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Abstract. Probabilistic tsunami hazard and risk assessment (PTHA and PTRA) are vital methodologies for computing tsunami
risk and prompt measures to mitigate impacts. However, their application across extensive coastlines, spanning hundreds to
thousands of kilometres, is limited by the computational costs of numerically intensive simulations. These simulations often
require advanced computational resources like high-performance computing (HPC), and may yet necessitate reductions in
resolution, fewer modelled scenarios, or use of simpler approximation schemes. To address these challenges, it is crucial to
develop concepts and algorithms for reducing the number of events simulated and more efficiently approximate the needed
simulation results. The case study presented herein, for a coastal region of Tohoku, Japan, utilises a limited number of tsunami
simulations from submarine earthquakes along the subduction interface to build a wave propagation and inundation database.
These simulation results are fit using a machine learning (ML) based variational encoder-decoder model. The ML model serves
as a surrogate, predicting the tsunami waveform on the coast and the maximum inundation depths onshore at the different test
sites. The performance of the surrogate models was assessed using a five-fold cross-validation assessment across the simulation
events. Further, to understand their real world performance and generalisability, we benchmarked the ML surrogates against
five distinct tsunami source models from the literature for historic events. Our results found the ML surrogate capable of
approximating tsunami hazard on the coast and overland, using limited inputs at deep offshore locations and showcase their
potential in efficient PTHA and PTRA.

1 Introduction

Tsunamis are potentially one of the most devastating natural hazards impacting life, property and the environment. More than
250,000 casualties and USD 280 billion in damage were caused by tsunami worldwide between 1998 and 2017 (Imamura et al.,
2019), with the 2004 Indian Ocean and 2011 Tohoku tsunami events responsible for most of these losses. Tsunami hazard and
risk assessments are fundamental in disaster management, as they facilitate the effective management of coastal regions and
communities at risk of experiencing a tsunami(Mori et al., 2022). The results of tsunami hazard and risk assessment help plan
and prioritise local and regional hazard mitigation efforts like land use and management, the engineering design of protective

structures and buildings, tsunami monitoring and early warning systems, evacuation plans, and emergency response.
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The simulation-based tsunami hazard analysis workflow consists of modelling different processes of the tsunami life cycle
- generation, propagation and inundation (Behrens and Dias, 2015; Marras and Mandli, 2021) as depicted in Fig.1. Each of
these tsunami processes requires forward numerical modelling at different spatial scales, with varying complexity and different
numerical schemes. Many of these steps are computationally demanding and a substantial number of such simulations may be
required in tsunami hazard analysis.

There are two broadly categorised approaches to tsunami hazard and risk assessment (Mori et al., 2018): deterministic
and probabilistic approaches. The deterministic approach aims to study a limited number of large tsunami scenarios, such as
historical events or the possible worst-case events. This approach has been most widely used as it requires fewer events to
simulate and hence less computational effort. With only a single or limited number of tsunami scenarios modelled, we can
estimate a tsunami hazard metric for the given scenarios, such as wave height at an offshore site, or inundation depth, run-up,
etc. at an onshore location of interest for each scenario. Such results are easy to communicate and are useful in conservative
decision-making activities such as evacuation planning. Instead, the probabilistic approach involves modelling a large number
of possible tsunami events typically in the range of thousands(Gibbons et al., 2020) to million(Basili et al., 2021; Davies et al.,
2018) to estimate the exceedance rate of the said tsunami hazard metric at a location or region of interest(Geist and Parsons,
2006; Grezio et al., 2017). This approach is complex and computationally demanding but allows the possibility of exploring
different sources of uncertainty and making risk-informed decisions. When linked with fragility and loss models, probabilistic

estimates of potential damage or loss of life and property are obtainable (Goda and De Risi, 2017).
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Figure 1. The sequence of a tsunami from the deep ocean generation and propagation, shallow coastal-zone shoaling, coastal inundation and
interactions with the built environment, and the methods used to model each part of the sequence. The red dotted lines depict the interface

between the tsunami forward modelling steps where different models can be coupled or linked.
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The large computational burden from the many simulations needed in probabilistic tsunami modelling can limit their ap-
plication, especially for onshore tsunami hazard and risk assessment where modelling of inundation processes is vital (Lorito
et al., 2015; Grezio et al., 2017). Accurately simulating the tsunami wave shoaling process nearshore and the resulting inunda-
tion onshore necessitates the use of a 2D nonlinear shallow water equation (NLSWE) model at resolutions finer than at least
100m on land. For scenarios where modelling turbulent tsunami forces onshore with precision is essential, a 3D Navier—Stokes
Equation (NSE) model proves to be suitable (Marras and Mandli, 2021). Importantly, both the 2D NLSWE and 3D NSE mod-
els come with higher computational costs, exhibiting an exponential factor in comparison to the more computationally efficient
1D linear shallow water equation (LSWE) model commonly employed to model tsunami wave propagation in deeper oceanic
regions. Figure 1 represents the off-to-on-shore tsunami forward modelling flow and the input-output links of the machine
learning(ML) surrogates.

To handle or overcome this computational challenge of scale and the need to model a large number of events, various

methods have been adopted (Behrens et al., 2021):

1. Reduce the number of events to be modelled, using sampling techniques, clustering, and other selection methods (Lorito
et al., 2015; Williamson et al., 2020; Davies et al., 2022)

2. Approximations of results using methods like Green’s Function, amplification factors, and reduced complexity models
(Molinari et al., 2016; Lgvholt et al., 2016; Glimsdal et al., 2019; Gailler et al., 2018; Grzan et al., 2021; Rtébke et al.,
2021)

3. Hardware and computational improvements like a nesting of grid domains, adaptive variable grid resolution, parallelisa-
tion and GPU-based acceleration, coupled multi-scale modelling, exascale codes (LeVeque et al., 2011; Shi et al., 2012;

Qishi et al., 2015; Macias et al., 2017; Marras and Mandli, 2021; Folch et al., 2023)

4. Surrogates using statistical emulators and ML models (Sarri et al., 2012; Salmanidou et al., 2021; Mulia et al., 2018;
Fauzi and Mizutani, 2019; Makinoshima et al., 2021; Fukutani et al., 2023; Mulia et al., 2022)

Running the numerical simulations, especially for modelling the tsunami inundation with an NLSWE model takes a lot of
time and computational resources, for example accounting for about 13,600 GPU hours in the local PTHA study for Catanai by
Gibbons et al. (2020), refer Table 6 for runtimes of this study. Among the different approaches to reducing such computational
and time burden, surrogates can provide an instantaneous approximation to the output of the numerical simulation. Surrogates
are fit (trained) on a set of model inputs and outputs, called training data, to derive a mathematical or statistical relationship
between the inputs and outputs; this provides a fast solution to otherwise time-consuming numerical simulations but may
introduce some acceptable errors. Surrogates such as statistical emulators, can be fitted using a small training dataset built
using a limited number of simulations. The application of such surrogates in tsunami modelling has been used for uncertainty
quantification or sensitivity analysis (Sarri et al., 2012; de Baar and Roberts, 2017; Kotani et al., 2020; Salmanidou et al.,
2021; Giles et al., 2021; Tozato et al., 2022) and hazard assessment (Fukutani et al., 2021, 2023; Lee et al., 2023), which are

generally difficult to conduct in a brute-force approach where one would need to simulate all possible events explicitly or in
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a real-time time setting where running high-fidelity models in limited time is difficult. Another type of surrogate used are the
machine learning models (referred to as ML surrogates herein), which are also trained on the available input-output datasets
using a supervised learning framework. Tsunami ML surrogates in comparison to statistical surrogate models, especially those
based on deep neural networks, utilise a large training dataset to optimise the model parameters using backpropagation. This
may require a much larger number of numerical simulations to create the relevant input-output datasets for training or fitting
such a model. Using such a framework to prediction of a real-time tsunami is feasible and widely proposed for faster than
real-time forecasting and early warning purposes (Mulia et al., 2018; Fauzi and Mizutani, 2019; Liu et al., 2021; Rodriguez
et al., 2022; Kamiya et al., 2022; Mulia et al., 2022; Wang et al., 2023) especially with inputs derived directly from real-time
sensors (Makinoshima et al., 2021; Mulia et al., 2022). See Table 1 for a comparison of different surrogate classes.

Models of varying complexity and resolution, as depicted in Fig.1 are often coupled to accurately simulate the generation
and propagation of tsunamis from the deep ocean to the near shore and inundation onshore (Abrahams et al., 2023; Son et al.,
2011). For probabilistic tsunami modelling with a large number of events, the typical approach is to use outputs of a given
model level as boundary conditions to the next model in forward modelling flow, taking advantage of each model’s varying
complexity, resolution, and computational efficiency. In this study, a hybrid modelling framework is introduced (see Sect. 2).
We suggest using a limited number of full simulations to build or train a tsunami ML surrogate and completing the most
computationally demanding phases of tsunami forward modelling for the remaining events as direct final modelling using
the ML surrogate. Figure 1 compares the different methods used in traditional tsunami forward modelling chains and as an
alternative different connections for the setting up of a surrogate in the form of statistical emulators and ML models.

This framework recognises several key concepts, including reducing the number of events for numerical simulation, modular
multi-scale modelling, and the use of ML-based surrogates for hazard approximation. By combining these ideas, the proposed
framework provides a comprehensive approach to enhance the modelling process and efficiently achieve the final results. Many
of the models and datasets needed in this framework are already available; we discuss how to put them together in a workflow
and build the ML-based surrogate for the final tsunami modelling. Further, we conduct experiments to check the skill and
usability of an ML surrogate for tsunami hazard approximation nearshore and onshore.

The current challenge lies in the need for an extensive size of the training dataset generally required by ML surrogates in
tsunami modelling for training to generate accurate predictions. While they provide instantaneous results, the cost of developing
the training data set for the ML surrogates may outweigh the benefit of instantaneous prediction. When ML models are not
appropriately trained to understand the underlying physics or dynamics of the tsunami and use small training dataset, they may
overfit and struggle to generalise well beyond the training data(out-of-training situations) (Seo, 2024) .

To overcome this dependence on a large training size, our ML surrogate exploits the ability of the encoder-decoder network
in dimensional reduction, feature representation, and sequence-to-sequence transformation for approximating tsunami hazard
nearshore and onshore. We use tsunami data from a small set (about 500) of simple earthquake rupture scenarios which may
provide a sufficient learning basis for the ML surrogate. We describe how a variational encoder-decoder (VED), a type of
neural network model (see Sect.2.2.2), is trained to take the tsunami waveform at points where offshore depth is 100 m as

input and predict the tsunami waveform at nearshore points with depths of 5 m and maximum inundation maps onshore for



Table 1. Comparison of recent work using surrogates for tsunami approximation

Reference Method Simulation Input Parameter Output Parameter
Size (no of
events)
Statistical Surrogate
Salmanidou et al. (2021) GPE 60 Seafloor displacement Max height at coast
Parameters
Tozato et al. (2022) GPE, SVD 50 EQ Source Parameters Onshore max
(slip and rake) inundation depths,
impact force
Fukutani et al. (2022) GPE, SVD 360 EQ Magnitude (M,,), Onshore max
Seawall height inundation depths
Gopinathan et al. (2021) GPE 300 EQ magnitude and Max height, velocity at
location coast
ML Surrogate
Liu et al. (2021) CNN(VAE) 1,300 Short tsunami Long tsunami forecast
observation nearshore
Makinoshima et al. (2021) CNN 10,000 Short tsunami Onshore point
observation inundation time series
Mulia et al. (2022) Dense NN 3,060 Short tsunami Onshore max
observation(max) inundation depths
Rodriguez et al. (2022) Dense NN 16,000 EQ Source Parameter Max wave height,
arrival time at coast
Nuiiez et al. (2022) CNN 6,776 Offshore observation at ~ Onshore point
50m or 100m depth inundation time series
Cesario et al. (2023) Regression Tree 15,408 EQ Source Parameter Max wave height at a
coast
de la Asuncién (2024) Dense NN 128,000 EQ Source Parameter Alert level at coast

GPE: Gaussian Process Emulator

SVD: Singular Value Decomposition

CNN: Convolutional Neural Network

VAE: Variational Autoencoder

CNN: Convolutional Neural Network

Dense NN: Dense Neural Network



three different locations along the coastal Tohoku region in Japan. Thus, skipping the computationally demanding modelling
110 of non-linear processes in the shallow water regions nearshore and the inundation processes onshore for a given tsunami event.
We check the generalisation ability of this model by testing the prediction error for a set of finite-fault rupture events of historic

tsunami scenarios to evaluate the efficacy of this hybrid modelling approach.

2 A framework for approximating tsunami hazard nearshore and onshore at reduced computation cost
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Figure 2. Overall framework for the nearshore and onshore hazard approximation using ML surrogate

Our framework employs a hybrid modelling approach that integrates physics-based numerical simulation and data-driven

115 ML models for tsunami hazard approximation. By combining the strengths of these models, we aim to represent the tsunami

hazard for a coastal site of interest as the time series of the tsunami wave height near or along the shore and the max inundation
depth onshore within a reasonable computational budget.

This section discusses the various components of the proposed framework as seen in Fig.2. The first step is the generation

of synthetic data which is needed to train the ML surrogate model. This requires the full forward modelling of the tsunami

120 generated from simple earthquake sources discussed in the design of events and recording the tsunami water level time series

for such events at different depths, at 100 m depth and 5 m depth near shore, and the maximum inundation depth onshore for

the event using an NLSWE tsunami model.
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The second step is the development of ML models for use as surrogates, whose outputs are the near-shore tsunami height
time series and the onshore maximum inundation depth. In the current study, the framework is applied and tested by comparing
the prediction of the ML surrogate against results from numerical simulation for a portion of the synthetic events as hold-out

testing and historic events for generalisation testing.
2.1 Generation of Synthetic Data

The characteristics of tsunamis in a region are intricately tied to factors such as earthquake sources and their recurrence,
ocean bathymetry, shelf profile, coastal topography, and man-made structures like coastal defence and urban infrastructure.
The rarity of tsunami events and the limited availability of comprehensive observational records across the coastal region make
it impossible to construct a robust dataset for training and testing a ML model using purely historic observations.

Due to this data limitation, we instead attempt to create a diverse dataset for training and testing the ML surrogate to effec-
tively capture the wide spectrum of tsunami dynamics in a region. The idea is to simulate earthquakes of different magnitude,
different locations, with different slip amounts and rupture geometries generating tsunami waves of different amplitude and
wavelengths offshore, causing inundation of varying patterns and extents onshore.

Thus, we model a wide variety of earthquake scenarios discussed in Sect.2.1.2 using a tsunami hydrodynamic model created

for the Tohoku region (Sect.2.1.1) covering three test sites.
2.1.1 Tsunami model and test locations

Three locations with different coastal configurations are identified for this study — Rikuzentakata (enclosed bay), Ishinomaki
(shielded), and Sendai (open bay), — where different coastal processes like shoaling, refraction, reflection, and resonance
are expected to impact the tsunami nearshore results and provide varied settings for testing the proposed methodology of
developing an ML-based surrogate.

For the simulation of the synthetic events, and recording their offshore waveform (water level time series) and onshore flood
inundation depths, a tsunami model based on GeoClaw Version 5.7.1, (Clawpack Development Team, 2020) was developed.
This GeoClaw model covers the Pacific Side of the Honshu island and solves the depth-averaged NLSWE using adaptive
mesh refinement using rectangular grids in the geographic coordinate system (latitude and longitude) for the base Level O at
resolution 0.01215 degrees.

The adaptive mesh refinement ranges from level 1 of resolution 0.006075 degrees for the overall model domain, Level 2
of resolution 0.00405 degrees at bathymetric depths around 100 m to 850 m and level 3 of resolution 0.00135 degrees for
bathymetric depths less than 100 m as in Fig.3a. An additional refinement is enforced for the three test sites resulting in the
finest grids of 0.00045 degrees roughly equivalent to 50 m in resolution for capturing the inundation onshore as seen in Fig.3b.

The model uses topographic data from the Japan cabinet project available in 1350-450-150-50m resolution, the final 50 m
resolution grids of this dataset were superimposed with COP-DEM, a Digital Surface Model (DSM) representing the elevation

of the Earth’s surface including buildings, infrastructure and vegetation with native resolution of 30 m, and a coastal tsunami



155 defence elevation dataset also available from the cabinet project for representing the onshore elevation more realistically for
the tsunami inundation modelling.

The virtual gauges are set at depths of 5 m and 100 m as shown in Fig.3b to record the elevation of water level at regular time
intervals and fixed grid monitoring is used to record the maxima of the inundation depths from each event for the three coastal
regions for each tsunami simulation. Each tsunami simulation is run for a 6-hour duration from the onset of the tsunami. Tides

160 and wave components are ignored and the initial water level condition is set at zero mean sea level to consider a still ocean
condition.

The model was tested and calibrated using the 2011 Tohoku historical event’s gauge and inundation survey data, see results

available in Supplements Fig.S1 and Fig.S2.
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Figure 3. (A)Tsunami model coverage and adaptive grid resolution system (B)Virtual Gauges and inundation sites.
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2.1.2 Design of experiments(DOE)

The design of the experiment consists of a total of 559 hypothetical events of two categories of rupture, distinguished by their
geometry and slip distribution: (a) Type A - ruptures represented by a single rectangular planar surface with homogeneous slip
and (b) Type B - ruptures that combine numerous smaller rectangular planar surfaces (i.e., sub-ruptures), each of which has
homogeneous slip, such that the rupture surface can bend and the slip distribution can be heterogeneous. The number of events
in the DOE is constrained by available computational resources and our goal to use a feasible number of training events and
maximise the efficiency of the surrogate model. The source scenarios are modelled by adapting procedures previously applied
by Gusman et al. (2014) and Mulia et al. (2018).

A total of 119 locations were selected as the top centre of the faults for modelling hypothetical tsunamigenic earthquakes
of Type A. These events span M, 7.5 - 9.0 at an interval of 0.5 and are uniformly distributed over the Tohoku subduction
interface, see Figs. 4a and 4b. This results in a potential 476 events (119 locations x 4 magnitudes). The M,, 9.0 events are
restricted to locations where the centre of the rupture’s top edge is shallower than 16 km. Deeper events cause unrealistic uplift
on large inland portions of the study region and are unlikely to cause tsunami. To ensure realistic modelling and prohibit these
events from adversely affecting the quality of the surrogate training, these events were excluded, leaving 383 Type A events.

Multi-fault ruptures of Type B were created using a combination of 6 to 12 planar sub-faults similar to the unit sources used
in NOAA SIFT database (Gica et al., 2008) of length 100 km and width 50 km are created as in Fig.4c. The event magnitudes
range M,, 8.68 - 9.08, and the ruptures are distributed along the shallow section of the Tohoku subduction interface. The
bottom centre of the rupture edges are at depths between 17-28 km. The slip distributions are modelled as a skewed normal
distribution where the average combined slip value is between 10 and 20 m. The scenarios varied by the number of faults
involved: scenarios with 6 faults were assigned a slip of 10 m, scenarios with 8 faults had slips of 10 and 15 m, 10 faults with
15 m, and 12 faults with slips of 15 and 20 m. This systematic variation led to a total of 176 different Type B earthquake
scenarios.

Information on depth, slip, strike, and dip (see Table 2) is derived from the Slab2 model of the Japan trench (Hayes et al.,
2018), and the rake is always set at 90 degrees (Aki and Richards, 2002). The seafloor deformation is analytically modelled
assuming homogeneous slip for the rupture or sub-ruptures using Okada solution (Okada, 1985) with the value of rupture
length, width, and slip scaled (see Table 2) based on the magnitude of the event (Strasser et al., 2010). We consider that the
co-seismic displacement is instantaneous and equivalent to the sea surface displacement generating the tsunami. This initial
sea surface displacement is modelled to match the base resolution of the tsunami model at 0.01215 degrees grids.

In summary, the DOE for training the surrogate model considered two main factors: (A) moment magnitude, which deter-
mines the profile of displacement (length, width, and slip amount) based on the moment magnitude-area scaling relationship
(Strasser et al., 2010), and (B) the location of the events where fault parameters such as depth, dip, rake, and strike are derived

from the Slab2 dataset.



Table 2. Earthquake rupture parameters for Type A and Type B, the rake value is always 90 degrees.

Type M,, Length (km) Width (km) Displ.(m) Depth (km) Dip (degrees) Strike (degrees)
Type AMin 7.5 81.37 56.29 0.24 10.2 5.54 187.20
Type A Max 9 613.76 189.23 3.30 45.7 17 225.78
Type B Min  8.68 300 100 4.72 17.01 8.37 188.72
Type B Max 9.08 600 100 17.36 28.98 16.53 222.27
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Figure 4. Example initial displacement for the two rupture types used in the design of experiment for the tsunami dataset.

2.1.3 Test Events

Along with using a random subset of the events from the design of experiments, we additionally model a set of 5 events

to evaluate the performance of the ML model. This is to test the model over a generalised dataset which is different from the

training dataset used in building the model. The numerically simulated tsunami are known to be sensitive to the earthquake slip,

200

fault geometry, rupture mechanisms, and the discretisation used (Gibbons et al., 2022; Goda et al., 2014) and their resulting

wave profile, direction, and inundation may vary significantly. Although there is significant variation in the characteristics of

the different tsunami events generated in the design of experiments to train and test the ML surrogate, we add these additional

historic test events with complex heterogeneous slip, events with instantaneous and time dependent slip displacement and

events located beyond the Tohoku source region used for training, as seen in Fig.3. These include the following events described

205 below.

10
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1. 2011 Tohoku Earthquake:

— Test A(instantaneous displacement) using Fujii et al. (2011)

— Test E(time-dependent displacement) using Yamazaki et al. (2018)
2. 1933 Sanriku Earthquake:

— Test B(outer rise event with normal faulting) using Okal et al. (2016)
3. 1896 Sanriku Earthquake:

— Test C(outside Tohoku source region considered in DOE) using Satake et al. (2017)
4. 1968 Tokachi-Oki Earthquake:

— Test D(outside Tohoku source region considered in DOE) using Riko et al. (2001)
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Figure 5. Initial sea surface displacement for the 5 test events

2.2 Machine Learning Model

Previous works (Fauzi and Mizutani, 2019; Liu et al., 2021; Makinoshima et al., 2021; Nufiez et al., 2022; Mulia et al., 2022;
Rim et al., 2022) that focused on using ML models for use in tsunami forecasting and early warning needs have also used neural
networks in the form of CNN and MLP models. These models are usually trained to take short duration (20 - 30 min) inputs
from sensors like offshore ocean bottom pressure sensors and geodetic sensors (GNSS) for their tsunami hazard prediction.
This is due to the constraints of a short lead time in the event of a tsunami. Furthermore, the tsunami observation network
is designed with a given earthquake source region in focus, leading to the design and training of the ML model which is
constrained to a very specific regional and source setting.

In contrast, we discuss two ML surrogate models in this work with the main difference being the output of the model: either
a time series of the water surface elevation or the maximum inundation depth across a set of onshore locations. The design of

the ML model or surrogate for the current framework focuses on:

11
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1. The model architecture, that should be able to train and fit with a relatively small number of events such that it can serve

the purpose of solving the computational constraint for its use as a surrogate model.

2. The model has a balanced performance, it can predict the hazard sufficiently well for small and large-magnitude events

across the domain of interest.

3. The model training is not sensitive to training datasets, that is, it should not overfit the data and should be capable of

predicting results for different ruptures as long as the offshore water level amplitude is available.

4. The model design should be able to connect easily with available outputs from other regional propagation models and

be easily replicated across different coastal configurations.
2.2.1 Data preparation

The ML model in this study uses two types of datasets from the tsunami simulations: (a) tsunami waveforms - water level
time series and (b) maximum inundation depth map. Figure 6 provides a summary of the dataset for the three test locations -

inundation depths, area and maximum amplitude at the virtual gauges.
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Figure 6. Box plot showing variability in the offshore and nearshore gauges and the inundation properties for the three test sites

For each of the events, we process the simulated water level time series at the virtual gauges and the maximum inundation
map in the following steps. All events where the tsunami water level does not cross a set threshold of 0.1 m at the selected deep
offshore virtual gauges of 100 m depth and 0.5 m at the shallow nearshore virtual gauge of 5 m depth are ignored as they result
in negligible tsunami inundation.

At the instance of a time when this threshold is crossed at the shallow gauge, a simulation time window of 240 minutes is
selected to calculate a uniformly sampled wave amplitude time series with 1024 data points. As many of these local source
events cause significant local deformation to the bathymetry , which is captured in the and water level time series. This offset
is removed from the time series data at both nearshore and offshore virtual gauges (e.g. Fig.7) as a preprocessing step for

reducing the complexity in the dataset which can help in training the model.
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In the case of the maximum inundation maps, all grid points that are flooded across the entire simulation dataset of all the
modelled events are selected as a fixed set of locations, and the maximum inundation for each event at each such location is
stored as a 1D array. This yields 6648 grid points for the Rikuzentaka area, 54671 grid points for the Ishinomaki area, and
129941 points for the Sendai area.

2.2.2 Variational Encoder-Decoder(VED) - Model architecture and training approach

Our design of the "VED" architecture extends upon existing statistical and ML models used for tsunami forecasting and rapid
modelling. Mulia et al. (2018) used the feature space from the principal component analysis (PCA) as a form of dimensional
reduction to search the closest inundation map from a large simulation database against results from a quick low-resolution
simulation and interpolate new high-resolution results using these samples. ML based models that are trained on tsunami
simulation databases, in particular convolutional neural networks (CNN), have also been used to predict the full-time series of
the water level elevation using sparse observational inputs (Liu et al., 2021; Makinoshima et al., 2021; Nufiez et al., 2022). In
the case of prediction for maximum inundation depth maps, a fully connected or dense layers have been used to efficiently map
the output across the large set of locations as in Fauzi and Mizutani (2019); Mulia et al. (2020, 2022).

The deep neural network models used in the above work for tsunami predictions typically need a large number of training
examples to learn a useful representation and avoid overfitting the parameters of their different layers. Certain model archi-
tectures and training schemes can help them become more learning efficient, generalise better, and provide higher prediction
performance. One such approach is encoding-decoding, a class of supervised ML aimed at training a neural network to learn a
lower-dimensional representation of the input that can be used to construct the output. It consists of three parts: encoder, latent

variables, and decoder.

y:g(wgabgaz) @)

The encoder function f(.) with its learnable parameters, weights wy and biases by maps the input data z to a reduced
number of latent variables z and a decoder function g(.) with its learnable parameters, weights w, and biases b, maps the
latent variables z back to the high dimensional data space as the construction of the output y see Eq.1 and 2. The encoder
- decoder(ED) is trained to minimise the reconstruction error between the input data and the output of the decoder network
using back propagation optimisation. Similar to Liu et al. (2021) we use convolutional layers and variational encoding; see
Fig.9. The encoding convolutional layers and max pool operations of the encoders perform dimensionality reduction on the
time series data at the input gauges similar to a principle component analysis (PCA) of Mulia et al. (2018) and in inverse the
decoding transposed convolutional or dense layers performs the necessary transformation to predict the output time series or

multi-location inundation depths, see Tables S1 and S2.
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Figure 9. Schematic of a Variational Encoder Decoder

Variational encoding maps the input data to the probabilistic distribution of the latent variables z, this makes VEDs more
flexible in capturing the underlying data distribution and modelling the epistemic uncertainty in the input encoding process.
Compared to a deterministic encoders, the latent space is mapped as continuous and smooth variables, making for a more
interpretable and structured representation of the data in the encoding latent variables Liu et al. (2021).

We use two VED models as the ML-based surrogates, to predict the water level time series(waveform) at a gauge location
and the flood inundation footprint in the form of the maximum inundation depth. Early in the study we evaluated the prediction
of two inundation parameters - maximum inundation height and maximum inundation depth, with the model predicting the
maximum inundation depth better. We do not discuss the result for the maximum inundation height in the study. The models
receives its input = in the form of a stack of time series from the selected offshore gauge/s, which is encoded into the latent
variables z by four convolutional layers with kernel size 3 and padding 1 using a Leaky ReL.U (0.5) activation which helps
introduce non-linearity and prevent vanishing gradient during training. After each convolutional layer, we perform a max-
pooling operation to reduce spatial dimensions on the feature maps. The choice of the number of layers, channels, kernel size
and the input data sampling rate are interdependent and were decided by testing multiple configuration, Tables S1 and S2
describes the two surrogate architectures used in the study. For the encoding in the onshore VED model, we additionally apply
batch normalisation after the first max pooling layer to help stabilise the training as we use a single batch training and a dropout

layer with a rate of 0.1 is applied after the final max pooling layer as additional regularisation, refer other operations in S2.
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The latent variables z are encoded as the mean and sigma values of a Gaussian distribution using a reparametrisation method
(Kingma and Welling, 2014).

The decoding layers take the sample from the latent space and reconstruct the outputs. For near-shore VED, to predict the
nearshore time series of the water level, we adapt the encoder architecture in reverse using four transposed convolutional layers.
For the onshore VED, to predict the max inundation depths we use a dense layer that maps the sample from the latent space
to the outputs i.e. the max inundation depth directly. The model hyperparameters including the number of latent variables, a
learning rate of 0.0005, and no weight decay, were chosen through rough experimentation to achieve optimal results. Table 3
summarises the size of input, output, and latent variables used in the two surrogate models. Supplements Table.S1 and Table.S2
provide more information on the model layers and operations used in the two surrogate models.

The loss function used to train the models comprises two components: the prediction loss and the Kullback-Leibler (KL)
divergence loss. The prediction loss measures the difference between the constructed data to the output data in terms of the mean
squared error. The KL divergence loss (Kingma and Welling, 2014; Liu et al., 2021) encourages the latent space distribution
to be close to a unit Gaussian distribution, acting as a regularisation term. This additional regularisation also helps prevent
overfitting and improve generalisation. The components of the loss function in Equation 3 can also be weighted to improve the

overall model prediction.

n

1 .
Total Loss = 5 E (ys — yi)2 +KL(q(z]7)|p(2)) 3)
— —_—
=t KL Divergence Loss

MSE (Prediction Loss)

Given the relatively small size of our training dataset, we employ K-fold cross-validation with five folds to fully use the
available data set for training and testing. The data set is randomly partitioned into five equal-sized folds. Each fold is used
once as the test set while the remaining four folds are used for model training. This process is repeated five times, with each
fold serving as the test set exactly once. The characteristics and parameter ranges for each test fold as when all the test folds
are combined together mirror that of the overall training dataset as found in Table 2 and Figure 6. This helps in assessing
the model’s generalisation ability and sensitivity to overfit with such limited training information (Mulia et al., 2020). We
conducted the training in a single batch. This approach differs from conventional training settings, where mini-batch training
is adopted to handle large training datasets. The single batch approach allows the model parameters to be optimised using the
entire fold’s dataset in each training iteration, effectively leveraging all available information to update its parameters. This
strategy of data splitting, cross validation, and VED model architecture facilitates better convergence and helps prevent the
model overfit during training or data leakage during evaluation.

Applying an ensemble approach to the prediction, we use the variational encoding 9 to generate 100 sample predictions for
each test event of the fold. Further, when generating prediction for the historic event in 2.1.3 we use all the five models trained
as part of the 5-fold cross validation to generate 5 x 100 predictions, thus using the overall dataset for model training and

prediction for these test events.
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Table 3. Hyperparameters for Onshore and Nearshore Surrogates in Different Regions.

Region Number of Latent Variables Input Dimensions Output Dimensions Training Size
Nearshore Surrogate  Rikuzentakata 25 1x 1024 1x 1024 490
Ishinomaki 150 3x 1024 1x 1024 425
Sendai 100 3x 1024 1x 1024 465
Onshore Surrogate Rikuzentakata 10 1x 1024 6648 490
Ishinomaki 50 3x 1024 54671 425
Sendai 30 3x 1024 129941 465

3 Metrics for evaluation

Table 4. Summary of Evaluation Metrics and Formulas

Metric Formula Focus

Mean Squared Error (MSE) LS (i —i)? Mean Error

1— 2121(91_@1)2

p S 2
Coefficient of Determination (R*) AN CTEL

Correlation or dependence

23 (Wida)
Goodness of fit (G) 1 S, S ST General Performance
Relative Peak Deviation (RPD) y“““@‘;;i““‘“‘ Delay in peak
peal
Maximum Peak Delay (MPD) Lypeakcmax. — Cpeakomax Peak of the waveform

Accuracy Score (A) e Predictions Flooded Area/Mapping

Number of locations

L2 Norm > (i —90)? Magnitude of event

To assess the general fit between the numerical simulation and ML predicted values, the mean squared error (MSE), the
coefficient of determination (R?), and the goodness of fit (G) are used. MSE quantifies the average squared difference between
simulated and predicted values, with lower values indicating better model performance. R? measures the proportion of variance
in the dependent variable (simulations) that is predictable from the independent variable (predictions), providing information
on the accuracy of the model based on the correlation or dependence between simulations and prediction, with high values
close to 1 indicating a good result. G is used as a cost function to measure the disagreement between observed and predicted
values, considering both the magnitude and direction of the deviations, with a lower value close to 0 being better. Lastly, we
used the L2Norm to estimate the magnitude of the event, using the vector representing the time series at the test gauge or the
maximum inundation depths for a region.

In the case of the nearshore surrogate, where accurately predicting the peaks and their timing is crucial, Relative Peak
Deviation (RPD) and Maximum Peak Delay (MPD) are used. RPD measures the relative difference between simulated and
predicted peak values, providing insight into peak accuracy. MPD evaluates the time delay between highest simulated and

predicted peaks, crucial for assessing the timing accuracy of peak. For the onshore surrogates, where accurately predicting
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inundation extents and depth is the focus, the accuracy score quantifies the proportion of correctly predicted inundation loca-
tions relative to the total number of locations. This metric provides a clear indication of the model’s predictive performance
in accurately mapping inundation for depths above the threshold of 10 cm or a select depth class (say 0.1 m to 1 m). These

metrics collectively offer a comprehensive evaluation of the ML surrogate’s prediction.

4 Results
4.1 General Fit

As a first step, we evaluate the sensitivity of the learning or parameter optimisation to the training data as part of the five-
fold cross-validation study. The mean square error values are summarised in Table 5 for each of the folds. For the nearshore
surrogate (predicts the time series) it ranges between 0.042 - 0.197 and for the onshore surrogate (predicts the max inundation
depth map) it ranges between 0.169 - 1.129 at the three test sites. For the nearshore surrogate, the relatively consistent MSE
across folds suggests that the model is robust, with no significant overfitting and an overall good fit to the data. However, for
the onshore surrogate, there is noticeable sensitivity to the training data, as evidenced by slightly higher MSE values for certain
locations, such as Rikuzentakata (fold 2) and Ishinomaki (fold 0).

This increased sensitivity could be attributed to two factors, namely the training size and the complexity of the output. The
smaller size of the training set may lead to higher variance in model performance, as the model has less data to learn from,
making it more sensitive to the specific events included in each training fold. The onshore surrogate is tasked with predicting
inundation, which is inherently more complex and variable compared to nearshore waveforms. This complexity can further
lead to greater variation in model performance across different folds, especially with limited training data. In summary, the
observed variance in MSE across folds is not random but is influenced by the size and complexity of the training data. For the
nearshore surrogate, the model demonstrates stable performance, while the onshore surrogate shows some sensitivity, which is
expected given the challenging nature of the inundation predictions.

We also record the maximum elevation values from both the surrogate for each test event in Sect.2.1.2 and compare it with
the simulation values of the GeoClaw tsunami model described in Sect.2.1.1 using the scatter plots of Figures 10 and 11 .
The predictions are in good agreement, well correlated with the simulation values and lay close to the true line. In case of
the nearshore surrogates, we notice larger uncertainty for Sendai compared to the the other test sites, while for the onshore
surrogates, Ishinomaki has more uncertainty. The plot also marks the prediction for the five historic test events, discussed
further in Sect.4.4. The prediction of the maximum elevation for the waveforms and the maxima of the maximum inundation
depth show good fit with little underestimation or overestimation (Figures 10 and 11) and highlight the generalisation of the

model across unseen data.
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Table 5. Results of the k-fold cross validation using means square error loss metric for the two types of surrogate models tested at the three

test sites.

MSE

Region
Fold0 Foldl Fold2 Fold3 Fold4

Rikuzentakata ~ 0.098  0.057  0.042  0.122  0.111

Nearshore
Ishinomaki 0.042  0.065 0.061 0.071 0.053

Surrogate
Sendai 0.197 0.087 0.067 0.168 0.059
Rikuzentakata  0.179  0.406 1.129 0262  0.169

Onshore

Ishinomaki 0.886  0.349 0.327 0.282  0.373

Surrogate

Sendai 0.35 0.263 0377  0.261 0.576
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4.2 Nearshore Approximation

The nearshore surrogate predicts waveforms of 4 hr duration; the time series predictions for gauge 6042 at Rikuzentakata, gauge
5675 at Ishinomaki, gauge 5440 at Sendai for five random events from the fold O test set are shown in Fig.12. These figures
show the mean prediction along with the 2 standard deviation uncertainty bands for all the three gauges. This uncertainty
represents the epistemic uncertainty of the ML model from a variational latent space. They show good agreement with the
simulation, but the simulation values does not always lie within the uncertainty band of the prediction, as seen in event 319
at Rikuzentakata for the full time period. Examples such as Type B (Event 14) that show an excellent match and a narrow
uncertainty range can be linked to training events sharing the same fault location but different slip distributions for the test
event. Furthermore, the uncertainty range provides a useful indicator of the stability and sensitivity of the selection of model
parameters and latent variables. We also evaluate the performance of the mean prediction using the evaluation metrics for the

time series in Table 4. There is a relative peak deviation of up to 0.2 and a maximum peak delay of up to 2 hours when the

magnitude of the highest peak is not captured accurately.
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Figure 12. Prediction examples from the nearshore surrogate for the DOE test events

4.3 Onshore Approximation
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With the onshore surrogate we predict the maximum inundation depth at the selected grid location for the three test sites.

The prediction maps at Rikuzentakata for five events from the fold O test set are shown in Fig.14. We plot the true GeoClaw
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Figure 13. Prediction from the nearshore surrogate for the historical events

simulation values and the mean predictions of the surrogate in columns 1 and 2. The misfit between simulation with the mean
ML prediction and +/- 2 standard deviation values are plotted in columns 3-5. The uncertainty in the onshore surrogate leads
to variability in both the mapped inundation area and the water depth at each grid location for the predictions. This uncertainty
depends on the ML parameters and the latent variables. The predictions show good agreement with the simulations, though
there is a tendency of the having some artefact flooding, i.e. to predict inundation at grids disconnected from the main flood
extent which is an unphysical characteristic of the surrogate. Similar maps for Ishinomaki and Sendai are made available in the
Supplement Figures S3 and S4.

We also evaluate the performance of the mean prediction +/- 2 standard deviation using the evaluation metrics for the time
series in Table 4. The accuracy score (A) focuses on the identification of the flooded area with depth greater than 10 cm or
not, while the goodness of fit (G) provides an assessment of the correct prediction of the maximum inundation depth for the
location with depth greater than 10 cm. The general tendency is that misfit reduces when using mean - 2 standard deviation
value, highlighting some overestimation in the mean prediction. We plot the distribution of the performance metric G and A for
two example events of type A and B for Rikuzentakata using the ensemble of the predictions, to show the how the ensemble
captures predictions close to the desired simulation results in Supplement Figures S9 and S10. Across the different test events
and ensemble predictions, 93.397% have an accuracy score greater than 0.9 and G values less than 0.1. The spread of the G

and A values for different depth classes are plotted in Figures 16a and 16b.
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