ranging)-based swissALTI3D digital elevation model (DEM) with 0.5 m cell size

(Swisstopo, 2023a).

– EU-DEM v1.1 DEM with 25 m cell size (EEA, 2016).

– A LiDAR-based vegetation height model (VHM) with 1 m cell size (cf. Schaller et al., 2023).165

– The 2018 version of the 10 m cell size National Forest Inventory (NFI) forest type raster
::::
2018

::::
with

:::
10

::
m

::::
cell

::::
size

indicating the proportion of coniferous trees (Waser and Ginzler, 2018).

– Modelled data on extreme point precipitation (Frei and Fukutome, 2022) with 1 km cell size for different return periods

(2, 10 30, 50, 100, 200, and 300 years).

– A Vector-based dataset representing the rock
::::
Rock densities across Switzerland was used

::
in

:::
the

::::
form

:::
of

:
a
:::::::::::
vector-based170

::::::
dataset (Swisstopo, 2020).

– Soil property maps
::::
with

::
30

:::
m

:::
cell

::::
size

:
providing predictions for clay, sand, and silt contents at three depth intervals

(‘Topsoil’: 0–30 cm; ‘Subsoil’: ,
:

30–60 cm; and ‘Deep Subsoil’:
:
,
:::
and

:
60–120 cm ) described by Stumpf et al. (2024)
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. We used a preliminary version of the data with 30 m cell size, kindly provided by the Swiss Competence Center for

Soils (CCSol, 2024).
::::::::::::::::
Stumpf et al. (2024)

:
.175

– The ground
::::::
Ground cover layer of swissTLM3D (Swisstopo, 2023b).

– The topographic
::::::::::
Topographic catchment areas of Swiss water bodies (BAFU, 2019).

Section 4 explains why these datasets as well as the derived covariates were included.
::::
Note

:::
that

:::
we

::::
used

::
a

:::::::::
preliminary

:::::::
version

::
of

:::
the

:::
soil

:::::::
property

:::::
maps,

::::::
kindly

::::::::
provided

::
by

:::
the

:::::
Swiss

:::::::::::
Competence

::::::
Center

::
for

:::::
Soils

::::::::::::
(CCSol, 2024)

:
.

4 Methods180

In the first part, we analysed the distributions of the thickness and slope gradients of the landslides in the HMDB and

KtBE datasets. We used the R environment for statistical computing (R Core Team, 2022) to calculate the descriptive statis-

ticsincluding .
:::::
These

::::::::
included

::
the

:
minimum, maximum, mean, standard deviation, median, and mean absolute deviation (MAD)

for the landslide thickness and slope gradient recorded in the inventories as well as the elevation and slope gradient from the

covariates.185

The subsequent modelling part is divided into three stages (Fig. 3). In stage 1, intermediate DEM rasters for the subsequent

stage were prepared. During stage 2, the data used for the final modelling and analysis stage were prepared. The covariates,

such as terrain variables or geology, were derived based on the DEM as well as other input data. Then, the covariates were

added to the reference data by sampling the generated rasters at the landslide failure points. The analysis and modelling based

on the previously prepared dataset were performed in stage 3 including the training of three types of machine learning (ML)190

models and the application of three existing
::::::
simple model types.
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Figure 3. Flowchart of the methodology applied for this study. The three separate grey boxes delineate the 1) DEM preparation, 2) covariate

preparation, and 3) modelling and analysis stages.
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All three stages were implemented in R. While the
:::
The

:
calculation of some variables was implemented in R using the

sf (Pebesma and Bivand, 2023) and terra (Hijmans, 2023) packages
:
sf

:::::::::::::::::::::::
(Pebesma and Bivand, 2023)

:::
and

:::::
terra

::::::::::::::
(Hijmans, 2023)

::::::::
packages.

::::::::
However, the processing of most variables was implemented using SAGA GIS (System for Automated Geosci-

entific Analyses, Conrad et al. (2015)) via the RSAGA
::::::
RSAGA package (Brenning, 2008) or using GDAL (Geospatial Data195

Abstraction Library) tools (GDAL/OGR contributors, 2021) called from R. The code for the entire process can be found in the

repository accompanying this study (Schaller, 2024).

4.1 DEM preparation

The covariates for the ML models were calculated as rasters with a cell size of 5 m, 10 m, and 25 m (outputs O1.1, O1.2, and

O1.3 in Fig. 3). The 0.5 m cell size swissALTI3D DEM was used as input for the terrain-based covariates. The original DEM200

was first aggregated to 5 m cell size using gdalwarp with the average function (step S1.1 in Fig. 3). The areas outside the Swiss

borders are not covered by swissALT3D. Covariates calculated over a window would lead to incorrect values near the border.

Therefore, the areas outside the border were filled using the EU-DEM. For this purpose, the original extent of the 5 m DEM

was first buffered by 4 km to accommodate the largest radius used in the covariate calculations (step S1.2 in Fig. 3). The areas

with NoData within that buffered extent were then filled using values from the EU-DEM resampled to 5 m using gdalwarp205

with a bilinear function (step S1.3 in Fig. 3). This filled raster was the primary input for the terrain analysis. The additional

DEM rasters with 10 m and 25 m cell sizes were derived by aggregating the filled 5 m DEM using gdalwarp with the average

function (steps S1.4 and S1.5 in Fig. 3). Although the resampling of the EU-DEM introduces a certain error in the elevation

values outside the border, we regard this error as an acceptable trade-off for the good data availability and the simplified data

preparation process.210

4.2 Covariate preparation

4.2.1 Calculating covariate rasters

Some
::
As

::::
can

::
be

::::
seen

::
in

:::
the

::::::::
overview

::
of

:::
the

:::::::::
processed

::::::::
variables

:::
and

::::
their

::::::::::::
corresponding

::::
cell

::::
sizes

::::::
(Table

::
3),

:::::
some

:
covariates

were calculated for all three cell sizes while others were only calculated for specific cell sizes. Table 3 gives an overview of

the processed variables and their corresponding cell sizes. Vector-based input data were rasterised, including the generation of215

separate 0/1 encoded rasters for categorical variables. The terrain-based covariates calculated from the DEM included metrics

commonly used in terrain analysis, hydrology, and geomorphology that were also used in other studies aiming to predict failure

or soil depth. To represent the influence of the forest, the VHM was used to calculate statistics on vegetation height while the

NFI forest type raster was used as an indicator for species composition, which can influence the stabilising influence of forests.

The rock densities across Switzerland (Swisstopo, 2020) served to represent the underlying lithology. The density of rocks220

varies based on their chemical composition and the structure of their minerals (from crystalline to amorphous) (Zappone and

Kissling, 2021). Each entry in the dataset is assigned to one of the 21 defined lithological groups and shows the expected range

in which the mean bulk density of the local lithology varies (Swisstopo, 2020). For an overview of the lithology groups and
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densities please refer to the visualisations in Zappone and Kissling (2021), the documentation included in Swisstopo (2020) or

its visualisation in the Swisstopo web map portal (Swisstopo, 2024a). Similarly, the soil property maps were used to test their225

influence on landslide depth. The modelled data on extreme point precipitation (Frei and Fukutome, 2022) was used as a proxy

variable assuming that locations with potentially extreme rainfall amounts would experience increased erosion and landsliding

activity, which would lead to reduced soil cover. The swissTLM3D ground cover layer (Swisstopo, 2023b) was tested as a

categorical covariate and was used to identify areas with rock cover.

To optimize the calculation of covariates for the entire area of Switzerland, the processing of the covariates was parallelized230

(step S2.1 in Fig. 3). For this purpose, Switzerland was divided into tiles based on aggregated catchments. The tiles based

on catchments ensure that the values calculated for hydrological covariates are correct within the catchment area. We used

the pre-defined aggregation level of the topographic watershed dataset (BAFU, 2019), which defines watersheds with a size

of approx. 150 km2. These correspond to a tile size with acceptable processing times while keeping the number of tiles at

a manageable level. For the actual processing, the extents of the catchments were buffered by 500 m (5 m and 10m rasters)235

or 4 km (25 m rasters) to ensure data availability for covariates calculated with window sizes that go beyond the catchment

border. Only the covariate values within the catchment borders were used for further processing since the values outside the

border may be incorrect. Note that variables connected to hydrology were not calculated based on the original DEM raster,

but a sink-filled version of the DEM generated using the SAGA GIS Tool "Fill Sinks" based on the method by Planchon and

Darboux (2002).240
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Table 3. Variables explored as covariates for the machine learning models along with their input data and the tools used for their processing.

Cell size

Covariate name 5 m 10 m 25 m Used tool Input data

Elevation above sea level x1 x x

swissALTI3D (Swisstopo, 2023a),

EU-DEM (EEA, 2016)

Slope in degrees x x1 x

SAGA "Slope, Aspect, Curvature"

Aspect in degrees x x x

General curvature x x1 x

Profile curvature x x x1

Plan curvature x x x

Aspect northness x x1 x

R with terra

Aspect eastness x x x

Elevation percentile with 50 m and 200 m radius x

Topographic Position Indexes (TPI) with radius 15 m x

TPI with radius 50 m, 200 m x

TPI with radius 500 m, 1 km, 2 km, and 4 km x1

Toposcale x x x

Catchment area x x x1

SAGA "SAGA Wetness Index"
Catchment slope x x x1

Modified catchment area x x x

Topographic wetness index x x x

Topographic wetness index SAGA x1 x x SAGA "Topographic Wetness Index (TWI)"

Flow accumulation (top-down) contributing area x x x SAGA "Flow Accumulation (Top-Down)"

Negative openness with 50 m and 200 m radius x1 SAGA "Topographic Openness"

Multiresolution Index of Valley Bottom Flatness (MRVBF) x x1 x SAGA "Multiresolution Index of Valley

Bottom Flatness (MRVBF)"
Multiresolution Index of the Ridge Top Flatness (MRRTF) x x x1

Convergence index x x x SAGA "Convergence Index"

Upslope curvature x x x
SAGA "Upslope and Downslope Curvature"

Downslope curvature x x x

Morphometric protection Index x x x SAGA "Morphometric Protection Index"

Vector Ruggedness Measure (VRM) x x x1 SAGA "Vector Ruggedness Measure (VRM)"

Terrain Ruggedness Index (TRI) x1 x1 x SAGA "Terrain Ruggedness Index (TRI)"

Slope height x x x1

SAGA "Relative Heights and Slope Positions"

Valley depth x x x1

Normalized height x x x

Standardized height x x x1

Mid-slope position x x x

Geomorphon with 50 m and 200 m radius x SAGA "Geomorphons"

Groundcover x gdalrasterize swissTLM3D (Swisstopo, 2023b)

Extreme point precipitation values for 60 min duration with 10-year return period x
gdalwarp

Frei and Fukutome (2022)

Maximum of vegetation height within cell based on 1 m cell size VHM x1 x x Schaller et al. (2023)

Percent coniferous trees x Waser and Ginzler (2018)

Mean bulk density of the underlying bedrock2 x1 gdalrasterize Zappone and Kissling (2021)

Clay, sand, and silt content at three depth levels ( 0–30 cm; 30–60 cm; 60–120 cm)3 x gdalwarp Stumpf et al. (2024)
1Variables and cell size used in the final ML models. 2Sampled directly from the original vector data. 3Sampled directly on the original 30 m cell size raster.

4.2.2 Sampling covariate values

After calculating the covariate rasters, we prepared the dataset for the subsequent modelling and analysis stage. This was

achieved by merging the event data from the inventories with the covariate values by sampling the cell values at the failure
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point of the landslides (step S2.3 in Fig. 3). In the case of the HMDB dataset, the reported coordinates of the failure point

were directly used. For the KtBE dataset, only the event envelopes were available as input. Therefore, the failure point was245

approximated based on the envelope polygon. First, the elevation for the vertices was determined by sampling the 5 m cell

size DEM. Then the x and y coordinates of the approximate failure point were calculated as the average for the corresponding

coordinates of the vertices with an elevation equal
::
to or higher than the 95th percentile of the elevation of all vertices of the

envelope polygon.

The inventories only contained entries for locations with actual landslides and therefore a sufficient soil thickness. To better250

reflect the fact that landslides cannot occur in areas with bare rock, additional points with a landslide thickness of 0 m in rocky

areas were added to the analysis dataset (step S2.2 in Fig. 3). The points were randomly generated within the areas marked as

rock or loose rock in the ground cover layer of the swissTLM3D landscape model (Swisstopo, 2023b) using the spatSample()

function of the terra
::::
terra package in R (Hijmans, 2023). The points were generated separately for each dataset and only

within the rock signatures in the catchments containing slide events. After generation, the points were manually checked for255

plausibility using the SWISSIMAGE orthoimages (Swisstopo, 2024d). The number of generated points actually included in

the datasets is proportional to the percentage of the catchments covered by the rock signature, namely 34 points for the HMDB

dataset (4.1% rock cover) and 53 points (9.7% rock cover) for the KtBE dataset.

4.3 Modelling and analysis

4.3.1 Models and covariate selection260

We tested three different types of ML models for predicting the potential failure thickness of shallow landslides. The R caret

::::
caret package (Classification And REgression Training) (Kuhn, 2008) was used to fit these models. Due to the promising

performance of random forests (RF) in other studies, our development efforts were mainly focused on RF models (Breiman,

2001), implemented using the ranger
:::::
ranger package (Wright and Ziegler, 2017). In addition, generalized additive models

(GAM) via the mgcv package (Wood, 2011) and
:::
we

:::::
tested

:
linear regression (LM) using the built-in lm function of R were265

tested. These two model types were tested to see if simpler ML-based models
::
as

::::
well

::
as

::::::::::
generalized

::::::
additive

::::::
models

:::::::
(GAM)

:::
via

::
the

:::::
mgcv

::::::
package

::::::::::::
(Wood, 2011),

:::::
which

:::::
allow

::
to

::::::
model

::::::::
non-linear

:::::::::::
relationships.

::::
We

::::
chose

:::::
those

::::::
model

::::
types

::
to

:::::::
evaluate

::
if

::::
they

could achieve similar performance to RF models while maintaining explainability . Compared to standard linear regression,

GAM allow to model non-linear relationships while retaining better explainability compared to fully general models like RF

(James et al., 2021).270

All three model types were trained using the same input data and validation procedures. The covariates included in the

models were chosen based on a combination of exploratory analysis, inputs from the literature (especially the works listed in

Table 1), and expert knowledge of the authors (step S3.1 in Fig. 3). The exploratory analysis included test-fitting RF models

with both the HMDB and KtBE datasets to determine variable importances and attempts at automatic variable selection using

recursive feature elimination. The inputs from the literature and the expert knowledge of the authors influenced the overall275

selection of the tested covariates. From the pool of candidates, we aimed at selecting
:
to

:::::
select

:
covariates with high importance,
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whose combination resulted in good model performance, while keeping the number of covariates and therefore the model

complexity low. At the same time, we tried to balance the inputs from the test fittings with the expert-based input, leading to

the following choice of covariates:

– aspect_nness_10: northness of the aspect calculated as cosine(aspect) at 10 m cell size280

– curvature_10 and curvature_profile_25: general curvature at 10 m cell size and profile curvature at 25 m cell size as

calculated by the SAGA module "Slope, Aspect, Curvature"

– h_5: altitude above sea level sampled at 5 m cell size

– mrrtf_25: multiresolution index of the ridge top flatness at 25 m cell size

– mrvbf_10: multiresolution index of valley bottom flatness at 10 m cell size285

– openness_neg_200_5: negative openness calculated with a radius of 200 m at 5 m cell size

– rhob_m: mean bulk density of the local lithology

– slope_10: slope gradient in degrees at 10 m cell size

– slope_height_25, standardized_height_25, and valley_depth_25: slope height, standardized height, and valley depth

at 25 m cell size calculated by the SAGA module "Relative Heights and Slope Positions" (Böhner and Selige, 2006)290

– tpi_500m_25 and tpi_4km_25: topographic position indexes 500 m and 4 km window size at 25 m cell size

– tri_r5_5 and tri_r5_10: terrain ruggedness index with a radius of 5 cells for 5 m and 10 m cell sizes

– twi_5, catchment_area_25, and catchment_slope_25: topographic wetness index, catchment area and catchment slope

at 5 m and 25 m cell size as calculated by the SAGA module "SAGA Wetness Index" (Böhner et al., 2002; Böhner and

Selige, 2006)295

– vhm_max_5: maximum vegetation height at 5 m cell size

– vrm_r5_25: vector ruggedness measure with a radius of 5 cells at 25 m cell size

Additionally, three existing
::::::
simple models for predicting soil depth were applied as a comparison to the three ML models.

The first two models that we adapted were proposed by Saulnier et al. (1997) and predict soil thickness, which is often used as

a proxy for landslide thickness. They use a predicted soil depth based on either elevation (hereafter Simple-Z) or slope gradient300

(hereafter Simple-S) by applying a linear interpolation based on the minimum and maximum values in a set of reference data.

The third method used for comparison, proposed by van Zadelhoff et al. (2022) (hereafter SFM), also uses the slope gradient

to predict soil depth. However, to account for the shallow soils on steep slopes the method derives the soil thickness from a

log-normal distribution and multiplies it by a correction factor
:
, which is a function of the slope gradient. For the Simple-Z

model, the elevation sampled at 5 m cell size was used to train the model. For the Simple-S and the SFM model, the slope305

sampled at 10 m cell size was used since it showed the best fit with the slopes at the failure point recorded in the inventories.

4.3.2 Training and validation

Separate models were trained for the HMDB and KtBE datasets, resulting in 12 models overall (step S3.2 in Fig. 3). Both

datasets were each split into training data (80%) and validation data (20%). All models were trained using 10-fold cross
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validation
:::::::::::::
cross-validation

:
(James et al., 2021). The built-in caret

::::
caret functions were used for the RF, GAM, and LM models,310

and custom cross validation .
:::::::
Custom

:::::::::::::
cross-validation methods were written for the Simple-Z, Simple-S and SFM models. The

structure of the RF, GAM and LM models was automatically determined by caret
::::
caret during the training process.

Since the
:::
The

:
hyper-parameters of an RF model can significantly influence model performance (Huang and Boutros, 2016;

Probst et al., 2019).
:::::::::
Therefore, the training of the RF model was combined with a hyper-parameter tuning leveraging a modified

version of the tune-grid functionality included in the caret
::::
caret package. The function performs a grid search over the a

:::::::
defined315

::
set

::
of

:
parameters and values shown in Table 4

:::
(cf.

:::::
Table

::
4). Similarly, the standard hyper-parameters for GAM and LM available

in caret
::::
caret were tuned. The final RF model showed clear differences in the chosen hyperparameters

::::::::::::::
hyper-parameters. The

HMDB-trained model used the splitrule "extratrees", a minimum node size of 2, 2 variables to split at, and 100 trees with a

maximum depth of 50. The KtBE-trained model used the splitrule "maxstat", a minimum node size of 10, 8 variables to split

at, and 50 trees with a maximum depth of 150. For the GAM models of both datasets, the "REML" method was used for320

smoothing parameter estimation. The KtBE-trained model was fitted with possible penalisation of terms (i.e. each term can

potentially be removed from the model during fitting by adding an additional penalty) while the HMDB-trained model was

fitted without. For the LM model, the hyper-parameter tuning resulted in a fit without intercept for the HMDB-trained model

and a fit with intercept for the KtBE-trained model.

Table 4. Parameters and values used for tuning the hyper-parameters for the random forests (RF), generalized additive model (GAM) and

linear regression (LM) models.

Model Parameter Default value Values

RF Number of variables

considered to split at each node

Square root of the number of

variables

2, 6, 8, 10, 22

Splitting rule ’variance’ ’variance’, ’extratrees’, ’maxstat’

Minimal node size to split at 5 (for regressions) 2, 6, 8, 10, 12

Number of trees 500 50, 100, 200

Maximal tree depth unlimited 50, 100, 150, 200, 250

GAM Smoothing parameter

estimation method

Generalized Cross Validation

:::::::::::::
Cross-Validation

:
(GCV) with

Mallows’ Cp for scale

’GCV.Cp’, ’REML’

Possible removal of terms

through penalisation

FALSE TRUE, FALSE

LM Whether to fit with or without

intercept

Fit with intercept TRUE, FALSE
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Performance measures were calculated based on the application of the trained models to the respective validation data in325

order to assess model performance (step S3.3 in Fig. 3). In addition, the models trained with the HMDB dataset were cross-

applied to the KtBE validation data and vice versa to evaluate the transferability across datasets. The mean absolute error

(MAE) of the landslide thickness and the R2 value were used as measures of the model performance.

We used the MAE of predicted landslide thickness versus landslide thickness from the inventory as the primary performance

assessment measure, which was calculated as:330

MAE =
1

nslides
Σnslides

i=1

∣∣∣yActuali − yPredictedi

∣∣∣ (Eq. 1)

Where:

MAE: Mean absolute error of the landslide failure thickness

yActuali : Landslide failure thickness in m for landslide i according to the inventory

yPredictedi
: Landslide failure thickness in m for landslide i predicted by the model335

nslides: Total number of landslides in the reference data

Additionally, we calculated the coefficient of determination R2 to judge how good the fit between the predicted and actual

data is:

R2 = cor(yActual,yPredicted)
2 (Eq. 2)

Where:340

R2: Coefficient of determination

yActual: Landslide failure thicknesses in m according to the inventory

yPredicted: Landslide failure thickness in m predicted by the model

5 Results

5.1 Statistical properties of landslide inventories345

The distributions of the landslide thickness in the HMDB and KtBE datasets are very similar with mean and median values that

lie close to each other (see Table 5). As can be seen in
:::
The

:::::::::
histogram

::
of

:::
the

:::::::
landslide

::::::::
thickness

::
(Fig. 4(a) ,

::
a)

:::::
shows

::::
that 90%

of the landslides had a thickness smaller than or equal to 1 m in the HMDB and the KtBE dataset and both show peaks at 0.5 m

and 1 m. This is especially the case for the KtBE dataset, which also shows additional small peaks at 1.5 m and 2 m landslide

thickness. Figure 5 shows the distribution of the landslide thickness over the slope classes. The KtBE dataset shows a clear trend350

towards decreasing landslide thicknesses and lower variance with increasing slope steepness. The HMDB dataset, on the other

hand, shows only a weak trend towards such a decrease. In both the HMDB and KtBE datasets, landslides mainly occurred at

slope angles above 15°, with the trend in the
:
a
::::::::
tendency

::
for

:::
the

:
number of occurrences increasing

::
to

:::::::
increase with the slope

17



angle and a relatively sharp decrease above 40° (Fig. 4(b)
:
b). Half of the landslides occurred above 36° in the HMDB and

above 31° in the KtBE dataset. Almost no landslides occurred on slopes with more than 55° or below 15° slope angle. Visual355

verification of the landslides outside these boundaries
::::
using

::::::::::
orthoimages

::::
and

::::
maps

:
confirmed that the failures are plausiblewith

the .
::::
The landslides above 55° slope angle (HMDB: n=4) all being

::::
were

:::
all located in forested areas and most landslides below

15° (HMDB: n=16, KtBE: n=5) being
::::
were located at a transition between flat and steep terrain (e.g.,

::::
such

::
as

:
a terrace or a

road). The comparison of the recorded slope values with those from the covariates sampled at 5 m cell size showed slightly

lower mean and median values for the HMDB dataset and very similar values for the KtBE dataset. The elevation range where360

shallow landslides occurred, as well as its distribution, is similar in both datasets (
::::
Table

:
5).

::
In

:::
the

::::::::::
distribution

::
of

:::
the

::::::::
landslide

:::::::
thickness

:::::
over

:::
the

::::
slope

:::::::
classes

::::
(Fig.

:::
5),

:::
the

:::::
KtBE

::::::
dataset

::::::
shows

:
a
:::::
slight

::::::::
tendency

:::::::
towards

:::::::::
decreasing

::::::::
landslide

::::::::::
thicknesses

:::
and

:::::
lower

:::::::
variance

::::
with

:::::::::
increasing

:::::
slope

::::::::
steepness.

::::
The

::::::
HMDB

::::::
dataset

::::::
shows

:
a
:::::::
similar,

::::
albeit

:::::
even

::::::
weaker,

::::::::
tendency

:::::::
towards

::::
such

:
a
:::::::
decrease

::::
and

::
no

::::::::::
discernible

::::::
pattern

::
in

:::
the

:::::::
variance.

:

Table 5. Summary statistics including the total number of records (n), n within forests, the minimum, median,
:::::
median

:::::::
absolute

:::::::
deviation

::::::
(MAD), mean, maximum, standard deviation (SD), and median absolute deviation (MAD)

:::::::
maximum

:
for important characteristics of shallow

landslides derived from the landslide inventories as well as from covariates
:::::

derived
::::
from

::::::::::
swissALTI3D

:::::::::::::::
(Swisstopo, 2023a).

:::
Note

:::
that

:::::
lower

:::::
sample

::::
sizes

::::
result

::::
from

::::::
missing

::::::
values

:
in
:::
the

::::::::
inventory.

Source Variable Dataset n (n in forest) Min Median
:::::
MAD Mean Max SD MAD

::::
Max

Inventory

Landslide thickness [m]
HMDB 709 (319) 0.1 0.7

::
0.3

:
0.6 2.00.3 0.3

::
2.0

:

KtBE 515 (20) 0.2 0.6
::
0.1

:
0.5 2.0 0.3 0.1

::
2.0

:

Slope [°]
HMDB 648 (295) 1.0 35.1

::
7.4

:
36.0 80.0 9.0 7.4

:::
80.0

:

KtBE 515 (20) 8.3 31.0
::
5.3

:
31.1 52.5 5.8 5.3

:::
52.5

:

Covariates

Elevation [m a.s.l.]
HMDB 709 (319) 523 1214

:::
346

:
1188 2257 290 346

::::
2257

:

KtBE 515 (20) 624 1334
:::
406

:
1283 2288 470 406

::::
2288

:

Slope 5 m [°]
HMDB 709 (319) 6.0 33.3

::
6.9

:
34.3 58.9 7.8 6.9

:::
58.9

:

KtBE 515 (20) 8.2 31.3
::
6.1

:
31.8 48.3 6.6 6.1

:::
48.3

:
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Figure 4. Histograms showing the distribution of (a) the landslide thickness and (b) the mean slope values in the release areas recorded in

the HMDB (upper row) and KtBE (lower row) datasets.
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Figure 5. Box plots showing the distribution of the landslide thickness over slope classes based on (a) the reported slope for the different

datasets and (b) the slope values sampled at 10 m cell size. The red dots represent the mean value while the blue numbers show the number

of records per slope class. Individual, cross-shaped points are shown for classes with less than 5 data points.

5.2 Modelling results365

Overall, the RF models performed best with an MAE of 0.25 m for the HMDB and 0.20 m for the KtBE dataset (see Table

6). While the MAE values of the GAM and LM models are comparable for the respective datasets, their R2 values tend to be

lower than the RF models. Furthermore, both the GAM and LM models show some outliers with negative prediction values of

up to -0.73 m. The Simple-Z and Simple-S models clearly showed worse performance with MAE values exceeding 1 m. The

SFM model achieved MAE values of 0.37 m for HMDB and 0.38 m for KtBE. When comparing the performance between370

the datasets, the models for the KtBE dataset performed slightly better than the HMDB-trained models. The results for the
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cross-application are variable. In most cases, MAE values were comparable to those of the model trained with the same dataset

with differences between 0 cm to 7 cm for the ML models and between -7 cm and 9 cm for the existing
:::::
simple

:
models.

Table 6. Performance of the trained models. Results are shown for the application to the validation data of the respective dataset as well as

for the cross-application to the other dataset. ntest denotes the number of records in the validation data. Predictionmin/Predictionmax

correspond to the minimum/maximum predicted values while Errormin/Errormax correspond to the minimum/maximum error. AEp90

denotes the 90th percentile of the absolute error.

Model type Training dataset Validation dataset ntest MAE R2 Predictionmin Predictionmax Errormin Errormax AEp90

Random Forest HMDB HMDB 138 0.25 0.08 0.01 0.86 -0.58 1.43 0.54

Random Forest BE BE 114 0.20 0.32 0.02 1.36 -0.86 1.34 0.39

Random Forest BE HMDB 743 0.25 0.07 0.01 1.16 -0.70 1.65 0.53

Random Forest HMDB BE 576 0.28 0.18 0.00 0.91 -0.82 1.52 0.51

GAM HMDB HMDB 138 0.25 0.09 0.08 0.79 -0.48 1.49 0.50

GAM BE BE 114 0.21 0.30 -0.48 1.23 -0.71 1.39 0.45

GAM BE HMDB 743 0.25 0.08 -0.29 1.17 -0.67 1.68 0.56

GAM HMDB BE 576 0.26 0.23 -0.29 0.80 -0.64 1.48 0.42

LM HMDB HMDB 138 0.25 0.09 0.16 0.89 -0.41 1.51 0.49

LM BE BE 114 0.23 0.23 -0.73 1.26 -0.67 1.47 0.45

LM BE HMDB 743 0.25 0.07 -0.53 1.25 -0.95 1.68 0.51

LM HMDB BE 576 0.26 0.20 -0.45 0.93 -0.68 1.70 0.46

Simple-S HMDB HMDB 138 0.90 0.00 1.26 1.93 -1.93 0.63 1.25

Simple-S BE BE 114 1.09 0.06 1.11 1.96 -1.96 0.45 1.37

Simple-S BE HMDB 743 0.99 0.05 1.04 2.07 -2.07 0.58 1.33

Simple-S HMDB BE 576 1.02 0.13 0.96 1.93 -1.93 0.50 1.32

Simple-Z HMDB HMDB 138 0.87 0.09 0.50 2.01 -1.46 0.42 1.31

Simple-Z BE BE 114 0.87 0.20 -0.13 1.97 -1.45 0.82 1.29

Simple-Z BE HMDB 743 0.92 0.08 -0.11 2.07 -1.77 0.71 1.31

Simple-Z HMDB BE 576 0.88 0.16 -0.02 1.98 -1.83 0.87 1.31

SFM HMDB HMDB 138 0.37 0.00 0.01 1.43 -0.92 1.79 0.73

SFM BE BE 114 0.38 0.00 0.00 1.54 -1.24 1.70 0.81

SFM BE HMDB 743 0.37 0.01 0.00 1.62 -1.10 1.99 0.74

SFM HMDB BE 576 0.35 0.02 0.00 1.71 -1.31 1.89 0.75

The scatter plots of the actual
::::
data

:::::
points

::
of

::::
the

::::::::
measured

:
vs. the landslide thickness predicted by the three ML models

:::::::::::
ML-predicted

::::::::
landslide

::::::::
thickness are located closer around

::
to the identity line when compared to the other three

::::
three

::::::
simple375

models (cf. Fig. 6). However, all three models showed a tendency to slightly overestimate lower landslide thicknesses and

distinctly underestimate higher thicknesses. The Simple-S model tended to overestimate the landslide thickness clearly across

the entire range. The Simple-Z model showed a similar trend
:::::::
tendency

:
but with a higher variance. The SFM model also

exhibited a high variance but with accurate predictions
:::::::::
predictions

::::::
closer

::
to

:::
the

:::::::
identity

:::
line. In particular, the added points

with 0 m landslide thickness showed high variances in all three of the existing
:::::
simple

:
models.380
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The distribution of the residuals per slope class (Fig. 7) was similar for most slope classes where training and validation data

stem from the same dataset. Mainly the classes higher than
::::
Some

::::::
classes

::::
like

:::
e.g.

:::
the

:
40° show larger interquartile intervals

and higher mean values. The existing
::::
class

:::
of

:::
the

:::::::
HMDB

::::::
dataset

:::::
show

:::::
higher

::::::::
variance.

::::
The

::::::
simple

:
models generally also

had higher variances than the ML models. Looking at the cross-application of the models (Fig. A1 in Appendix A1), there

were evidently more outliers and higher variances across all slope classes. In particular, the 5
::
15° class of the KtBE-trained385

::::::::::::
HMDB-trained

:
models applied to the HMDB

::::
KtBE

:
data consistently showed high variances.
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Figure 6. Scatter plots showing the actual
:::::::
measured

:
vs. the predicted landslide thickness differentiated by model type (rows) and dataset

(columns): (a) model trained and tested with HMDB dataset, (b) model trained and tested with KtBE dataset, (c) model trained with HMDB

and tested with KtBE dataset, and (d) model trained with KtBE and tested with HMDB dataset. The diagrams have 2D kernel density contours

in the background as well as the identity line in red. Where present, the blue text denotes the number of outliers outside the display range of

the plots. 23



Figure 7. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for the best three

models differentiated by model type (rows) and dataset (columns, see caption Fig. 6 for details). The red dots represent the mean value while

the blue numbers show the number of entries per slope class. Individual, cross-shaped points are shown for classes with less than 5 data

points.
:::
For

::::::::
readability,

:::::
those

:::
that

::::::
occurred

:::::
above

:::
the

:::
55°

::::
slope

::::::
gradient

::::
class

:::
are

:::
not

:::::::
displayed

::::
here.

Although the
::::
The analysis of the variable importance of the ML models showed clear differences between the models

:
.

:::::::
However, the variables elevation, terrain roughness index at 10 m cell size, mean density of the local lithology, negative

openness, and multiresolution valley bottom flatness are found more often among the top-ranked ones (compare Fig.B1 in

supplementary materials). The hyper-parameter tuning resulted in a reduction of the MAE of up to 2 cm for certain models.390

The chosen parameters were the same across most of the datasets.

6 Discussion

6.1 Landslide inventories

The slope values recorded in the HMDB and KtBE landslide inventories
:::
(cf.

::::
Fig.

::
4)

:
largely match the ranges found in the

literature, with reported values from 5° to 35° (Guzzetti et al., 2008a), from 20° to 35° (Meier et al., 2020), from 22° to395
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40° (Dahl et al., 2010), and from 19° to 50° (with predominant values from 25° to 45° ) (Rickli and Graf, 2009)(cf. Fig. 4).

:::::::::::::::::::
(Rickli and Graf, 2009).

:

Larsen et al. (2010) compared data on landslide thickness from several landslide inventories (including global inventories and

inventories of different locations in California, the Oregon Coast Range, and New Zealand),
::::::
located

:::::
across

:::
the

::::::
globe, some of

which showed peaks around 0.5 m, 1 m, and 2 m similar to the ones observed in the HMDB and KtBE inventories. Particularly400

in the KtBE dataset, the observed peaks are a possible bias of the expert estimations. For the KtBE dataset, the errors in the

landslide thickness were estimated to
::
be 25% to 50% (Hählen, 2023). In general, the data quality of the inventory data is crucial

for its suitability for ML. A contrasting example is the Swiss national register of natural hazard events ("StorMe") that
:::::
which

is maintained by the Federal Office for Environment (FOEN) and the cantons (Burren and Eyer, 2000). The distribution of the

landslide depth of a selection of 2988 shallow landslides recorded in StorMe in (Fig. 8
:
) shows similar peaks but in a much405

more pronounced manner. We also attribute these peaks and the gaps in between to rough estimates by many different experts

performing the recording of event characteristics in the field. We tested the StorMe data for possible use in this study. However,

the anomalies in the landslide thickness distribution together with other data quality issues like missing or unrealistic values

led to the exclusion of the dataset. This illustrates that initiatives like the HMDB and the acquisition of more high-quality data

play a key role for
::
in obtaining the input data necessary for future ML-based modelling.410

Figure 8. Histogram showing the distribution of the landslide thickness recorded for 2988 shallow landslides in the Swiss national register

of natural hazard events (StorMe).

6.2 Model performance

The ML models
::::::
Among

:::
the

:::::
three

:::
ML

:::::::
models

::::::
tested,

:::
our

:::::
study

:::::::
focused

::
on

:::
RF

:::::::
because

:::
of

::
its

::::::::
potential.

::::
The

::::
LM

:::
and

::::::
GAM

::::::
models

::::::
served

::
as

::::::::
reference

:::::::
models

::::
with

::::::::
different

:::::::::
properties.

:::
RF

:::::::
models

::::
can

::::::
flexibly

:::::::
capture

:::::::::
non-linear

:::::::::::
relationships

::::
and

:::::::::
interactions

::::::::
between

::::::::
variables

:::
and

:::::::::
covariates

:::::::::::::::::::::::::::::
(Breiman, 2001; James et al., 2021)

:
.
::::::::
However,

:::::
their

:::::::
complex

::::::
model

::::::::
structure

:::
and

::::::::
ensemble

::::::
nature

::::::
hinder

:::::
model

::::::::::::
explainability

:::
and

:::::
result

::::::::::::
interpretation

:::::::::::::::::::::::::::::
(Breiman, 2001; James et al., 2021)

:
.
:::
LM

:::::
have

:::
the415

::::::::
advantage

::
of

:
a
::::::::::
transparent

:::::
model

:::::::
structure

::::
that

:
is
::::::
simple

::
to

:::::::::
implement

:::
but

:::
can

:::
not

::::::
capture

:::::::::
non-linear

:::::::::::
relationships

::::::::::::::::
(James et al., 2021)

:
.
:::::
GAM

:::
are

::
an

::::::::
extension

::
of

::::
LM

:::
that

::::::
allows

::
to

::::::
model

::::::::
non-linear

:::::::::::
relationships

:::
by

:::::
fitting

:::::::::
smoothing

::::::::
functions

::
to

:::
the

::::::::::
explanatory
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:::::::
variables

:::::::::::::::::::::::::::::::::::::::
(Hastie and Tibshirani, 1990; James et al., 2021)

:
.
::::::::
However,

::::
they

:::
are

::::
more

::::::::::
susceptible

::
to

:::::::::
overfitting

:::::::::::
(Wood, 2011)

:
.
::
In

:::::::
addition,

::::::::::
interactions

::::
must

::
be

::::::::
explicitly

::::::::
specified

::
for

::::
LM

:::
and

::::::
GAM,

::::
since

::::
they

:::
are

:::
not

:::::::
captured

:::::::::::
automatically

::::::::::::::::
(James et al., 2021)

:
.
:::
The

::::::
results

::::
from

:::
the

:::::
model

:::::
tests

:::::
reflect

:::::
some

::
of

:::
the

:::::::
different

:::::
model

:::::::::
properties

::::
and,

::::::
overall,

:::::::::
confirmed

:::
the

:::::::
potential

::
of

:::
the

::::
ML420

::::::
models

:::
for

::::::::
predicting

:::
the

::::::::
potential

:::::
failure

::::::::
thickness

::
of
:::::::
shallow

:::::::::
landslides.

:

:::
The

::::
ML

::::::
models

:
clearly outperformed the two existing simple models based on elevation and slope gradient proposed by

Saulnier et al. (1997). However, it has to be noted that those models were originally intended to be used in smaller areas like

single catchments with more uniform terrain, whereas our application covers a much larger area in Switzerland with more

diverse terrain conditions. Although the SFM model proposed by van Zadelhoff et al. (2022) , which was calibrated with the425

values from the inventories , produced better results, the RF model still yielded MAE values that were 20% to 44% lower. While

the ML models exhibited low errors, they all tended to underestimate higher landslide thickness values. We attribute this to the

low number of records with a landslide thickness of more than one meter in the datasets used for model training. The cross-

application of the ML models showed that they are mostly transferable between the HMDB and KtBE datasets. One limiting

factor might be the spatial and temporal hierarchy in the HMDB data resulting from the fact that most of the data were recorded430

in perimeters after defined heavy rainfall events. However, tests showed no significant signs of spatial autocorrelation in the

model predictions. Another limiting factor may be the missing events in forests or in intensively cultivated areas not recorded

in the KtBE inventory. Nevertheless, there appears to be enough similarity in the distributions of the landslide thickness over

the slope classes and the covariates in both datasets to conclude that the models are transferable. This is supported by an

additional test with a cross-application of the HMDB-trained model to the StorMe dataset, which showed a clear decline in435

performance. We attribute this mainly to the distinctly different distribution of the landslide thickness in the StorMe inventory

with the dominant peaks at 0.5 m, 1 m, and 2 m. This indicates a limited generalizability of the trained models, albeit
:::::::
although

this may also be due to differences in data quality.

Although comparability is limited , due to differences in the study area extents and the target variable (soil depth instead of

landslide thickness )
::
use

::
of

::::
soil

:::::
depth

::::::::
landslide

::::::::
thickness

::::::
instead

::
of

::::
soil

:::::
depth

::
as

:::
the

:::::
target

:::::::
variable, our results show similar440

trends
:::::::::
tendencies as comparable studies. Catani et al. (2010) applied two existing

:::::
simple models based on elevation and slope

proposed by Saulnier et al. (1997) along with the geomorphology-based GIST model in the Terzona catchment (24 km2) in

Italy. The Simple-Z and Simple-S models performed worst with MAE values of 0.94 m and 0.54 m, while the GIST model

had an MAE of 0.11 m. Subsequently, Segoni et al. (2012) applied the same models in the Armea catchment (37 km2) in

Italywhere the .
::::
The Simple-Z and Simple-S models again performed worse with MAE values of 0.78 m and 1.03 m compared445

to an MAE of 0.23 m for the GIST model; an .
:::
An

:
additional model linking the soil depth to the slope using an exponential

function showed an MAE of 0.45 m but tended to give unrealistically low prediction values. Xiao et al. (2023) applied the

GIST model and the random forests-based GIST-RF model to generate soil depth maps in a section along the Yangtze River in

Wanzhou County (27 km2), where soil depth ranges from 0 m to 40 m. The MAE values of 10.6 m for the GIST showed that

the original model cannot deal with the complex geological settings and high variability in soil depth at the study site. However,450

the GIST-RF model showed an MAE of 3.52 m, demonstrating the potential for improvement through ML techniques. (Gupta

et al., 2024) applied GIST, GIST-MCS and GIST-RF models in a study assessing soil thickness along three important roads
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(673 km2) in the Joshimath region (Indian Himalaya). The GIST, GIST-MCS, and GIST-RF models showed MAE of 3.94 m,

2.86 m, and 1.64 m, this
:::
thus

:
further confirming the potential of GIST-RF.

The results of the ML models are promising. The RF model showed the overall best performance with the best fit and without455

any undesired outliers. The performance of the GAM models and LM models was comparable, while they had an overall worse

fit and showed undesired outliers (especially negative ones). The partial effect plots for the GAM models showed that the

degree of smoothing is low or close to zero for most terms. This is, at least in part, a result of the automatic estimation of the

smoothing functions performed by caret
::::
caret, which does not allow any manual intervention. We expect that the GAM models

could be improved by manually building a model with individualised terms and smoothing functions. Overall, additional tests460

and optimisation may be advisable. In particular, we would expect the inclusion of additional records with a landslide thickness

between 1 m and 2 m to improve the model performance. The hyper-parameter tuning only yielded improvements that , overall,

did not exceed a reduction of the MAE by 1 cm. However, the difference of up to 2 cm between some of the hyper-parameter

combinations for the RF models shows that hyper-parameter tuning is generally worthwhile. The results of the hyper-parameter

tuning for the RF models also showed trends
::::::::
tendencies that are mostly in line with the findings reported by Probst et al. (2019).465

Additional model variants with and without additional points with 0 m landslide thickness in rock signature have been explored.

However, while the addition of the points did increase the overall MAE of the ML models by about 1 cm to 5 cm, most of

the R2
:::::
values

:
clearly improved. At the same time, the points with 0 m landslide thickness also influenced the mean of the

predicted values. For the ML models as well as the SFM model there was a decrease of 2.4 cm to 6.4 cm of the overall mean of

the predicted values. For the Simple-S and Simple-Z models the mean of the predicted values increased by 13.1 cm to 21.6 cm.470

Due to this influence and given the large variance of the predictions for the 0 m thickness points, it is still not clear to us whether

the addition of the points is recommendable. The scheme used for random sampling in space could potentially introduce a bias

and class overlap (i.e. overlap between conditions associated with occurrences of events and pseudo-absences), which may be

mitigated by adopting a uniform sampling approach (Da Re et al., 2023).

6.3 Covariate selection475

The selected covariates in the ML models mostly describe the terrain and its geomorphology. This shows parallels to models

aiming to predict soil depth in general based on geomorphology (Catani et al., 2010; Xiao et al., 2023). The elevation, slope,

TWI, curvature, and aspect included in our covariates were also identified as important causal factors of shallow landslides in

grassland regions of Switzerland by Zweifel et al. (2021). In addition, the inclusion of covariates on the vegetation and under-

ground are worth mentioning. The influence of the vegetation (especially the forest) was realised by including the maximum of480

the VHM, which .
::::
This

:::::::
variable

:
consistently showed higher importance for the models trained with the HMDB data compared

to the KtBE-trained models. This may be due to the low number of landslides within the forest present in the KtBE data. While

the high importance of the maximum of the VHM hints at a significant influence of the forest, the NFI forest type raster with

the proportion of coniferous trees was not included in the final modelsince it showed .
::::
The

::::::
reason

:::
was

:::
the

:
very low or even

negative importance values . This suggests
:::::::::
suggesting a lack of relationship with the target variable, which could be a result485

of the distribution of the landslides inside the forest. The geological substratum was included by the mean local density of
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the underlying bedrock serving as a proxy of the lithology. While the importance of lithology varied significantly between the

different model types and dataset combinations, it was high enough to warrant inclusion in the model. The covariates on soil

properties were ultimately not included in the final model. On the one hand, the importance of the clay, sand, and silt content at

the different depths varied considerably from negative importance to moderately important depending on the dataset. We tested490

several covariate selections including different combinations of reasonably important soil property variables and the mean

bedrock density. While some of these combinations showed an MAE close to or even slightly better than the final selection,

they also showed lower R2 values. In addition, adding up to 9 different variables would have increased the model complexity

considerably. Together with the uncertainties connected with the soil property data, this led to the decision not to include any

soil property covariates in the final model.495

A variant of the ML models with
::::::::
including the rainfall amount for a duration of 60 minutes for an extreme point precipitation

event with a 10-year return period included as an additional variable was also explored. The results, however, were almost

identical to the model without this additional variable. We speculated a priori that this variable might be related to soil thickness

due to an erosion effect, but this is apparently not the case or not detectable. Aiming for a model with less complexity, we finally

opted to exclude this variable.500

6.4 Uncertainty

Although the performance of the model is promising, it is subject to uncertainties. While there are methods ,
::::::

which
:::
are

::
a

::::::::
challenge

::
in

::::::
natural

::::::
hazard

:::::::::
modelling

:::
and

::::::::::
prediction.

::::::::::
Uncertainty

:::::::::::
quantification

::
is
:::::::

critical
:::
for

:::::::::
improving

:::
the

::::::::
reliability

::::
and

::::::::::::
interpretability

::
of

:::::::::
predictive

:::::::
models,

:::::::::
particularly

:::
in

::::::::::
applications

:::
that

:::::::
inform

:::
risk

:::::::::::
management

:::
and

::::::::::
mitigation.

:::::
While

:::::::
various

:::::::
methods

::::
exist

:
for quantifying uncertaintyonce a model is established ,

:
,
::::
they

:::::
differ

::::::::::
significantly

::::::
across

:::::::::
disciplines

:::
and

::::::
model505

:::::
types,

::::
with

::
no

:::::::::
universally

:::::::::
applicable

:::::::
solutions

:::
for

:::::::
machine

:::::::
learning

::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::
(Beven, 2018; Jalaian et al., 2019; Simmonds et al., 2022)

:
.
::::::
Unlike

:::::::
classical

::::::::
statistical

:::::::
models

::::
such

::
as

:::::
linear

::::::::::
regression,

:::::
which

:::::
offer

:::::::::
established

:::::::::
confidence

:::::::
interval

::::::::
formulas,

::::::::
machine

:::::::
learning

:::::::::
approaches

::::
often

::::
lack

:::::::::
analogous

::::
tools,

:::::::
creating

:::::::::
additional

::::::::
challenges

:::
for

:::::::::
systematic

:::::::::
uncertainty

:::::::::
evaluation

:::::::::::::::::
(Jalaian et al., 2019)

:
.
::
In

:::
this

:::::
study,

:
we did not apply such methods. Most of the uncertainties stem from the reference data and covariates used to

train and test the model. Together, the input uncertainties propagate into the model and influence the uncertainty and error of510

the prediction results. Input data for the covariates like e. g. the LiDAR-based DEM or VHM may contain measurement errors.

:::::::::
uncertainty

::::::::::::
quantification

:::
due

:::
to

:::
the

::::::::::::
heterogeneous

::::::
nature

::
of

:::
the

::::::
tested

::::::
models

::::
and

:::
the

:::::::
inherent

:::::::::
difficulties

:::
in

::::::::::
quantifying

::::::::::
uncertainties

::
in
:::::

both
::::::::
reference

:::
and

::::::::
covariate

:::::
data.

:::::
These

::::
data

:::::::::
constitute

:
a
:::::::::

significant
::::::

source
:::

of
::::::::::
uncertainty,

::
as

:::::::::::
inaccuracies

::
in

:::::
inputs

:::::::::
propagate

:::::::
through

:::
the

:::::::
models,

:::::::::
ultimately

::::::::::
influencing

:::::::::
predictions

::::::::::::::::::::
(Simmonds et al., 2022)

:
.
::::::::::
Addressing

:::::
these

::::
data

::::::::::
uncertainties

::
is

::::::
crucial

:::
for

:::::::::
enhancing

:::
the

:::::::::
robustness

::
of

:::::::::
ML-based

::::::
models

::::
and

::::::
should

::
be

:::::::::
prioritized

::
in

:::::
future

::::::::
research

::::::
similar515

::
to

:::
the

:::::
work

::
of

::::::::::::::::::
Meinshausen (2006)

:
or

:::::::::::::::::
(Wager et al., 2014)

::::::::
providing

:::::::::
confidence

:::::::
intervals

:::
for

::::
RF.

:::
The

:::::
main

::::::::::
uncertainties

::
in

:::
the

::::::::
covariate

:::
data

:::
lie

::
in

:::
the

:::
soil,

:::::::::
geological

::::::::::
substratum,

:::
and

:::::
forest

::::
type

:::::::
datasets.

:
For the soil and the

geological substratum, which (for the most part) cannot be measured directly, the data are subject to uncertainty
::::::
making

::::
data

::::::
subject

::
to

::::::::::
uncertainties

:
based on model assumptions and mapping precision. Similar to the model in our study, the values in the

tested soil property maps were predicted using a Quantile Regression Forest
:::::::::::::::::
(Meinshausen, 2006) based on sparse field mea-520
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surements and a large number of covariates derived from remote sensing
::::::::::::::::
(Stumpf et al., 2024). The resulting predictions are al-

ready subject to a considerable degree of uncertainty, especially due to the 30 m cell size and the high local heterogeneity in soil

properties. Likewise, we expect a degree of uncertainty in the forest type data, which are also modelled based on remote sensing

data using Random Forest as well as neuronal networks. In the geological data, uncertainties stemming from different survey-

ors and methodologies cannot be ruled out, as demonstrated .
:::::

This
::
is

:::::::::
exemplified

:
by the discontinuities in the data stemming525

from different map sheets in the original data on bedrock and unconsolidated deposits from the GeoCover dataset (Swisstopo,

2023c) used in preliminary tests.
::::
The

:::
bulk

:::::::
density

::::::
dataset

::
of

::::
local

::::::::
lithology

::::::::
explicitly

:::::::
attempts

::
to

::::::::
explicitly

:::::::
quantify

:::::::::
variability

:::
and

::::::::::
uncertainty

::
by

:::::::::
including

::::::::
percentile

::::::
values

:::
of

:::
the

:::::::
density

::::::::::
distributions

:::::::::::::::::::::::::::::::::::::::
(Swisstopo, 2020; Zappone and Kissling, 2021)

:
.

:::::
While

:::
this

::::::::
approach

::::::::
enhances

:::::::::::
transparency,

:::
the

:::::::::
uncertainty

::::
still

::::::
reflects

::::::
natural

:::::::::
variability

:::::
within

:::::::::
lithologies,

::::::
errors

::
in

:::::::
physical

:::::::
property

::::::::::::
measurements,

::::
and

::::::
sparse

::::::::
sampling

::::::::
coverage

::::::::::::::::::::::::
(Zappone and Kissling, 2021)

:
.
::::::
Forest

::::
type

::::
data,

::::::::
modelled

::::::
using

:::
RF530

:::
and

:::::
neural

::::::::
networks

:::::
using

::::::
remote

:::::::
sensing

:::
data

:::::::::::::::::
(Waser et al., 2017),

:::
are

::::::::
similarly

::::::
subject

::
to

::::::::::
uncertainty.

:::::::::
Significant

:::::::::
deviations

::::
from

:::
the

:::::::
national

:::::
forest

::::::::
inventory,

::::::::::
particularly

::
in

:::
the

:::::::::::::
underestimation

:::
of

::::::::::
broadleaved

:::::
trees,

:::::::
highlight

:::
the

:::::::::
limitations

:::
of

::::::
current

::::::::::::::::::::::
methods(Waser et al., 2017)

:
.
::::
The

::::::
authors

::::::::
primarily

::::::::
attributed

:::::
these

::::::::
deviations

::
to
::::::

errors
::
in

:::
the

::::
input

::::::
image

::::
data

:::::
rather

::::
than

:::
the

::::::::::
classification

::::::::
approach

:::::
itself

::::::::::::::::
(Waser et al., 2017).

:

Uncertainties in the field inventory data used to train the models also influenced the
:::::::
accuracy

:::
of model predictions. This535

includes positional
::::::::
Positional

:
errors in the failure point (

:::::
points,

:
e.g. due to imprecise GPS measurements), affecting the

sampling of the covariates. This is partially offset
:
,
:::
can

:::::
result

::
in

:::::::::
inaccurate

::::::::
sampling

::
of

:::::::::
covariates,

::::::::
reducing

:::::
model

:::::::::
reliability.

::::
This

::::
issue

::
is
:::::::
partially

:::::::::
mitigated by the averaging effects of the larger cell sizes and windowed calculations used for the co-

variate rasters. The error introduced by imprecise estimations of landslide thickness can render data unusable for ML (e. g.

in the case
::::::::::
Additionally,

::::::
errors

::
in

:::::::::
estimating

:::::::
landslide

::::::::
thickness

:::::::
present

:
a
:::::::::
challenge,

::
as

:::::
these

::::::::::
inaccuracies

:::
can

::::::
render

:::::::
datasets540

::::::::
unsuitable

:::
for

::::
ML

:::::::::::
applications.

:::
For

::::::::
example,

:::
the

::::::::::
limitations of the StorMe data). However, the data may still be usable if

a greater uncertainty in the prediction results can be accepted (e. g. in the case of the KtBE data).
:::::
dataset

::::
due

::
to

:::::::::
unreliable

:::::::
thickness

::::::::
estimates

::::::::
highlight

:::
the

::::::::
necessity

:::
for

::::::::
improved

::::
field

::::
data

::::::::
protocols

::::::
tailored

::
to

::::
ML

:::::::::::
requirements.

:

The uncertainty of the model results also depends on
:
is
::::
also

::::::
largely

:::::::::
influenced

:::
by

:
the choice of the model typeas well

as the choice of
:::::
model

:::::
type, training data and covariates used for training the models. Depending on the records used for545

training the structure of the RF models or the parameters in the
::::::
during

:::
the

:::::::
training

::::::
process

:::::::::::::::::
(Jalaian et al., 2019)

:
.
::::::::
Different

:::::::::::
combinations

::
of

:::::::
training

::::::
records

::::
and

::::::::
covariates

::::
can

::::
lead

::
to

:::::::::
significant

::::::::
variability

::
in
:::
the

::::::::
structure

:::
and

:::::::
outputs

::
of

:::
the

::::
used

::::
RF,

GAM and LM modelsmay be significantly different. The random factor involved in the .
::::
For

:::::::
instance,

:
cross-validation may

have a similar effect. The selection process has also shown that there are numerous different combinations of covariates with

very similar model performance . While they are often similar, a different combination of covariates and/or cell sizes may550

be better depending on the input dataset, the selected training data, and the selected model type. Therefore, using the same

covariates for all three model types may not be optimal.
::::::::
introduces

::
a
::::::
random

::::::
factor

:::
that

::::
can

:::::
result

::
in

:::::::::
variability,

::::::::::
particularly

::::
when

:::::::
models

:::
are

::::::
trained

::
on

:::::
small

::::::::
datasets.

::::
This

:::::::::
variability

::::::::
highlights

:::
the

:::::
need

:::
for

:::::::::
systematic

::::::::
sensitivity

::::::::
analyses

::
to

:::::::
identify

:::::
robust

::::::::
covariate

:::::::::::
combinations

:::
that

::::::::
optimize

:::::
model

::::::::::::
performance.

::::::::
Moreover,

:::
the

::::::::
selection

::::::
process

::::::::
revealed

::::::::
numerous

::::::::
covariate

:::::::::::
combinations

::::
with

::::::
similar

:::::::::::
performance

:::::::
metrics,

:::::::::
suggesting

:
a
::::::::

potential
:::
for

:::::::::
overfitting

::
or

:::::::::::::
underutilization

:::
of

::::::
critical

::::::::
variables555
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:::::::::::::::::::::
(cf. Merghadi et al., 2020)

:
.
:::::
Given

::::
that

::::::
optimal

::::::::
covariate

::::::::::::
combinations

::::
may

::::
vary

:::::::::
depending

::
on

::::
cell

:::::
sizes,

:::::
input

:::::::
datasets,

::::
and

:::::
model

:::::
types,

:::::
future

:::::::
studies

:::::
should

:::::::
explore

:::::::
adaptive

:::::::
methods

:::
for

::::::::
covariate

:::::::
selection

::::
that

:::
are

::::::
tailored

::
to
:::::::
specific

::::
data

:::
and

::::::
model

:::::::
contexts.

::::
This

::::::
would

::::
align

::::::
model

::::::::::::
configurations

::::
more

::::::
closely

::::
with

:::
the

:::::::
specific

::::::::::::
characteristics

::
of

:::
the

:::::
study

::::
area.

:

7 Conclusions

In this study, we presented an ML-based approach to predict the potential thickness of shallow landslides. The new machine560

learning models consistently performed at least 20% better when comparing the MAE to previously existing
:::::
simple

:
models

based on slope gradient and elevation. We conclude that the selected set of covariates, including metrics on terrain, geomor-

phology, vegetation, and lithology, is a suitable basis for predicting shallow landslide thickness using ML. Considering the

overall performance and the lack of outliers in the predictions, we consider the RF model to be the most accurate approach to

generate improved inputs for slope stability models. For future work, we plan to adapt this study’s RF model, which is built for565

predictions on single sample points, for the generation of rasters covering large extents. Additionally, the model can be further

developed, especially by improving the input dataset with additional field data, by testing variants with additional sample points

and sampling schemes for locations with 0 m landslide thickness, and by further refining the selection of covariates.

Code availability. The code for this study is available on Zenodo (Schaller, 2024)
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Appendix A: Supplementary material570

A1 Detail results

Figure A1. Box plots showing slope classes sampled at 5 m cell size vs. the residuals of the predicted landslide thickness for all models

differentiated by model type (rows) and dataset (columns): (a) model trained and tested with HMDB dataset, (b) model trained and tested

with KtBE dataset, (c) model trained with HMDB and tested with KtBE dataset, and (d) model trained with KtBE and tested with HMDB

dataset. The red dots represent the mean value while the blue numbers show the number of entries per slope class. Individual points are

shown for classes with less than 5 measurements.
32



A1 Variable importance and model tuning

Figure B1 shows the variable importance
:::::::
Variable

:::::::::
importance

:::::
values

:::::
were

:::::::
extracted

:
for the ML-based models . The importance

::::
(Fig.

::::
B1).

:::
The

:
values of the RF and LM were extracted from the overall result of the 10-fold cross validation

:::::::::::::
cross-validation

result. Since no meaningful overall values could be extracted from the GAM fit, the importance values from the best model575

were extracted. The figure shows
:::::
results

::::
show

:
that there are differences in the importance of the individual variables depending

on the dataset and the model. Nevertheless, several variables are more often among the top-ranked variables including the

elevation, the terrain roughness index at 10 m cell size, the mean density of the local lithology, the negative openness, and the

multiresolution valley bottom flatness.

Figure B1. Heatmap showing the overall variable importance extracted from 10-fold cross validation
:::::::::::
cross-validation

:
for the RF and LM

models and the importance of the best fit for the GAM model. The number in the cells and their colour correspond to the importance rank of

the variable within the model, with 21 (green) being the most important and 1 (yellow) being the least important variable. The variables are

sorted by the sum of the ranks of each row.
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