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Abstract. Wildfires are increasing in frequency and severity across Europe, which makes accurate wildfire risk estimation

crucial. Wildfire risk is usually estimated using meteorological based fire weather indices such as the Canadian Forest Fire

Weather Index (FWI). By using weather forecasts, the FWI can be predicted for several days and even weeks ahead. Proba-

bilistic ensemble forecasts require verification and post-processing in order to provide reliable and accurate forecasts, which

are crucial for informed decision making and an effective emergency response. In this study, we investigate the potential of5

non-homogeneous Gaussian regression (NGR) for statistically post-processing ensemble forecasts of the Canadian Forest Fire

Weather Index. The FWI is calculated using medium range ensemble forecasts from the European Centre for Medium-Range

Weather Forecasts (ECMWF) with lead times up to 15 days over Europe. The method is tested using a 30 day rolling training

period and dividing the European region into three training areas (Northern, Central and Mediterranean Europe). The calibra-

tion improves FWI forecast particularly at shorter lead times and in regions with elevated FWI values i.e. areas with a higher10

wildfire risk.

1 Introduction

Wildfires in Europe have become increasingly prevalent and destructive in the last decades. The recent wildfire in Greece 2023

alone burnt, according to the European Forest Fire Information System (EFFIS), an area of over 170 thousand hectares, killed

at least 18 people and forced thousands to leave their home (Faiola and Labropoulou, 2023). Also, 2017 and 2022 were years15

with devastating wildfires, burning large areas in Portugal, Spain, Greece and Italy. But not just the Mediterranean region is

affected by wildfires, also Middle and Northern Europe is experiencing more and more often unusually dry and warm summers.

Those extended warm and dry periods, raise the fire danger and cause wildfires in regions that were previously not considered

wildfire hotspots. One example is the heatwave 2018, which caused wildfires and over 20 thousand hectares burned land in

Sweden (San-Miguel-Ayanz et al., 2019).20

The rising frequency and seriousness of wildfires in Europe emphasizes the need for an effective management of forest fire

emergencies. The SAFERS (Structured Approaches for Forest fire Emergencies in Resilient Societies, https://safers-project.

eu/) project provides an integrated platform to assist first responders, firefighters, and decision-makers to become more resilient

before, during and after forest fire emergencies. Accurate and reliable weather forecasts ranging from a couple of days to

multiple weeks to identify high wildfire risk areas is an important part of SAFERS. Here, we use the Canadian forest fire25
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weather index, short FWI, which is a widely recognized numeric indicator for forest fire risk (Wagner, 1987). The calculation

of the FWI only requires four weather parameters and can be calculated using deterministic or probabilistic weather forecasts.

Probabilistic ensemble forecasts may require statistical post-processing to ensure reliable and accurate forecasts, which are

essential for making informed decisions and effectively allocating resources when responding to wildfires. One widely used

method for calibrating ensemble forecast is non-homogeneous Gaussian regression (NGR) (Gneiting et al., 2005), which is30

commonly used for the calibration of various weather variables like temperature (Hagedorn et al., 2008), precipitation (Hamill

et al., 2008) or wind-speed (Thorarinsdottir and Johnson, 2012). In this article we show that NGR can also be used for the

calibration of medium-range fire weather index forecasts. The skill of the calibrated FWI forecast is shown and compared for

three European regions.

2 Fire weather index calculation35

A common method to indicate the danger for wildfires is the Canadian Forest Fire Weather Index (FWI) system (Wagner, 1987).

Although originally developed for Canadian weather and vegetation, it is used in many other regions, e.g., by the European

Forest Fire Information System (EFFIS) to provide information on wildfires in the EU and neighboring counties (Giuseppe

et al., 2020). One advantage of using FWI is the relatively simple calculation only requiring four weather parameters in addition

to information of the season (time of year) and geographical location.40

The FWI is calculated in two steps. First, the 2-meter temperature, 2-meter relative humidity, 10-meter wind speed and 24h

accumulated precipitation at local noon are used to calculate the moisture content of three separate fuel layers of different

depth and diameter: the fine fuel moisture code (FFMC), duff moisture code (DMC) and drought moisture (DC). To consider

the different effective day length, and therefore the amount of drying that can occur during a given day, monthly day length

adjustment factors for DMC and DC are used with regard to latitude (Lawson and Armitage, 2008). In the second step, FFMC,45

DMC and DC are used to model the rate of fire spread (ISI) and the potential fuel available for surface fuel consumption

(BUI). These fire behaviour indices are then used to calculate the FWI. The FWI values are always non-negative, with low

numbers indicating low fire weather danger and high values indicating high fire weather danger. Often the FWI is classified

into danger classes and values above 50 are considered extreme. However, those levels can vary depending on local conditions

e.g. vegetation types and what is considered a low or extreme FWI in one region may not be the same in another. A more50

comprehensive description of the FWI system can be found in Wagner (1987) and Lawson and Armitage (2008).

Fuel moisture codes (FFMC, DMC, DC) and consequently FWI values are dependent on preceding conditions. Thus, the

preceding days noon values are used for FWI calculations and the calculations need to be initialized. We use the climatological

mean values of FFMC, DMC and DC calculated using ERA5 reanalysis data as initial values. These climatological values are

calculated from 40-years historical data (1980-2019) for each day of the year with 15 day rolling mean around each day.55
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3 Forecast and observation data

For FWI calculations we use ensemble forecasts of ECMWF’s operational ensemble forecast system (ENS). ECMWF medium-

range ensemble forecasts consists of 51-members, initialized twice a day at 0000 and 1200 UTC and provide forecasts up to 360

hours (15 days). The spatial resolution of ECMWF medium-range ensemble forecasts was 0.2° during the period considered

here. However, to have a larger set of available data for verification, we used forecast data derived form TIGGE archive60

(Bougeault et al., 2010). TIGGE provides operational medium-range ensemble forecast data for non-commercial research

purposes from 13 global NWP centres. The data is accessible through ECMWF API1. The resolution of the used TIGGE data

is 6h for all lead times and the spatial resolution is 0.5°. Although available forecasts cover the whole globe, we focus here on

the European region from 25°N to 72°N and 25°W to 39.80°E. For this study, we use forecasts of the years 2021 to 2023.

The FWI can not be observed directly and needs to be calculated using surface observations of the relevant weather pa-65

rameters. Measurement stations that provide continuous observations of all necessary weather parameters are sparse and only

yield point-wise verification. Furthermore, for an operational calibration of the FWI, observation data needs to be available

rapidly. We therefore use FWI calculated using ECMWF high-resolution forecasts with the shortest lead time to the local noon

with corresponding 24h precipitation forecast as substitute for FWI observations. ECMWF high-resolution forecasts have a

spatial resolution of 0.1° and a temporal resolution of 1 hour and can therefore give a more accurate picture of the weather70

conditions than medium-range ensemble forecasts with a coarser resolution. To determine if those short term FWI forecasts,

hereafter called analysis, are suitable to be used as observation substitute, we check their agreement with actual observation

based values, which is shown in Fig. 1. We use observations available from the Finnish Meteorological Institute’s observation

database for the years 2021–2023 for Finland and other European countries. The map in Fig. 1 shows the stations, for which

it is possible to calculate the FWI for more than 200 consecutive days. In total 682 stations can be used. Stations from outside75

of Finland are not necessarily quality controlled and therefore shown separately. Figure 1b shows the scatter plot of analysis

and observations for all stations and every time step. While the FWI derived from the forecasted weather parameters seems

to generally underestimate the FWI values compared to the values derived from the observations (slope ∼ 0.63), a correlation

is apparent. This good correlation can also be seen in the time series examples for a station in Finland and Greece. In the

following, we are using the forecasted FWI with short lead time (analysis) as observation to compare with longer forecasts.80

4 Calibration and verification methods

4.1 Non-homogeneous Gaussian regression

For statistical post-processing the FWI forecasts, we apply the non-homogeneous Gaussian regression (NGR), also called

ensemble model output statistics (EMOS) approach, which was originally proposed and employed for surface temperature

and sea level pressure by Gneiting et al. (2005). This method was extended to non-negative weather variables (wind speed)85

by Thorarinsdottir and Gneiting (2010). The FWI is by definition non-negative and for the calibration we assume that FWI

1https://apps.ecmwf.int/datasets/data/tigge/, last access: 06/02/2024
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Figure 1. Top left: Map of study area with modified AR5 regions shaded in grey. Location of observation stations (dots) for which the

FWI can be calculated for at least 200 consecutive days. Top right: Correlation of FWI high-resolution analysis and FWI calculated using

observation data at the locations shown in the map. Data from Finnish stations is quality controlled and shown separately. The solid line

illustrates a perfect correlation. Bottom: Examples of FWI time series calculated from observations (orange) and forecast analysis (dashed).

observations y follow a truncated normal distribution with cut-off at zero:

y ∼N 0(µ,σ2). (1)

The location and scale parameter are given by:

µkl = al + blenskl,

log(σ) = cl + dl log(sdkl),
(2)90

with enskl being the ensemble mean and sdkl being the standard deviation of the 51 ensemble members for each location

k and lead time l. al–dl are regression coefficients. The logarithmic link log(sd) is used to assure positive values for the scale

parameter σ.
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The regression coefficients al–dl are estimated by minimizing the average continuous ranked probability score (CRPS, Hers-

bach (2000)) over a selected training period. The training period is here defined as a rolling window of 30 days prior to the95

forecast. Furthermore, data from all grid points in the training area is used to estimate a single set of coefficients for the given

day (regional EMOS). We tested training periods of different length, as shorter training periods allow a faster adaptation to

seasonal differences. On the other hand, longer periods provide more data, thereby reducing statistical variability. Training

windows from 15 to 40 days were tested and only minor differences in the calibration performance were found when using

big training areas as in this example. When using smaller geographical training areas, however, a training period of 30 days100

seemed to most suitable.

The coefficients are estimated for each lead time separately, excluding the first time step of the forecast (T+12h) as these fore-

casts serve as observation. The obtained coefficients are then used to calibrate the forecast at the respective lead time in the

selected training domain. Fitting of the regression model and prediction of location and scale parameters of the predicated dis-

tribution is done using the R-package crch, which provides censored regression with conditional heteroscedasticity (Messner105

et al., 2016) and uses the Broyden–Fletcher–Goldfarb–Shanno algorithm (Nocedal and Wright, 2006) to minimize the CRPS.

4.2 Verification metrics

The aim of forecast calibration is to correct forecast errors deriving from both structural deficiencies in the dynamical models

and forecast sensitivity to uncertain initial conditions (Wilks and Vannitsem, 2018). To evaluate the predictive performance

of calibrated forecasts compared to the raw forecasts, we are using several verification metrics which are shortly introduced110

hereafter.

A common method to evaluate the forecast reliability of probabilistic forecasts is the comparison of ensemble spread and root

mean square error (RMSE) of the ensemble mean, calculated as

RMSE =

√√√√ 1
n

n∑

i=1

(Fi−Oi)2, (3)

where Fi and Oi are the predicted and observed value, respectively, at time step i of n forecasts. The ensemble spread is115

calculated using the square root of the average ensemble variance (Fortin et al., 2014). In a well calibrated forecast model, the

ensemble spread should be on average equal to the RMSE. The ensemble forecast is considered underdispersive if the spread

is smaller than the skill and overdispersive otherwise.

The bias of the forecast can be accessed by simply evaluating the difference between the average forecast and average

observation, which is defined as the mean error (ME):120

ME =− 1
N

n∑

i=1

(Fi−Oi). (4)

While the spread/skill relationship and ME are deterministic scores and applied to the ensemble forecast mean, the Continuous

Ranked Probability Score (CRPS, Eq. (5)) allows a probabilistic assessment (Hersbach, 2000). The CRPS compares the whole
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distribution of ensemble members, represented as cumulative distribution function, with the observation:

CRPS(P,xa) =

∞∫

−∞

[FFc(x)−FO(x)]2dx, (5)125

where FFc(x) and FO(x) are the cumulative distribution functions of the forecast and the observation, respectively. The CRPS

is negatively oriented, which means smaller values indicate a better performance of the ensemble forecast. In this study, we

assume a truncated Gaussian distribution of the FWI forecasts and apply the truncated Gaussian form of the CRPS for raw

and calibrated ensemble forecasts. The skill of the calibrated forecast with respect to a reference forecast can be accessed by

calculating the Continuous Ranked Probability Skill Score (CRPSS), defined as:130

CRPSS = 1− CRPScal

CRPSref
. (6)

where CRPScal and CRPSref denote the CRPS of the calibrated and reference forecast, respectively. Positive values indicate a

higher skill of the calibrated forecast, while negative values indicate a lower skill of the calibrated forecast with respect to the

raw forecast.

5 Results135

In this section, we present results of applying the introduced calibration method to FWI forecasts of the years 2021 to 2023.

We use here climatic reference regions, defined by the 6th IPCC Assessment Report (AR6 (Iturbide et al., 2020)), to divide

the European domain into Northern Europe (NEU), West and Central Europe (WCE) and the Mediterranean (MED). However,

here only the European part, north of the Mediterranean sea, was used and called European Mediterranean (EUMED) hereafter.

Other regions can be selected as well, e.g. the calibration can also be done country-wise or at even smaller level.140

The main fire season in Europe is typically from May until October but varies strongly in length and intensity, e.g. the fire

season starts later and is shorter in Northern Europe (San-Miguel-Ayanz et al., 2012). For the calibration verification we

therefore only focus on forecasts during the months May to October, when the FWI is considerable high in all regions.

Figure 2 shows the spread-skill relationship for the raw (black) and calibrated (orange) FWI forecast averaged over the grid-

points of the three study areas NEU (left), WCE (middle) and EUMED (right) and the wildfire season (May to October).145

Monthly averages can be found in the Supplementary material, Fig. S1 - S3. The climatology is shown by the solid blue line.

Both calibrated as well as raw forecast have a smaller RMSE compared to the climatology which indicates a general skill of the

FWI forecasts compared to the climatology even at longer lead times. For raw and calibrated forecasts the spread (dashed line)

is constantly smaller than the skill of the ensemble mean (as measured by RMSE, solid line). This implies that the forecast is

underdispersive and lacks spread. However, after calibration the ensemble spread is closer to the RMSE, which indicates that150

the reliability of the forecast is improved. The calibration also decreases the RMSE especially during the first forecast days

slightly, which means the accuracy of the forecast is improved especially for short lead times. In Northern Europe, the RMSE

of the calibrated forecast is slightly above the RMSE of the raw forecast after 7 days of forecast, whereas the skill of raw and
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Figure 2. Spread and skill (RMSE) for raw and calibrated FWI forecasts averaged over the region of interest (left: Northern Europe, middle:

West & Central Europe, right: European Mediterranean) and fire season (May-October). The RMSE of the climatology for the respective

region is additionally provided.

calibrated forecast in Central and Mediterranean Europe is similar for forecasts longer than 8 and 10 days, respectively. The

regional differences could be explained with the generally higher FWI values in the more southern, fire prone regions compared155

to Northern Europe where FWI values are often very small.

The mean error (ME) averaged over the respective area and the fire weather season is shown in Fig. 3. Uncalibrated forecasts

have a negative bias for all lead times, which means the forecasted FWI is too low compared to observations. In Northern

Europe the mean error before calibration is around -0.6 for all lead times. In Middle and Southern Europe the mean error

is more negative but increasing with lead time. This improvement of the mean error is especially contributed to forecasts in160

the months with high FWI, July and August for WCE and June to September in EUMED, which can be seen in the monthly

averaged mean error in Supplementary Figures S4 to S6. After calibration the ME is considerably improved. Best results seem

to be achieved in the Mediterranean region, where the mean error after calibration is around zero. In Northern and Central

Europe the bias is slightly positive after calibration, especially for longer lead times.

Figure 4 shows the CRPSS with raw forecasts as reference. In all three regions the CRPSS is positive for the first 3 days165

of the forecast which suggests an improvement of the FWI forecast after calibration for short lead times. The lead time up to

which the calibration is improving the forecasts varies with region. In NEU the calibration actually worsens the calibration

after 5 days of forecast, while in WCE and EUMED the calibrated forecast has no skill compared to the raw forecast after 8

and 10 days, respectively.

These regional differences are furthermore illustrated in the maps shown in Fig. 5, where the CRPSS averaged over the fire170
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Figure 3. Mean Error for the raw (black) and calibrated (orange) FWI forecasts averaged over the grid of the respective region and fire season

(May-October). Left: Northern Europe, Center: Western & Central Europe, Right: European Mediterranean.

Figure 4. Continuous ranked probability skill score (CRPSS) for the calibrated forecasts against raw forecasts averaged over the fire season

(May-October) and the grid of the respective region, left: Northern Europe, Center: Western & Central Europe, Right: European Mediter-

ranean.

season (May-October) is given. With increasing lead time the skill worsens especially in mountainous areas in Scandinavia

and the Alps, which are also the regions with generally low values throughout the fire season.
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Figure 5. Continuous ranked probability skill score (CRPSS) with the raw forecast as reference averaged over the fire season (May-October)

for different lead times.

6 Conclusions

We investigated whether non-homogeneous Gaussian regression (NGR) can be used to calibrate fire weather index (FWI)

forecasts based on medium range ensemble weather forecasts by the European Centre for Medium-Range Weather Forecasts175

ensemble forecasts (ECMWF). To estimate the calibration coefficients we employ a truncated Gaussian distribution with cut-

off at zero and use forecast and observation pairs of the last 30 days preceding the forecast. Because direct FWI observations

are not possible, the most accurate estimation of the true value would be obtained using observed weather parameters to calcu-

late the FWI. However, observations of all necessary weather variables over a longer time period are only sparsely available.

Thus, we used high-resolution weather forecasts with short lead time to calculate the FWI and used these as substitute for180

observations. Although the FWI analysis seems to underestimate the FWI slightly, a good correlation is observed.

FWI forecasts using medium range ensemble weather forecasts perform generally quite well compared to the analysis. How-

ever, calibration improves the forecasts especially at short lead times. In the Mediterranean region and Central Europe an
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improvement of FWI forecast with respect to the FWI analysis is also apparent for longer lead times up to 8 to 10 days. This is

likely caused by the generally higher values in those regions and is supported by the monthly averaged metrics in the appendix,185

which show a stronger improvement caused by the calibration in the months with high FWI values.

To further improve the calibration of fire weather index forecasts, it could be tested if calibration of individual components of

the FWI system e.g. FFMC, DMC and DC would improve overall skill of the forecast. Furthermore, more advanced models

using additional predictors, e.g. elevation or land-use, could improve the calibration but were not tested here.

Code and data availability. The TIGGE data that was used for demonstrating the method is freely available in the TIGGE archive (https:190

//apps.ecmwf.int/datasets/data/tigge/ Bougeault et al. (2010)). ERA5 reanalysis data which was used to calculate climatologies is freely

available on the Climate Data Store (https://doi.org/10.24381/cds.143582cf, Hersbach et al. (2017)). Other data and code can be made

available from the authors upon request.

Author contributions. SB wrote the manuscript with the help of ML. SB and ML developed the FWI calculation and calibration methods.

Competing interests. The authors declare that there are no competing interests.195

Acknowledgements. This work has been supported by the Horizon 2020-funded project SAFERS “Structured Approaches for Forest Fire

Emergencies in Resilient Societies” (H2020/Innovation Action), grant agreement No. 869353. The verification is based on TIGGE data.

TIGGE (The International Grand Global Ensemble) is an initiative of the World Weather Research Programme (WWRP).

10

https://doi.org/10.5194/nhess-2024-57
Preprint. Discussion started: 31 May 2024
c© Author(s) 2024. CC BY 4.0 License.



References

Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., Chen, D. H., Ebert, B., Fuentes, M., Hamill, T. M., Mylne, K., Nicolau, J.,200

Paccagnella, T., Park, Y.-Y., Parsons, D., Raoult, B., Schuster, D., Dias, P. S., Swinbank, R., Takeuchi, Y., Tennant, W., Wilson, L., and

Worley, S.: The THORPEX Interactive Grand Global Ensemble, Bulletin of the American Meteorological Society, 91, 1059 – 1072,

https://doi.org/10.1175/2010BAMS2853.1, 2010.

EFFIS: EFFIS Annual Statistics for Greece, https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates/GRC, last accessed: 27/02/2024.

Faiola, A. and Labropoulou, E.: How wildfires are threatening the Mediterranean way of life, The Washington Post, https://www.205

washingtonpost.com/world/2023/09/02/greece-fires-2023-rhodes/, 2023.

Fortin, V., Abaza, M., Anctil, F., and Turcotte, R.: Why Should Ensemble Spread Match the RMSE of the Ensemble Mean?, Journal of

Hydrometeorology, 15, 1708 – 1713, https://doi.org/10.1175/JHM-D-14-0008.1, 2014.

Giuseppe, F. D., Vitolo, C., Krzeminski, B., Barnard, C., Maciel, P., and San-Miguel, J.: Fire Weather Index: the skill provided by the

European Centre for Medium-Range Weather Forecasts ensemble prediction system, Natural Hazards and Earth System Sciences, 20,210

2365–2378, https://doi.org/10.5194/nhess-20-2365-2020, 2020.

Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics

and minimum CRPS estimation, Mon. Wea. Rev., 133, 1098–1118, https://doi.org/https://doi.org/10.1175/MWR2904.1, 2005.

Hagedorn, R., Hamill, T. M., and Whitaker, J. S.: Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I:

Two-Meter Temperatures, Monthly Weather Review, 136, 2608 – 2619, https://doi.org/10.1175/2007MWR2410.1, 2008.215

Hamill, T. M., Hagedorn, R., and Whitaker, J. S.: Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II:

Precipitation, Monthly Weather Review, 136, 2620 – 2632, https://doi.org/10.1175/2007MWR2411.1, 2008.

Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Weather and Forecasting, 15,

559 – 570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,220

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,

Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Hólm, E., Janisková,

M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-

N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change

Service (C3S) Data Store (CDS), https://doi.org/10.24381/cds.143582cf, last accessed: 22/03/2024, 2017.225

Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodet-

skaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D.,

Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference re-

gions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth System Science Data, 12, 2959–2970,

https://doi.org/10.5194/essd-12-2959-2020, 2020.230

Lawson, B. and Armitage, O.: Weather guide for the Canadian Forest Fire Danger Rating System, Natural Resources Canada Canadian Forest

Service Northern Forestry Centre, Edmonton, Alberta, 2008.

Messner, J. W., Mayr, G. J., and Zeileis, A.: Heteroscedastic Censored and Truncated Regression with crch, The R Journal, 8, 173–181,

https://doi.org/10.32614/RJ-2016-012, 2016.

11

https://doi.org/10.5194/nhess-2024-57
Preprint. Discussion started: 31 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Nocedal, J. and Wright, S. J.: Quasi-Newton Methods, pp. 135–163, Springer New York, New York, NY, https://doi.org/10.1007/978-0-387-235

40065-5_6, 2006.

San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P.,

McInerney, D., Withmore, C., de Oliveira, S. S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., and Amatulli, G.: Comprehen-

sive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS), in: Approaches to Managing Disaster,

edited by Tiefenbacher, J., chap. 5, IntechOpen, Rijeka, https://doi.org/10.5772/28441, 2012.240

San-Miguel-Ayanz, J., Durrant, T., Boca, R., Liberta’, G., Branco, A., De Rigo, D., Ferrari, D., Maianti, P., Artes Vivancos, T., Pfeif-

fer, H., Loffler, P., Nuijten, D., Leray, T., and Jacome Felix Oom, D.: Forest Fires in Europe, Middle East and North Africa 2018,

https://doi.org/10.2760/1128, 2019.

Thorarinsdottir, T. L. and Gneiting, T.: Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic

censored regression, Journal of the Royal Statistical Society: Series A (Statistics in Society), 173, 371–388, https://doi.org/10.1111/j.1467-245

985X.2009.00616.x, 2010.

Thorarinsdottir, T. L. and Johnson, M. S.: Probabilistic Wind Gust Forecasting Using Nonhomogeneous Gaussian Regression, Monthly

Weather Review, 140, 889 – 897, https://doi.org/10.1175/MWR-D-11-00075.1, 2012.

Wagner, C. E. V.: Development and structure of the Canadian forest fire weather index system, Canadian Forestry Service, Headquarters,

Ottawa„ 35, 1987.250

Wilks, D. S. and Vannitsem, S.: Chapter 1 - Uncertain Forecasts From Deterministic Dynamics, pp. 1–13, Elsevier,

https://doi.org/https://doi.org/10.1016/B978-0-12-812372-0.00001-7, 2018.

12

https://doi.org/10.5194/nhess-2024-57
Preprint. Discussion started: 31 May 2024
c© Author(s) 2024. CC BY 4.0 License.


