
Responses by authors in blue: 

We thank the Referee#2 for their valuable comments and suggestions which 

improves the quality of the manuscript.  Detailed responses are provided to your 

questions. Blue text shows our response, updates which will be incorporated in the 

revised manuscript are highlighted as track change and black text shows the referee 

comments. 

The study uses a surrogate approach based on a variational encoder-decoder (VED) 

to predict the tsunami time series at different depths and maximum inundation 

depths at three coastal sites in Japan. The surrogate accuracy is validated against 

historical rupture scenarios. I add some comments below that I believe could 

strengthen the work presented. 

Comments: 

The design of experiments is not very clear in terms of number of scenarios and 

input variables. The authors mention 559 events split to 383 and 176 depending on 

the nature of the rupture. More information is needed on how these numbers were 

selected, and also the parameter ranges that led to the variation in magnitudes 

(length, width, displacement). Furthermore, more clarification is needed on whether 

there are any other input variables beside the moment magnitude (e.g. location of 

the event) that are varied in the surrogate development. 

Response:   

Thank you for highlighting the need for a more detailed description of the design of 

the experiment (DOE). We updated the section providing more details as reads 

below. 

The design of the experiment consists of a total of 559 hypothetical events of two 

categories of rupture, distinguished by their geometry and slip distribution: (a) Type 

A - ruptures represented by a single rectangular planar surface with homogeneous 

slip and (b) Type B - ruptures that combine numerous smaller rectangular planar 

surfaces (i.e., sub-ruptures), each of which has homogeneous slip, such that the 

rupture surface can bend and the slip distribution can be heterogeneous. The 

number of events in the DOE is constrained by available computational resources 

and our goal to use a feasible number of training events and maximise the 

efficiency of the surrogate model. The source scenarios are modelled by adapting 

procedures previously applied by Gusman et al. (2014) and Mulia et al. (2018).  

A total of 119 locations were selected as the top centre of the faults for modelling 

hypothetical tsunamigenic earthquakes of Type A. These events span Mw 7.5 - 9.0 at 

an interval of 0.5 and are uniformly distributed over the Tohoku subduction 

interface, see Figs. 4a and b. This results in a potential 476 events (119 locations x 4 



magnitudes). The Mw 9.0 events are restricted to locations where the centre of the 

rupture’s top edge is shallower than 16 km. Deeper events cause unrealistic uplift 

on large inland portions of the study region and are unlikely to cause tsunami. To 

ensure realistic modelling and prohibit these events from adversely affecting the 

quality of the surrogate training, these events were excluded, leaving 383 Type A 

events. 

Multi-fault ruptures of Type B were created using a combination of 6 to 12 planar 

sub-faults similar to the unit sources used in NOAA SIFT database (Gica et al. 2008) 

of length 100 km and width 50 km are created as in Fig.4c. The event magnitudes 

range Mw 8.68 - 9.08, and the ruptures are distributed along the shallow section of 

the Tohoku subduction interface.  The bottom centre of the rupture edges are at 

depths between 17-28 km. The slip distributions are modelled as a skewed normal 

distribution where the average combined slip value is between 10 and 20 m. The 

scenarios varied by the number of faults involved: scenarios with 6 faults were 

assigned a slip of 10 meters, scenarios with 8 faults had slips of 10 and 15 meters, 

10 faults with 15 meters, and 12 faults with slips of 15 and 20 meters. This 

systematic variation led to a total of 176 different Type B earthquake scenarios.  

Information on depth, slip, strike, and dip (see Table 2) is derived from the Slab2 

model of the Japan trench (Hayes et al., 2018), and the rake is always set at 90 

degrees (Aki and Richards, 2002). The seafloor deformation is analytically modelled 

assuming homogeneous slip for the rupture or sub-ruptures using Okada solution 

(Okada, 1985) with the value of rupture length, width, and slip scaled (see Table 2) 

based on the magnitude of the event (Strasser et al., 2010). We consider that the co-

seismic displacement is instantaneous and equivalent to the sea surface 

displacement generating the tsunami. This initial sea surface displacement is 

modelled to match the base resolution of the tsunami model at 0.01215 degrees 

grids. 

In summary, the DOE for training the surrogate model considered two main factors: 

(A) moment magnitude, which determines the profile of displacement (length, 

width, and slip amount) based on the moment magnitude-area scaling relationship 

(Strasser et al., 2010), and (B) the location of the events where fault parameters such 

as depth, dip, rake, and strike are derived from the Slab2 dataset. 

 



I would suggest adding an outline of the times 1) for building the two ML surrogates, 

2) for prediction and 3) to run the deterministic model. Possibly in the form of a 

matrix, this should showcase the benefits of using a surrogate approach. 

Response:  This is provided as the supplement Tables S5 and S6; we briefly touch 

on this at line 60 and 460. In the revised manuscript we will move this to the section 

5. (Discussion and conclusions) and present it as part of the discussion.  

In 310 and elsewhere in the manuscript please replace observations/observed with 

model/modelled or simulations/simulated as it can be confused with physical 

observations of the event. 

Response:  Thanks for suggesting this, we will update this in the revised manuscript. 

In table 5 there seems to be a lot of variance regardless the number of the fold. In 

some cases, increasing the fold reduces the SME but in other cases it increases the 

SME. Is this variance random or based on certain conditions? 

Response:  Thank you for your observation. We would like to clarify that we 

conducted k-fold cross-validation with 5 folds (k=5) exclusively. Each column in Table 

5 represents the results from the evaluation using the withheld test set for each fold 

iteration. Consequently, each column corresponds to a unique combination of 

random events used for training and testing, with no repetition across fold 

iterations. The primary purpose of calculating the Mean Squared Error (MSE) across 

different folds is to assess the model's sensitivity, identify poor fits, and detect signs 

of overfitting for that specific portion of the training dataset. The variance in MSE 

observed across folds can indeed reflect differences in the performance of the 

surrogate model depending on the subset of data used for training. We will update 

the text to include the below explanations: 

For the nearshore surrogate, the relatively consistent MSE across folds suggests that 

the model is robust, with no significant overfitting and an overall good fit to the 

data. However, for the onshore surrogate, there is noticeable sensitivity to the 

training data, as evidenced by slightly higher MSE values for certain locations, such 

as Rikuzentakata (fold 2) and Ishinomaki (fold 0). This increased sensitivity could be 

attributed to two factors, namely the training size and the complexity of the output. 

The smaller size of the training set may lead to higher variance in model 

performance, as the model has less data to learn from, making it more sensitive to 

the specific events included in each training fold. The onshore surrogate is tasked 

with predicting inundation, which is inherently more complex and variable 

compared to nearshore waveforms. This complexity can further lead to greater 

variation in model performance across different folds, especially with limited 

training data. 



In summary, the observed variance in MSE across folds is not random but is 

influenced by the size and complexity of the training data. For the nearshore 

surrogate, the model demonstrates stable performance, while the onshore 

surrogate shows some sensitivity, which is expected given the challenging nature of 

the inundation predictions. 

The legends in the figures should be more descriptive, especially in figures 10, 11 

the red, blue symbols, lines and black dotted line. In these figures I would assume 

that these are simulated outputs instead of observed? In a similar manner for 

figures 12 and 13 for dotted lines, uncertainty bounds etc. 

Response:  Yes, you are correct. We will update the figure with better legend to 

prescribe that, this is a comparison between the values simulated by GEOCLAW 

numerical simulation and the prediction from surrogate along with its uncertainty 

bounds. 

As below:  

  

 In figure 12, the predictions of events 14, 139, 102, 87 and 96 match nearly 

identically to the simulations with very small uncertainty bounds. Are those events 

in close proximity to other events in the training dataset? 

Response:  Yes, there are events in close proximity in the training events occurring 

at same location occur but with a different slip and magnitude. Our surrogate 

model also has a tendency to fit better for events with larger values as function the 

loss function built with the MSE component which penalises larger misfit more (also 

noticeable in the prediction results in Fig.14 available in the next comment).  



When considering, for example event 14 of type B for Rikuzentakata. The events in 

proximity from the training set are events where the same 6 faults rupture but with 

a different slip distribution. Event 12 is the closest match we found shown in the 

figures below. 

   

In figure 14, the misfit between predictions and simulations and +-2 standard 

deviations and simulations (columns 3,4 and 5) seem to be very close in terms of 

values, possibly because the standard deviations are small? Can the authors provide 

an example with values and how including the standard deviation reduces the misfit 

between prediction and simulation? 

Response:   

Thank you for this question regarding the Fig.14. We have updated the events 

selection to present more diverse examples; see updated Figures below. In the 

prediction examples from the DOE test set here, the relatively small standard 

deviation reflects the high accuracy and low variance of the surrogate's prediction. 

This variance reduces especially as the events get bigger in magnitude. To illustrate 

how including the standard deviation affects the misfit and accuracy we provide the 

measure of G and A as an indicator along with the the examples for the mean, +- 2 

standard deviation Fig.14. Here higher accuracy (A values close to 1) represents 

good prediction of the inundation extent while good fit (G close to 0) represents 

good prediction in the inundation depth. The general tendency is that misfit reduces 

when using mean-2 standard deviation, highlighting some overestimation in the 

mean prediction.   



 

We additionally plot the distribution of the performance metric G and A for two 

events using the ensemble of the predictions, to show the how the ensemble 

captures predictions close to the desired simulation results. 

 

 



Event 158(Type A)  

 

 

 

 

 

 

 



Event 33(Type B)  

 

 

References 

Gusman, A.R. & Tanioka, Y., 2014. W phase inversion and tsunami inundation 

modelling for tsunami early warning: case study for the 2011 Tohoku event, Pure 

appl. Geophys., 171(7), 1409–1422. 



Mulia, I. E., Gusman, A. R., and Satake, K.: Alternative to non-linear model for 

simulating tsunami inundation in real-time, Geophysical Journal International, 214, 

2002–2013, https://doi.org/10.1093/gji/ggy238, 2018. 

 

Gica, E., Spillane, M. C., Titov, V. V., Chamberlin, C. D., & Newman, J. C. (2008). 

Development of the forecast propagation database for NOAA's Short-term 

Inundation Forecast for Tsunamis (SIFT). NOAA technical memorandum OAR 

PMEL, 139. https://repository.library.noaa.gov/view/noaa/11079 

https://repository.library.noaa.gov/view/noaa/11079

