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Abstract. Probabilistic tsunami hazard and risk assessment (PTHA and PTRA) are vital methodologies for computing tsunami

risk and prompt measures to mitigate impacts. However, their application across extensive coastlines, spanning hundreds to

thousands of kilometres, is limited by the computational costs of numerically intensive simulations. These simulations often

require advanced computational resources like high-performance computing (HPC), and may yet necessitate reductions in

resolution, fewer modelled scenarios, or use of simpler approximation schemes. To address these challenges, it is crucial to5

develop concepts and algorithms for reducing the number of events simulated and more efficiently approximate the needed

simulation results. The case study presented herein, for a coastal region of Tohoku, Japan, utilises a limited number of tsunami

simulations from submarine earthquakes along the subduction interface to build a wave propagation and inundation database.

These simulation results are fit using a machine learning (ML) based variational encoder-decoder model. The ML model serves

as a surrogate, predicting the tsunami waveform on the coast and the maximum inundation depths onshore at the different test10

sites. The performance of the surrogate models was assessed using a five-fold cross-validation assessment across the simulation

events. Further, to understand their real world performance and generalisability, we benchmarked the ML surrogates against

five distinct tsunami source models from the literature for historic events. Our results found the ML surrogate capable of

approximating tsunami hazard on the coast and overland, using limited inputs at deep offshore locations and showcase their

potential in efficient PTHA and PTRA.15

1 Introduction

Tsunamis are potentially one of the most devastating natural hazards impacting life, property and the environment. More than

250,000 casualties and USD 280 billion in damage were caused by tsunami worldwide between 1998 and 2017 (Imamura et al.,

2019), with the 2004 Indian Ocean and 2011 Tohoku tsunami events responsible for most of these losses. Tsunami hazard and

risk assessments are fundamental in disaster management, as they facilitate the effective management of coastal regions and20

communities at risk of experiencing a tsunami(Mori et al., 2022). The results of tsunami hazard and risk assessment help plan

and prioritise local and regional hazard mitigation efforts like land use and management, the engineering design of protective

structures and buildings, tsunami monitoring and early warning systems, evacuation plans, and emergency response.
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The simulation-based tsunami hazard analysis workflow consists of modelling different processes of the tsunami life cycle

- generation, propagation and inundation (Behrens and Dias, 2015; Marras and Mandli, 2021) as depicted in Fig.1. Each of25

these tsunami processes requires forward numerical modelling at different spatial scales, with varying complexity and different

numerical schemes. Many of these steps are computationally demanding and a substantial number of such simulations may be

required in tsunami hazard analysis.

There are two broadly categorised approaches to tsunami hazard and risk assessment (Mori et al., 2018): deterministic

and probabilistic approaches. The deterministic approach aims to study a limited number of large tsunami scenarios, such as30

historical events or the possible worst-case events. This approach has been most widely used as it requires fewer events to

simulate and hence less computational effort. With only a single or limited number of tsunami scenarios modelled, we can

estimate a tsunami hazard metric for the given scenarios, such as wave height at an offshore site, or inundation depth, run-up,

etc. at an onshore location of interest for each scenario. Such results are easy to communicate and are useful in conservative

decision-making activities such as evacuation planning. Instead, the probabilistic approach involves modelling a large number35

of possible tsunami events typically in the range of thousands(Gibbons et al., 2020) to million(Basili et al., 2021; Davies et al.,

2018) to estimate the exceedance rate of the said tsunami hazard metric at a location or region of interest(Geist and Parsons,

2006; Grezio et al., 2017). This approach is complex and computationally demanding but allows the possibility of exploring

different sources of uncertainty and making risk-informed decisions. When linked with fragility and loss models, probabilistic

estimates of potential damage or loss of life and property are obtainable (Goda and De Risi, 2017).40

Figure 1. The sequence of a tsunami from the deep ocean generation and propagation, shallow coastal-zone shoaling, coastal inundation and

interactions with the built environment, and the methods used to model each part of the sequence. The red dotted lines depict the interface

between the tsunami forward modelling steps where different models can be coupled or linked.
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The large computational burden from the many simulations needed in probabilistic tsunami modelling can limit their ap-

plication, especially for onshore tsunami hazard and risk assessment where modelling of inundation processes is vital (Lorito

et al., 2015; Grezio et al., 2017). Accurately simulating the tsunami wave shoaling process nearshore and the resulting inunda-

tion onshore necessitates the use of a 2D nonlinear shallow water equation (NLSWE) model at resolutions finer than at least

100m on land. For scenarios where modelling turbulent tsunami forces onshore with precision is essential, a 3D Navier–Stokes45

Equation (NSE) model proves to be suitable (Marras and Mandli, 2021). Importantly, both the 2D NLSWE and 3D NSE mod-

els come with higher computational costs, exhibiting an exponential factor in comparison to the more computationally efficient

1D linear shallow water equation (LSWE) model commonly employed to model tsunami wave propagation in deeper oceanic

regions. Figure 1 represents the off-to-on-shore tsunami forward modelling flow and the input-output links of the machine

learning(ML) surrogates.50

To handle or overcome this computational challenge of scale and the need to model a large number of events, various

methods have been adopted (Behrens et al., 2021):

1. Reduce the number of events to be modelled, using sampling techniques, clustering, and other selection methods (Lorito

et al., 2015; Williamson et al., 2020; Davies et al., 2022)

2. Approximations of results using methods like Green’s Function, amplification factors, and reduced complexity models55

(Molinari et al., 2016; Løvholt et al., 2016; Glimsdal et al., 2019; Gailler et al., 2018; Grzan et al., 2021; Röbke et al.,

2021)

3. Hardware and computational improvements like a nesting of grid domains, adaptive variable grid resolution, parallelisa-

tion and GPU-based acceleration, coupled multi-scale modelling, exascale codes (LeVeque et al., 2011; Shi et al., 2012;

Oishi et al., 2015; Macías et al., 2017; Marras and Mandli, 2021; Folch et al., 2023)60

4. Surrogates using statistical emulators and ML models (Sarri et al., 2012; Salmanidou et al., 2021; Mulia et al., 2018;

Fauzi and Mizutani, 2019; Makinoshima et al., 2021; Fukutani et al., 2023; Mulia et al., 2022)

Running the numerical simulations, especially for modelling the tsunami inundation with an NLSWE model takes a lot of

time and computational resources, for example accounting for about 13,600 GPU hours in the local PTHA study for Catanai by

Gibbons et al. (2020), refer Table 6 for runtimes of this study. Among the different approaches to reducing such computational65

and time burden, surrogates can provide an instantaneous approximation to the output of the numerical simulation. Surrogates

are fit (trained) on a set of model inputs and outputs, called training data, to derive a mathematical or statistical relationship

between the inputs and outputs; this provides a fast solution to otherwise time-consuming numerical simulations but may

introduce some acceptable errors. Surrogates such as statistical emulators, can be fitted using a small training dataset built

using a limited number of simulations. The application of such surrogates in tsunami modelling has been used for uncertainty70

quantification or sensitivity analysis (Sarri et al., 2012; de Baar and Roberts, 2017; Kotani et al., 2020; Salmanidou et al.,

2021; Giles et al., 2021; Tozato et al., 2022) and hazard assessment (Fukutani et al., 2021, 2023; Lee et al., 2023), which are

generally difficult to conduct in a brute-force approach where one would need to simulate all possible events explicitly or in
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a real-time time setting where running high-fidelity models in limited time is difficult. Another type of surrogate used are the

machine learning models (referred to as ML surrogates herein), which are also trained on the available input-output datasets75

using a supervised learning framework. Tsunami ML surrogates in comparison to statistical surrogate models, especially those

based on deep neural networks, utilise a large training dataset to optimise the model parameters using backpropagation. This

may require a much larger number of numerical simulations to create the relevant input-output datasets for training or fitting

such a model. Using such a framework to prediction of a real-time tsunami is feasible and widely proposed for faster than

real-time forecasting and early warning purposes (Mulia et al., 2018; Fauzi and Mizutani, 2019; Liu et al., 2021; Rodríguez80

et al., 2022; Kamiya et al., 2022; Mulia et al., 2022; Wang et al., 2023) especially with inputs derived directly from real-time

sensors (Makinoshima et al., 2021; Mulia et al., 2022). See Table 1 for a comparison of different surrogate classes.

Models of varying complexity and resolution, as depicted in Fig.1 are often coupled to accurately simulate the generation

and propagation of tsunamis from the deep ocean to the near shore and inundation onshore (Abrahams et al., 2023; Son et al.,

2011). For probabilistic tsunami modelling with a large number of events, the typical approach is to use outputs of a given85

model level as boundary conditions to the next model in forward modelling flow, taking advantage of each model’s varying

complexity, resolution, and computational efficiency. In this study, a hybrid modelling framework is introduced (see Sect. 2).

We suggest using a limited number of full simulations to build or train a tsunami ML surrogate and completing the most

computationally demanding phases of tsunami forward modelling for the remaining events as direct final modelling using

the ML surrogate. Figure 1 compares the different methods used in traditional tsunami forward modelling chains and as an90

alternative different connections for the setting up of a surrogate in the form of statistical emulators and ML models.

This framework recognises several key concepts, including reducing the number of events for numerical simulation, modular

multi-scale modelling, and the use of ML-based surrogates for hazard approximation. By combining these ideas, the proposed

framework provides a comprehensive approach to enhance the modelling process and efficiently achieve the final results. Many

of the models and datasets needed in this framework are already available; we discuss how to put them together in a workflow95

and build the ML-based surrogate for the final tsunami modelling. Further, we conduct experiments to check the skill and

usability of an ML surrogate for tsunami hazard approximation nearshore and onshore.

The current challenge lies in the need for an extensive size of the training dataset generally required by ML surrogates in

tsunami modelling for training to generate accurate predictions. While they provide instantaneous results, the cost of developing

the training data set for the ML surrogates may outweigh the benefit of instantaneous prediction. When ML models are not100

appropriately trained to understand the underlying physics or dynamics of the tsunami and use small training dataset, they may

overfit and struggle to generalise well beyond the training data(out-of-training situations) (Seo, 2024) .

To overcome this dependence on a large training size, our ML surrogate exploits the ability of the encoder-decoder network

in dimensional reduction, feature representation, and sequence-to-sequence transformation for approximating tsunami hazard

nearshore and onshore. We use tsunami data from a small set (about 500) of simple earthquake rupture scenarios which may105

provide a sufficient learning basis for the ML surrogate. We describe how a variational encoder-decoder (VED), a type of

neural network model (see Sect.2.2.2), is trained to take the tsunami waveform at points where offshore depth is 100 m as

input and predict the tsunami waveform at nearshore points with depths of 5 m and maximum inundation maps onshore for
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Table 1. Comparison of recent work using surrogates for tsunami approximation

Reference Method Simulation

Size (no of

events)

Input Parameter Output Parameter

Statistical Surrogate

Salmanidou et al. (2021) GPE 60 Seafloor displacement

Parameters

Max height at coast

Tozato et al. (2022) GPE, SVD 50 EQ Source Parameters

(slip and rake)

Onshore max

inundation depths,

impact force

Fukutani et al. (2022) GPE, SVD 360 EQ Magnitude (Mw),

Seawall height

Onshore max

inundation depths

Gopinathan et al. (2021) GPE 300 EQ magnitude and

location

Max height, velocity at

coast

ML Surrogate

Liu et al. (2021) CNN(VAE) 1,300 Short tsunami

observation

Long tsunami forecast

nearshore

Makinoshima et al. (2021) CNN 10,000 Short tsunami

observation

Onshore point

inundation time series

Mulia et al. (2022) Dense NN 3,060 Short tsunami

observation(max)

Onshore max

inundation depths

Rodríguez et al. (2022) Dense NN 16,000 EQ Source Parameter Max wave height,

arrival time at coast

Núñez et al. (2022) CNN 6,776 Offshore observation at

50m or 100m depth

Onshore point

inundation time series

Cesario et al. (2023) Regression Tree 15,408 EQ Source Parameter Max wave height at a

coast

de la Asunción (2024) Dense NN 128,000 EQ Source Parameter Alert level at coast

GPE: Gaussian Process Emulator

SVD: Singular Value Decomposition

CNN: Convolutional Neural Network

VAE: Variational Autoencoder

CNN: Convolutional Neural Network

Dense NN: Dense Neural Network
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three different locations along the coastal Tohoku region in Japan. Thus, skipping the computationally demanding modelling

of non-linear processes in the shallow water regions nearshore and the inundation processes onshore for a given tsunami event.110

We check the generalisation ability of this model by testing the prediction error for a set of finite-fault rupture events of historic

tsunami scenarios to evaluate the efficacy of this hybrid modelling approach.

2 A framework for approximating tsunami hazard nearshore and onshore at reduced computation cost

(a) The flow chart for the framework

(b) Different model structures based on prediction types

Figure 2. Overall framework for the nearshore and onshore hazard approximation using ML surrogate

Our framework employs a hybrid modelling approach that integrates physics-based numerical simulation and data-driven

ML models for tsunami hazard approximation. By combining the strengths of these models, we aim to represent the tsunami115

hazard for a coastal site of interest as the time series of the tsunami wave height near or along the shore and the max inundation

depth onshore within a reasonable computational budget.

This section discusses the various components of the proposed framework as seen in Fig.2. The first step is the generation

of synthetic data which is needed to train the ML surrogate model. This requires the full forward modelling of the tsunami

generated from simple earthquake sources discussed in the design of events and recording the tsunami water level time series120

for such events at different depths, at 100 m depth and 5 m depth near shore, and the maximum inundation depth onshore for

the event using an NLSWE tsunami model.
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The second step is the development of ML models for use as surrogates, whose outputs are the near-shore tsunami height

time series and the onshore maximum inundation depth. In the current study, the framework is applied and tested by comparing

the prediction of the ML surrogate against results from numerical simulation for a portion of the synthetic events as hold-out125

testing and historic events for generalisation testing.

2.1 Generation of Synthetic Data

The characteristics of tsunamis in a region are intricately tied to factors such as earthquake sources and their recurrence,

ocean bathymetry, shelf profile, coastal topography, and man-made structures like coastal defence and urban infrastructure.

The rarity of tsunami events and the limited availability of comprehensive observational records across the coastal region make130

it impossible to construct a robust dataset for training and testing a ML model using purely historic observations.

Due to this data limitation, we instead attempt to create a diverse dataset for training and testing the ML surrogate to effec-

tively capture the wide spectrum of tsunami dynamics in a region. The idea is to simulate earthquakes of different magnitude,

different locations, with different slip amounts and rupture geometries generating tsunami waves of different amplitude and

wavelengths offshore, causing inundation of varying patterns and extents onshore.135

Thus, we model a wide variety of earthquake scenarios discussed in Sect.2.1.2 using a tsunami hydrodynamic model created

for the Tohoku region (Sect.2.1.1) covering three test sites.

2.1.1 Tsunami model and test locations

Three locations with different coastal configurations are identified for this study – Rikuzentakata (enclosed bay), Ishinomaki

(shielded), and Sendai (open bay), – where different coastal processes like shoaling, refraction, reflection, and resonance140

are expected to impact the tsunami nearshore results and provide varied settings for testing the proposed methodology of

developing an ML-based surrogate.

For the simulation of the synthetic events, and recording their offshore waveform (water level time series) and onshore flood

inundation depths, a tsunami model based on GeoClaw Version 5.7.1, (Clawpack Development Team, 2020) was developed.

This GeoClaw model covers the Pacific Side of the Honshu island and solves the depth-averaged NLSWE using adaptive145

mesh refinement using rectangular grids in the geographic coordinate system (latitude and longitude) for the base Level 0 at

resolution 0.01215 degrees.

The adaptive mesh refinement ranges from level 1 of resolution 0.006075 degrees for the overall model domain, Level 2

of resolution 0.00405 degrees at bathymetric depths around 100 m to 850 m and level 3 of resolution 0.00135 degrees for

bathymetric depths less than 100 m as in Fig.3a. An additional refinement is enforced for the three test sites resulting in the150

finest grids of 0.00045 degrees roughly equivalent to 50 m in resolution for capturing the inundation onshore as seen in Fig.3b.

The model uses topographic data from the Japan cabinet project available in 1350-450-150-50m resolution, the final 50 m

resolution grids of this dataset were superimposed with COP-DEM, a Digital Surface Model (DSM) representing the elevation

of the Earth’s surface including buildings, infrastructure and vegetation with native resolution of 30 m, and a coastal tsunami
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defence elevation dataset also available from the cabinet project for representing the onshore elevation more realistically for155

the tsunami inundation modelling.

The virtual gauges are set at depths of 5 m and 100 m as shown in Fig.3b to record the elevation of water level at regular time

intervals and fixed grid monitoring is used to record the maxima of the inundation depths from each event for the three coastal

regions for each tsunami simulation. Each tsunami simulation is run for a 6-hour duration from the onset of the tsunami. Tides

and wave components are ignored and the initial water level condition is set at zero mean sea level to consider a still ocean160

condition.

The model was tested and calibrated using the 2011 Tohoku historical event’s gauge and inundation survey data, see results

available in Supplements Fig.S1 and Fig.S2.

(a) GeoClaw Domain

(b) Test site with virtual gauges

Figure 3. (A)Tsunami model coverage and adaptive grid resolution system (B)Virtual Gauges and inundation sites.
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2.1.2 Design of experiments(DOE)

The design of the experiment consists of a total of 559 hypothetical events of two categories of rupture, distinguished by their165

geometry and slip distribution: (a) Type A - ruptures represented by a single rectangular planar surface with homogeneous slip

and (b) Type B - ruptures that combine numerous smaller rectangular planar surfaces (i.e., sub-ruptures), each of which has

homogeneous slip, such that the rupture surface can bend and the slip distribution can be heterogeneous. The number of events

in the DOE is constrained by available computational resources and our goal to use a feasible number of training events and

maximise the efficiency of the surrogate model. The source scenarios are modelled by adapting procedures previously applied170

by Gusman et al. (2014) and Mulia et al. (2018).

A total of 119 locations were selected as the top centre of the faults for modelling hypothetical tsunamigenic earthquakes

of Type A. These events span Mw 7.5 - 9.0 at an interval of 0.5 and are uniformly distributed over the Tohoku subduction

interface, see Figs. 4a and 4b. This results in a potential 476 events (119 locations x 4 magnitudes). The Mw 9.0 events are

restricted to locations where the centre of the rupture’s top edge is shallower than 16 km. Deeper events cause unrealistic uplift175

on large inland portions of the study region and are unlikely to cause tsunami. To ensure realistic modelling and prohibit these

events from adversely affecting the quality of the surrogate training, these events were excluded, leaving 383 Type A events.

Multi-fault ruptures of Type B were created using a combination of 6 to 12 planar sub-faults similar to the unit sources used

in NOAA SIFT database (Gica et al., 2008) of length 100 km and width 50 km are created as in Fig.4c. The event magnitudes

range Mw 8.68 - 9.08, and the ruptures are distributed along the shallow section of the Tohoku subduction interface. The180

bottom centre of the rupture edges are at depths between 17-28 km. The slip distributions are modelled as a skewed normal

distribution where the average combined slip value is between 10 and 20 m. The scenarios varied by the number of faults

involved: scenarios with 6 faults were assigned a slip of 10 m, scenarios with 8 faults had slips of 10 and 15 m, 10 faults with

15 m, and 12 faults with slips of 15 and 20 m. This systematic variation led to a total of 176 different Type B earthquake

scenarios.185

Information on depth, slip, strike, and dip (see Table 2) is derived from the Slab2 model of the Japan trench (Hayes et al.,

2018), and the rake is always set at 90 degrees (Aki and Richards, 2002). The seafloor deformation is analytically modelled

assuming homogeneous slip for the rupture or sub-ruptures using Okada solution (Okada, 1985) with the value of rupture

length, width, and slip scaled (see Table 2) based on the magnitude of the event (Strasser et al., 2010). We consider that the

co-seismic displacement is instantaneous and equivalent to the sea surface displacement generating the tsunami. This initial190

sea surface displacement is modelled to match the base resolution of the tsunami model at 0.01215 degrees grids.

In summary, the DOE for training the surrogate model considered two main factors: (A) moment magnitude, which deter-

mines the profile of displacement (length, width, and slip amount) based on the moment magnitude-area scaling relationship

(Strasser et al., 2010), and (B) the location of the events where fault parameters such as depth, dip, rake, and strike are derived

from the Slab2 dataset.195
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Table 2. Earthquake rupture parameters for Type A and Type B, the rake value is always 90 degrees.

Type Mw Length (km) Width (km) Displ. (m) Depth (km) Dip (degrees) Strike (degrees)

Type A Min 7.5 81.37 56.29 0.24 10.2 5.54 187.20

Type A Max 9 613.76 189.23 3.30 45.7 17 225.78

Type B Min 8.68 300 100 4.72 17.01 8.37 188.72

Type B Max 9.08 600 100 17.36 28.98 16.53 222.27

(a) Fault Location for type A and B (b) Type A - Event 35 (c) Type B - Event 33

Figure 4. Example initial displacement for the two rupture types used in the design of experiment for the tsunami dataset.

2.1.3 Test Events

Along with using a random subset of the events from the design of experiments, we additionally model a set of 5 events

to evaluate the performance of the ML model. This is to test the model over a generalised dataset which is different from the

training dataset used in building the model. The numerically simulated tsunami are known to be sensitive to the earthquake slip,

fault geometry, rupture mechanisms, and the discretisation used (Gibbons et al., 2022; Goda et al., 2014) and their resulting200

wave profile, direction, and inundation may vary significantly. Although there is significant variation in the characteristics of

the different tsunami events generated in the design of experiments to train and test the ML surrogate, we add these additional

historic test events with complex heterogeneous slip, events with instantaneous and time dependent slip displacement and

events located beyond the Tohoku source region used for training, as seen in Fig.3. These include the following events described

below.205
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1. 2011 Tohoku Earthquake:

– Test A(instantaneous displacement) using Fujii et al. (2011)

– Test E(time-dependent displacement) using Yamazaki et al. (2018)

2. 1933 Sanriku Earthquake:

– Test B(outer rise event with normal faulting) using Okal et al. (2016)210

3. 1896 Sanriku Earthquake:

– Test C(outside Tohoku source region considered in DOE) using Satake et al. (2017)

4. 1968 Tokachi-Oki Earthquake:

– Test D(outside Tohoku source region considered in DOE) using Riko et al. (2001)

Figure 5. Initial sea surface displacement for the 5 test events

2.2 Machine Learning Model215

Previous works (Fauzi and Mizutani, 2019; Liu et al., 2021; Makinoshima et al., 2021; Núñez et al., 2022; Mulia et al., 2022;

Rim et al., 2022) that focused on using ML models for use in tsunami forecasting and early warning needs have also used neural

networks in the form of CNN and MLP models. These models are usually trained to take short duration (20 - 30 min) inputs

from sensors like offshore ocean bottom pressure sensors and geodetic sensors (GNSS) for their tsunami hazard prediction.

This is due to the constraints of a short lead time in the event of a tsunami. Furthermore, the tsunami observation network220

is designed with a given earthquake source region in focus, leading to the design and training of the ML model which is

constrained to a very specific regional and source setting.

In contrast, we discuss two ML surrogate models in this work with the main difference being the output of the model: either

a time series of the water surface elevation or the maximum inundation depth across a set of onshore locations. The design of

the ML model or surrogate for the current framework focuses on:225
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1. The model architecture, that should be able to train and fit with a relatively small number of events such that it can serve

the purpose of solving the computational constraint for its use as a surrogate model.

2. The model has a balanced performance, it can predict the hazard sufficiently well for small and large-magnitude events

across the domain of interest.

3. The model training is not sensitive to training datasets, that is, it should not overfit the data and should be capable of230

predicting results for different ruptures as long as the offshore water level amplitude is available.

4. The model design should be able to connect easily with available outputs from other regional propagation models and

be easily replicated across different coastal configurations.

2.2.1 Data preparation

The ML model in this study uses two types of datasets from the tsunami simulations: (a) tsunami waveforms - water level235

time series and (b) maximum inundation depth map. Figure 6 provides a summary of the dataset for the three test locations -

inundation depths, area and maximum amplitude at the virtual gauges.

Figure 6. Box plot showing variability in the offshore and nearshore gauges and the inundation properties for the three test sites

For each of the events, we process the simulated water level time series at the virtual gauges and the maximum inundation

map in the following steps. All events where the tsunami water level does not cross a set threshold of 0.1 m at the selected deep

offshore virtual gauges of 100 m depth and 0.5 m at the shallow nearshore virtual gauge of 5 m depth are ignored as they result240

in negligible tsunami inundation.

At the instance of a time when this threshold is crossed at the shallow gauge, a simulation time window of 240 minutes is

selected to calculate a uniformly sampled wave amplitude time series with 1024 data points. As many of these local source

events cause significant local deformation to the bathymetry , which is captured in the and water level time series. This offset

is removed from the time series data at both nearshore and offshore virtual gauges (e.g. Fig.7) as a preprocessing step for245

reducing the complexity in the dataset which can help in training the model.
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Figure 7. Correction of the waveform by removing the deformation and the selection window of 4 hours based on offshore gauge crossing

threshold of 10 cm

(a) Grids within overall flood envelope (b) Grids affected by inundation for 1933 Sanriku event

Figure 8. Location of grids affected from the DOE simulation and for one of the test events
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In the case of the maximum inundation maps, all grid points that are flooded across the entire simulation dataset of all the

modelled events are selected as a fixed set of locations, and the maximum inundation for each event at each such location is

stored as a 1D array. This yields 6648 grid points for the Rikuzentaka area, 54671 grid points for the Ishinomaki area, and

129941 points for the Sendai area.250

2.2.2 Variational Encoder-Decoder(VED) - Model architecture and training approach

Our design of the "VED" architecture extends upon existing statistical and ML models used for tsunami forecasting and rapid

modelling. Mulia et al. (2018) used the feature space from the principal component analysis (PCA) as a form of dimensional

reduction to search the closest inundation map from a large simulation database against results from a quick low-resolution

simulation and interpolate new high-resolution results using these samples. ML based models that are trained on tsunami255

simulation databases, in particular convolutional neural networks (CNN), have also been used to predict the full-time series of

the water level elevation using sparse observational inputs (Liu et al., 2021; Makinoshima et al., 2021; Núñez et al., 2022). In

the case of prediction for maximum inundation depth maps, a fully connected or dense layers have been used to efficiently map

the output across the large set of locations as in Fauzi and Mizutani (2019); Mulia et al. (2020, 2022).

The deep neural network models used in the above work for tsunami predictions typically need a large number of training260

examples to learn a useful representation and avoid overfitting the parameters of their different layers. Certain model archi-

tectures and training schemes can help them become more learning efficient, generalise better, and provide higher prediction

performance. One such approach is encoding-decoding, a class of supervised ML aimed at training a neural network to learn a

lower-dimensional representation of the input that can be used to construct the output. It consists of three parts: encoder, latent

variables, and decoder.265

z = f(wf , bf ,x) (1)

y = g(wg, bg,z) (2)

The encoder function f(.) with its learnable parameters, weights wf and biases bf maps the input data x to a reduced

number of latent variables z and a decoder function g(.) with its learnable parameters, weights wg and biases bg maps the270

latent variables z back to the high dimensional data space as the construction of the output y see Eq.1 and 2. The encoder

- decoder(ED) is trained to minimise the reconstruction error between the input data and the output of the decoder network

using back propagation optimisation. Similar to Liu et al. (2021) we use convolutional layers and variational encoding; see

Fig.9. The encoding convolutional layers and max pool operations of the encoders perform dimensionality reduction on the

time series data at the input gauges similar to a principle component analysis (PCA) of Mulia et al. (2018) and in inverse the275

decoding transposed convolutional or dense layers performs the necessary transformation to predict the output time series or

multi-location inundation depths, see Tables S1 and S2.
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Figure 9. Schematic of a Variational Encoder Decoder

Variational encoding maps the input data to the probabilistic distribution of the latent variables z, this makes VEDs more

flexible in capturing the underlying data distribution and modelling the epistemic uncertainty in the input encoding process.

Compared to a deterministic encoders, the latent space is mapped as continuous and smooth variables, making for a more280

interpretable and structured representation of the data in the encoding latent variables Liu et al. (2021).

We use two VED models as the ML-based surrogates, to predict the water level time series(waveform) at a gauge location

and the flood inundation footprint in the form of the maximum inundation depth. Early in the study we evaluated the prediction

of two inundation parameters - maximum inundation height and maximum inundation depth, with the model predicting the

maximum inundation depth better. We do not discuss the result for the maximum inundation height in the study. The models285

receives its input x in the form of a stack of time series from the selected offshore gauge/s, which is encoded into the latent

variables z by four convolutional layers with kernel size 3 and padding 1 using a Leaky ReLU (0.5) activation which helps

introduce non-linearity and prevent vanishing gradient during training. After each convolutional layer, we perform a max-

pooling operation to reduce spatial dimensions on the feature maps. The choice of the number of layers, channels, kernel size

and the input data sampling rate are interdependent and were decided by testing multiple configuration, Tables S1 and S2290

describes the two surrogate architectures used in the study. For the encoding in the onshore VED model, we additionally apply

batch normalisation after the first max pooling layer to help stabilise the training as we use a single batch training and a dropout

layer with a rate of 0.1 is applied after the final max pooling layer as additional regularisation, refer other operations in S2.
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The latent variables z are encoded as the mean and sigma values of a Gaussian distribution using a reparametrisation method

(Kingma and Welling, 2014).295

The decoding layers take the sample from the latent space and reconstruct the outputs. For near-shore VED, to predict the

nearshore time series of the water level, we adapt the encoder architecture in reverse using four transposed convolutional layers.

For the onshore VED, to predict the max inundation depths we use a dense layer that maps the sample from the latent space

to the outputs i.e. the max inundation depth directly. The model hyperparameters including the number of latent variables, a

learning rate of 0.0005, and no weight decay, were chosen through rough experimentation to achieve optimal results. Table 3300

summarises the size of input, output, and latent variables used in the two surrogate models. Supplements Table.S1 and Table.S2

provide more information on the model layers and operations used in the two surrogate models.

The loss function used to train the models comprises two components: the prediction loss and the Kullback-Leibler (KL)

divergence loss. The prediction loss measures the difference between the constructed data to the output data in terms of the mean

squared error. The KL divergence loss (Kingma and Welling, 2014; Liu et al., 2021) encourages the latent space distribution305

to be close to a unit Gaussian distribution, acting as a regularisation term. This additional regularisation also helps prevent

overfitting and improve generalisation. The components of the loss function in Equation 3 can also be weighted to improve the

overall model prediction.

Total Loss =
1

2

n∑
i=1

(yi − ŷi)
2

︸ ︷︷ ︸
MSE (Prediction Loss)

+KL(q(z|x)||p(z))︸ ︷︷ ︸
KL Divergence Loss

(3)

Given the relatively small size of our training dataset, we employ K-fold cross-validation with five folds to fully use the310

available data set for training and testing. The data set is randomly partitioned into five equal-sized folds. Each fold is used

once as the test set while the remaining four folds are used for model training. This process is repeated five times, with each

fold serving as the test set exactly once. The characteristics and parameter ranges for each test fold as when all the test folds

are combined together mirror that of the overall training dataset as found in Table 2 and Figure 6. This helps in assessing

the model’s generalisation ability and sensitivity to overfit with such limited training information (Mulia et al., 2020). We315

conducted the training in a single batch. This approach differs from conventional training settings, where mini-batch training

is adopted to handle large training datasets. The single batch approach allows the model parameters to be optimised using the

entire fold’s dataset in each training iteration, effectively leveraging all available information to update its parameters. This

strategy of data splitting, cross validation, and VED model architecture facilitates better convergence and helps prevent the

model overfit during training or data leakage during evaluation.320

Applying an ensemble approach to the prediction, we use the variational encoding 9 to generate 100 sample predictions for

each test event of the fold. Further, when generating prediction for the historic event in 2.1.3 we use all the five models trained

as part of the 5-fold cross validation to generate 5 x 100 predictions, thus using the overall dataset for model training and

prediction for these test events.
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Table 3. Hyperparameters for Onshore and Nearshore Surrogates in Different Regions.

Region Number of Latent Variables Input Dimensions Output Dimensions Training Size

Nearshore Surrogate Rikuzentakata 25 1 x 1024 1 x 1024 490

Ishinomaki 150 3 x 1024 1 x 1024 425

Sendai 100 3 x 1024 1 x 1024 465

Onshore Surrogate Rikuzentakata 10 1 x 1024 6648 490

Ishinomaki 50 3 x 1024 54671 425

Sendai 30 3 x 1024 129941 465

3 Metrics for evaluation325

Table 4. Summary of Evaluation Metrics and Formulas

Metric Formula Focus

Mean Squared Error (MSE) 1
n

∑n
i=1(yi − ŷi)

2 Mean Error

Coefficient of Determination (R2) 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2
Correlation or dependence

Goodness of fit (G) 1− 2
∑n

i=1(yi·ŷi)∑n
i=1 y2

i +
∑n

i=1 ŷ2
i

General Performance

Relative Peak Deviation (RPD) ypeak−ŷpeak
ypeak

Delay in peak

Maximum Peak Delay (MPD) typeak,max − tŷpeak,max Peak of the waveform

Accuracy Score (A) True Predictions
Number of locations Flooded Area/Mapping

L2 Norm
√∑n

i=1(yi − ŷi)2 Magnitude of event

To assess the general fit between the numerical simulation and ML predicted values, the mean squared error (MSE), the

coefficient of determination (R2), and the goodness of fit (G) are used. MSE quantifies the average squared difference between

simulated and predicted values, with lower values indicating better model performance. R2 measures the proportion of variance

in the dependent variable (simulations) that is predictable from the independent variable (predictions), providing information

on the accuracy of the model based on the correlation or dependence between simulations and prediction, with high values330

close to 1 indicating a good result. G is used as a cost function to measure the disagreement between observed and predicted

values, considering both the magnitude and direction of the deviations, with a lower value close to 0 being better. Lastly, we

used the L2Norm to estimate the magnitude of the event, using the vector representing the time series at the test gauge or the

maximum inundation depths for a region.

In the case of the nearshore surrogate, where accurately predicting the peaks and their timing is crucial, Relative Peak335

Deviation (RPD) and Maximum Peak Delay (MPD) are used. RPD measures the relative difference between simulated and

predicted peak values, providing insight into peak accuracy. MPD evaluates the time delay between highest simulated and

predicted peaks, crucial for assessing the timing accuracy of peak. For the onshore surrogates, where accurately predicting
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inundation extents and depth is the focus, the accuracy score quantifies the proportion of correctly predicted inundation loca-

tions relative to the total number of locations. This metric provides a clear indication of the model’s predictive performance340

in accurately mapping inundation for depths above the threshold of 10 cm or a select depth class (say 0.1 m to 1 m). These

metrics collectively offer a comprehensive evaluation of the ML surrogate’s prediction.

4 Results

4.1 General Fit

As a first step, we evaluate the sensitivity of the learning or parameter optimisation to the training data as part of the five-345

fold cross-validation study. The mean square error values are summarised in Table 5 for each of the folds. For the nearshore

surrogate (predicts the time series) it ranges between 0.042 - 0.197 and for the onshore surrogate (predicts the max inundation

depth map) it ranges between 0.169 - 1.129 at the three test sites. For the nearshore surrogate, the relatively consistent MSE

across folds suggests that the model is robust, with no significant overfitting and an overall good fit to the data. However, for

the onshore surrogate, there is noticeable sensitivity to the training data, as evidenced by slightly higher MSE values for certain350

locations, such as Rikuzentakata (fold 2) and Ishinomaki (fold 0).

This increased sensitivity could be attributed to two factors, namely the training size and the complexity of the output. The

smaller size of the training set may lead to higher variance in model performance, as the model has less data to learn from,

making it more sensitive to the specific events included in each training fold. The onshore surrogate is tasked with predicting

inundation, which is inherently more complex and variable compared to nearshore waveforms. This complexity can further355

lead to greater variation in model performance across different folds, especially with limited training data. In summary, the

observed variance in MSE across folds is not random but is influenced by the size and complexity of the training data. For the

nearshore surrogate, the model demonstrates stable performance, while the onshore surrogate shows some sensitivity, which is

expected given the challenging nature of the inundation predictions.

We also record the maximum elevation values from both the surrogate for each test event in Sect.2.1.2 and compare it with360

the simulation values of the GeoClaw tsunami model described in Sect.2.1.1 using the scatter plots of Figures 10 and 11 .

The predictions are in good agreement, well correlated with the simulation values and lay close to the true line. In case of

the nearshore surrogates, we notice larger uncertainty for Sendai compared to the the other test sites, while for the onshore

surrogates, Ishinomaki has more uncertainty. The plot also marks the prediction for the five historic test events, discussed

further in Sect.4.4. The prediction of the maximum elevation for the waveforms and the maxima of the maximum inundation365

depth show good fit with little underestimation or overestimation (Figures 10 and 11) and highlight the generalisation of the

model across unseen data.
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Table 5. Results of the k-fold cross validation using means square error loss metric for the two types of surrogate models tested at the three

test sites.

Region
MSE

Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Nearshore

Surrogate

Rikuzentakata 0.098 0.057 0.042 0.122 0.111

Ishinomaki 0.042 0.065 0.061 0.071 0.053

Sendai 0.197 0.087 0.067 0.168 0.059

Onshore

Surrogate

Rikuzentakata 0.179 0.406 1.129 0.262 0.169

Ishinomaki 0.886 0.349 0.327 0.282 0.373

Sendai 0.35 0.263 0.377 0.261 0.576

(a) Rikuzentakata - 6042 (b) Ishinomaki - 5675 (c) Sendai - 5440

Figure 10. Prediction of the maxima water level from the nearshore surrogate for the training,test and historic events

(a) Rikuzentakata (b) Ishinomaki (c) Sendai

Figure 11. Prediction of the maximum inundation depth from the onshore surrogate for the training, test and historic events
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4.2 Nearshore Approximation

The nearshore surrogate predicts waveforms of 4 hr duration; the time series predictions for gauge 6042 at Rikuzentakata, gauge

5675 at Ishinomaki, gauge 5440 at Sendai for five random events from the fold 0 test set are shown in Fig.12. These figures370

show the mean prediction along with the 2 standard deviation uncertainty bands for all the three gauges. This uncertainty

represents the epistemic uncertainty of the ML model from a variational latent space. They show good agreement with the

simulation, but the simulation values does not always lie within the uncertainty band of the prediction, as seen in event 319

at Rikuzentakata for the full time period. Examples such as Type B (Event 14) that show an excellent match and a narrow

uncertainty range can be linked to training events sharing the same fault location but different slip distributions for the test375

event. Furthermore, the uncertainty range provides a useful indicator of the stability and sensitivity of the selection of model

parameters and latent variables. We also evaluate the performance of the mean prediction using the evaluation metrics for the

time series in Table 4. There is a relative peak deviation of up to 0.2 and a maximum peak delay of up to 2 hours when the

magnitude of the highest peak is not captured accurately.

(a) Rikuzentakata (b) Ishinomaki - 5675 (c) Sendai - 5440

Figure 12. Prediction examples from the nearshore surrogate for the DOE test events

4.3 Onshore Approximation380

With the onshore surrogate we predict the maximum inundation depth at the selected grid location for the three test sites.

The prediction maps at Rikuzentakata for five events from the fold 0 test set are shown in Fig.14. We plot the true GeoClaw
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(a) Rikuzentakata (b) Ishinomaki - 5675 (c) Sendai - 5440

Figure 13. Prediction from the nearshore surrogate for the historical events

simulation values and the mean predictions of the surrogate in columns 1 and 2. The misfit between simulation with the mean

ML prediction and +/- 2 standard deviation values are plotted in columns 3-5. The uncertainty in the onshore surrogate leads

to variability in both the mapped inundation area and the water depth at each grid location for the predictions. This uncertainty385

depends on the ML parameters and the latent variables. The predictions show good agreement with the simulations, though

there is a tendency of the having some artefact flooding, i.e. to predict inundation at grids disconnected from the main flood

extent which is an unphysical characteristic of the surrogate. Similar maps for Ishinomaki and Sendai are made available in the

Supplement Figures S3 and S4.

We also evaluate the performance of the mean prediction +/- 2 standard deviation using the evaluation metrics for the time390

series in Table 4. The accuracy score (A) focuses on the identification of the flooded area with depth greater than 10 cm or

not, while the goodness of fit (G) provides an assessment of the correct prediction of the maximum inundation depth for the

location with depth greater than 10 cm. The general tendency is that misfit reduces when using mean - 2 standard deviation

value, highlighting some overestimation in the mean prediction. We plot the distribution of the performance metric G and A for

two example events of type A and B for Rikuzentakata using the ensemble of the predictions, to show the how the ensemble395

captures predictions close to the desired simulation results in Supplement Figures S9 and S10. Across the different test events

and ensemble predictions, 93.397% have an accuracy score greater than 0.9 and G values less than 0.1. The spread of the G

and A values for different depth classes are plotted in Figures 16a and 16b.
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Figure 14. Prediction examples from the onshore surrogate at Rikuzentakata for the DOE test events.(Basemap from ESRI World Imagery)
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Figure 15. Historical prediction from the onshore surrogate at Rikuzentakata.(Basemap from ESRI World Imagery)
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4.4 Generalisation Ability : Predicting historical test events

Generalisation of the ML surrogates ensure that they would perform well on unseen data by capturing the underlying char-400

acteristics of the data rather than memorising and over fitting on the training data. To test the generalisation we examine the

prediction for the historical test events described in 2.1.3. These results are the predictions using all five VED models trained

on different data subset in the cross-validation exercise, providing a wider ensemble with 500 predictions compared to the 100

predictions from a single VED model in the previous section.

Figure 13 plots the time series prediction for these events for the three regions, similar to the fold test events in Fig.12.405

Compared to the results of the fold test events previously described, the peak values and their timing are well captured across

the test sites and events. As observed earlier the G values tend to be higher than desirable for the smaller events (B, C and D).

The surrogate is unable to predict the high frequency characteristics (event B and C) but is able to capture it in the uncertainty

bands of the waveform ensemble. When comparing the mean prediction with the simulation, the G values range between 0.054-

0.225 for Rikuzentakata, 0.071-0.442 for Ishinomaki, and 0.07-0.411 for Sendai. Similar to the prediction from the test fold,410

underestimation in some of the wave peaks result in the MPD of up to 107 min and 65 min in Rikuzentakata and Ishinomaki,

respectively, and 193 min in Sendai.

Figure 15 plots the inundation map for Rikuzentakata similar to the fold test events shown in Fig.14. For the large magnitude

2011 Tohoku events (test events A and E) the accuracy metric for the flood mapping is high: 0.9 using the mean prediction

for event A and 0.93 for event E. However, there is significant under-prediction in flood depth and misfit up to 5 m. For the415

smaller magnitude events related to the Sanriku events (test events B and C), there is overestimation in the flood mapping, with

many locations having predictions of small depths resulting in lower accuracy metric of 0.83 for event C and 0.65 for event

B. For the 1933 Tokachi-Oki event (test event D), accuracy in flood mapping is high with a value of 0.96, but flood depths are

underestimated with a low G value of 0.623.

For Ishinomaki the prediction performs well in characterising the small events in terms of the depth and area flooded. There420

is an underestimation in flood depths and mapping area for event A and an overestimation in flood area for event E. For Sendai

the accuracy in the flood mapping footprint is high but significantly underestimated in the prediction of the flood depth for

the large magnitude 2011 Tohoku events (test events A and E). Refer to Figures S5, S6,S7 and S8 for the flood prediction and

evaluation metrics.

There is high accuracy in mapping of the flood area, but there is a tendency to misrepresent the flood depths in the prediction425

by the onshore model for the test events. We examine this misfit by plotting the accuracy score (A) for flood mapping and

goodness of fit (G) for the different depth classes 0.1–1 m, 1– 2 m, 2– 5 m, 5–10 m, 10–15 m for test events in section 2.1.3

individually and events in 2.1.2 lumped together at the three test sites as shown in Figures 16a and 16b.

To provide an overview of the surrogate model’s behaviour, we conducted a comparative analysis between the mean pre-

diction of the test events from the Design of Experiments (DOE) and historical events. In Fig.17a, we plot the prediction430

performance, assessed by G, with the magnitude of the event represented by the L2Norm. Our analysis reveals a degradation

in G values for events with L2Norm values below 10. This trend can be attributed to the optimisation process driven by the

24



use of MSE as the loss function, which tends to prioritise accuracy for larger values. Furthermore, in Fig.17b, we compare the

coefficient of determination between predictions and simulation against G as a metric for prediction performance. This visual-

isation effectively identifies areas where the model performs exceptionally well, but also highlights events where low G value435

can have a poor COD value due to poor prediction for a portion of the time series, as seen for test event A for Rikuzentakata,

or over prediction as seen for the maximum inundation depths for event B in Rikuzentakata.

(a) Accuracy(A) (b) Goodness of fit(G)

Figure 16. Assessing the variability of the prediction performance for the different depth classes across events and test sites

(a) L2Norm vs G Goodness of fit (b) R squared vs G Goodness of fit

Figure 17. Assesssing the variablity of the performance (G) and error (MSE) with respect to magnitude of the event(L2Norm) and the

coefficient of determination(R2)

5 Discussion and conclusions

A key challenge in using neural network surrogates for probabilistic tsunami hazard analysis (PTHA) is their limited validation

in generalising beyond the specific event types used during training. For instance, their performance on events from different440
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regions, involving multiple sources and mechanisms, has not been sufficiently validated in previous studies. By testing ML sur-

rogates on a diverse set of events, this research broadens their applicability and makes a significant contribution to validating

the generalisation capabilities of ML surrogates for PTHA. Furthermore, training datasets often require thousands of events

from each source region to fully capture the inherent variability. In many cases, previous studies using ML have prioritised

accurate predictions for larger magnitude events, which are crucial for early warning systems. However, for a comprehensive445

PTHA, it is equally important that surrogates can predict both large and small magnitude events with high accuracy. Recognis-

ing this, we designed two specialised ML surrogates to address the distinct challenges of approximating nearshore and onshore

tsunami hazards that help offset the related computational costs, while overcoming the limitations of imbalanced and limited

training datasets. The nearshore surrogate predicts the time history of tsunami wave at the shore, while the onshore surrogate

predicts the inundation depths across vast locations overland. The hybrid ensemble approach introduced here leverages model450

and parameter sensitivity to enhance prediction accuracy, marking a step forward in integrating uncertainty quantification into

ML-based PTHA. This expanded capability, which has been under explored in prior research, is essential for extending tsunami

hazard and risk assessment.

The data preparation, model architecture, and training procedures developed here represent key advancements in overcoming

the limitations discussed. We train and test our surrogates using a synthetic tsunami dataset modelled using ruptures with455

both heterogenous and uniform slip. Additionally, the surrogate was also tested for historical events modelled with different

rupture models and source locations to assess their effectiveness and investigate the influence of such uncertainties in the initial

displacement on surrogate prediction.

To enhance prediction information, we implemented a hybrid ensemble approach that uses multiple variational models. The

effectiveness of surrogate models depends on the tuning of latent variables, which vary on the type of prediction parameter,460

size of output and complexity of the region. Our analysis suggests that more latent variables are necessary for the nearshore

surrogate compared to the onshore surrogate i.e., more information needs to be compressed for time series prediction than

inundation. Also, the complexity of the region has more influence than the size of the prediction locations. Cross-validation

testing confirms the feasibility of using the surrogate in hazard analyses.

The surrogate models exhibit excellent performance in predicting time series data, effectively characterising waveforms for465

different locations. Despite the peculiar source characteristics and input time series compared to the training dataset, the models

accurately capture temporal dynamics of the events. However, high-frequency characteristics are not captured for some test

events, which can be due to the choice of shallow or low number of convolution layers and limited information in the training

dataset. There are also certain portions with misrepresented phases which could be due to not including the local deformation

explicitly in the learning framework but instead as a pre-processing step.470

Inundation prediction, however, presents greater challenges due to the large number of locations and asymmetry in flood

occurrence across the prediction locations resulting in artefact or disconnected flooding points and under-prediction in depth

in the generalisation testing. Unlike time series prediction with fixed time steps, inundation prediction requires mapping to the

large number of predicted locations (ranging from 6648 to 129941) tested in the study. Addressing these challenges requires

further optimisation and refinement of the model architecture, which will be investigated in future studies.475
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While artefact flooding can be removed with simple postprocessing routines, there is significant potential for further im-

provement in the onshore decoder. We set the grid resolution in our inundation simulation at 50 m due to our computational

constraints, using a higher resolution around 5-10 m would mean significantly more points. Implementing multi-head decoders

for prediction will provide more efficient and accurate predictions. Other architectural improvements and training methods

when using imbalanced datasets, such as weighted sampling, up-sampling of data, and curriculum learning should also be480

investigated but are beyond the scope of this article. A customised loss function balancing predictions across small and large

values by weighting could further enhance model performance and address discrepancies observed in inundation prediction.

Our surrogate model demonstrates stable performance, predicting both small and large events. For we observe good results

for events outside the training parameter space. This highlights the versatility of surrogate models in the prediction of events

with different magnitudes and characteristics. Although our training data did not consider outer rise mechanisms, the model485

generalises well as also seen with the 1933 Sanriku Tsunami. This underscores the promise of further improving the method

by incorporating a broader range of training data and using better source modelling techniques, as done by (Liu et al., 2021;

Núñez et al., 2022). Our analyses show that the nearshore model outperforms the onshore model in terms of generalisation for

the historical events.

The training information from our DOE is constrained by both the quality and quantity of events. Recognizing this limitation490

is crucial for guiding future improvements in the experimental design and training dataset along with advances in the model

architecture and training. First, the geographic focus is limited to the Tohoku subduction source region and modelled with a

simple scheme, restricting the diversity of the training data and impacting the model’s ability to generalise to other regions

or varied tsunami scenarios, such as the historic test events (b, c, and d). Second, there is an event imbalance for inundation,

particularly for the onshore surrogate, where more events of large inundation are needed to provide sufficient training scenarios495

at locations far from the coast, which are rarely inundated in the training dataset. Finally, the generalisation test on the onshore

surrogate highlights varying prediction accuracies across different test sites, at Rikuzentakata, Sendai, and Ishinomaki. These

variations reflect the complexities and limitations of the DOE, where certain test sites with more complex inundation patterns

are not well represented in the training data, leading to less accurate predictions.

To improve our understanding of ML models in tsunami prediction, further efforts are needed in acquiring more extensive500

training and testing datasets, conducting benchmarking and comparison studies with other surrogates or test regions and making

them available open source. In summary, our study demonstrates the potential of surrogate models in accurately predicting

tsunami hazard variables, while also highlighting areas for further refinement to improve model performance and reliability in

hazard assessment tasks.

Table 6. Runtime for tsunami numerical simulation using GeoClaw

Total Cell Updates Device type Parallelisation Time taken per event(hr) No of events Total compute time(hr)

0.531× 1011 CPU 10 CPU threads 3.45 564 1945
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Table 7. Runtime for machine learning training for the different region specific surrogates

Region Max epoch Time taken per training(sec) No of folds Total training time(min)

Nearshore Surrogate Rikuzentakata 3000 54 5 4.5

Ishinomaki 3000 72 5 6

Sendai 4000 73 5 6

Onshore Surrogate Rikuzentakata 20000 156 5 13

Ishinomaki 20000 167 5 14

Sendai 20000 177 5 15

Total 58.5(1 hr)

Understanding the impact of the size of the training dataset and the variability is important and should be examined. To-505

pography and coastal morphology, the number of model inputs, type of prediction, and the tsunami sources considered among

other factors, all contribute to the size of training data and compute resource needed, and the resulting surrogate prediction

performance. The run time information for the tsunami numerical simulation using a CPU device Intel Xeon Silver 4216 CPU

with 2.1 Ghz, 313 GB RAM is provided in Table 6 and for the ML training from this work in Table 7 using GPU device

NVIDIA A100 80GB.510

The computation time for training an ML surrogate is in minutes, this results in a remarkable efficiency gain of approximately

2000 times during the model inference when applying the ML surrogate, as compared to running the full simulation. We should

also consider that multiple training runs are needed for fine-tuning the model architecture, hyperparameters and other choices

at hand for the ML model which was not quantified here. Standardising the model architecture and procedures along with the

use of pre-trained models for transfer learning can help minimise these training related costs.515

The nearshore approximation approach is useful as a dynamic hazard proxy at the coast where considering the arrival time of

tsunami and its peaks is important for studying applications such as evacuation planning. However, the direct application may

be limited by the need to train the model for each location. This may hinder the application at scale, but the option to predict the

inundation maps helps to efficiently assess large regions. Our approach can help extend offshore tsunami hazard information

(Davies et al., 2018; Basili et al., 2021) available at deep offshore points to the much-needed onshore hazard and risk, with a520

relatively limited number of simulations and associated computational costs. The learning from this study can easily be adapted

for other intensity measures or parameters like velocity or momentum flux, but also finds use in early warning settings where

direct tsunami sensors are not yet available. Similar computational challenges also exist for other coastal flood hazards like

storm surge, coastal flooding due to riverine, tropical cyclone rainfall and compound flood drivers, and use of such surrogate

can also be investigated in these cases using different set of input parameters.525
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deviation observed from the 2011 off the Pacific coast of Tohoku earthquake tsunami is publicly available from NOWPHAS at https:

//nowphas.mlit.go.jp/pastdata. The 2011 off the Pacific coast of Tohoku earthquake tsunami information - field survey results used for the

validation of the GeoClaw model are publicly available from the Coastal Engineering Committee of the Japan Society of Civil Engineers535

website at https://www.coastal.jp/tsunami2011. The fault parameters used to model the initial displacement for the historic events are pub-

licly available at the links cited in the references. Large input files for GeoClaw and their post-processed outputs used to train and test the

surrogate models are available at https://doi.org/10.5281/zenodo.10817116
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